第7章 第23讲 尺规作图
- 格式:doc
- 大小:306.00 KB
- 文档页数:8
第二十三讲尺规作图命题点1 五种基本尺规作图类型一判定作图结果1.(2022•德州)在△ABC中,根据下列尺规作图的痕迹,不能判断AB与AC 大小关系的是()A.B.C.D.2.(2022•益阳)如图,在△ABC中,BD平分∠ABC,以点A为圆心,以任意长为半径画弧交射线AB,AC于两点,分别以这两点为圆心,以适当的定长为半径画弧,两弧交于点E,作射线AE,交BD于点I,连接CI,以下说法错误的是()A.I到AB,AC边的距离相等B.CI平分∠ACBC.I是△ABC的内心D.I到A,B,C三点的距离相等3.(2022•盘锦)如图,线段AB是半圆O的直径.分别以点A和点O为圆心,大于的长为半径作弧,两弧交于M,N两点,作直线MN,交半圆O于点C,交AB于点E,连接AC,BC,若AE=1,则BC的长是()A.B.4C.6D.4.(2022•长春)如图,在△ABC中,根据尺规作图痕迹,下列说法不一定正确的是()A.AF=BF B.AE=ACC.∠DBF+∠DFB=90°D.∠BAF=∠EBC 5.(2022•威海)过直线l外一点P作直线l的垂线PQ.下列尺规作图错误的是()A.B.C.D.6.(2022•舟山)用尺规作一个角的角平分线,下列作法中错误的是()A.B.C.D.类型二根据作图步骤进行计算、证明或结论判断7.(2022•淄博)如图,在△ABC中,AB=AC,∠A=120°.分别以点A和C 为圆心,以大于AC的长度为半径作弧,两弧相交于点P和点Q,作直线PQ 分别交BC,AC于点D和点E.若CD=3,则BD的长为()A.4B.5C.6D.7 8.(2022•黄石)如图,在△ABC中,分别以A,C为圆心,大于AC长为半径作弧,两弧分别相交于M,N两点,作直线MN,分别交线段BC,AC于点D,E,若AE=2cm,△ABD的周长为11cm,则△ABC的周长为()A.13cm B.14cm C.15cm D.16cm 9.(2022•资阳)如图所示,在△ABC中,按下列步骤作图:第一步:在AB、AC上分别截取AD、AE,使AD=AE;第二步:分别以点D和点E为圆心、适当长(大于DE的一半)为半径作圆弧,两弧交于点F;第三步:作射线AF交BC于点M;第四步:过点M作MN⊥AB于点N.下列结论一定成立的是()A.CM=MN B.AC=AN C.∠CAM=∠BAM D.∠CMA=∠NMA 10.(2022•锦州)如图,在矩形ABCD中,AB=6,BC=8,分别以点A和C为圆心,以大于的长为半径作弧,两弧相交于点M和N,作直线MN分别交AD,BC于点E,F,则AE的长为()A.B.C.D.11.(2022•聊城)如图,△ABC中,若∠BAC=80°,∠ACB=70°,根据图中尺规作图的痕迹推断,以下结论错误的是()A.∠BAQ=40°B.DE=BD C.AF=AC D.∠EQF=25°12.(2022•百色)如图,是求作线段AB中点的作图痕迹,则下列结论不一定成立的是()A.∠B=45°B.AE=EB C.AC=BC D.AB⊥CD 13.(2022•营口)如图,在△ABC中,AB=AC,∠A=36°,由图中的尺规作图得到的射线与AC交于点D,则以下推断错误的是()A.BD=BC B.AD=BD C.∠ADB=108°D.CD=AD 14.(2022•鄂州)如图,直线l1∥l2,点C、A分别在l1、l2上,以点C为圆心,CA长为半径画弧,交l1于点B,连接AB.若∠BCA=150°,则∠1的度数为()A.10°B.15°C.20°D.30°15.(2022•枣庄)如图,在矩形ABCD中,按以下步骤作图:①分别以点B和D 为圆心,以大于BD的长为半径作弧,两弧相交于点E和F;②作直线EF 分别与DC,DB,AB交于点M,O,N.若DM=5,CM=3,则MN=.16.(2022•辽宁)如图,在△ABC中,AB=AC,∠B=54°,以点C为圆心,CA长为半径作弧交AB于点D,分别以点A和点D为圆心,大于AD长为半径作弧,两弧相交于点E,作直线CE,交AB于点F,则∠ACF的度数是.类型三依据要求直接作图17.(2022•淮安)如图,已知线段AC和线段a.(1)用直尺和圆规按下列要求作图.(请保留作图痕迹,并标明相应的字母,不写作法)①作线段AC的垂直平分线l,交线段AC于点O;②以线段AC为对角线,作矩形ABCD,使得AB=a,并且点B在线段AC的上方.(2)当AC=4,a=2时,求(1)中所作矩形ABCD的面积.18.(2022•襄阳)如图,在△ABC中,AB=AC,BD是△ABC的角平分线.(1)作∠ACB的角平分线,交AB于点E(尺规作图,不写作法,保留作图痕迹);(2)求证:AD=AE.19.(2022•宁夏)如图,四边形ABCD中,AB∥DC,AB=BC,AD⊥DC于点D.(1)用尺规作∠ABC的角平分线,交CD于点E;(不写作法,保留作图痕迹)(2)连接AE.求证:四边形ABCE是菱形.20.(2022•赤峰)如图,已知Rt△ABC中,∠ACB=90°,AB=8,BC=5.(1)作BC的垂直平分线,分别交AB、BC于点D、H;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接CD,求△BCD的周长.类型四转化类作图21.(2022•陕西)如图,已知△ABC,CA=CB,∠ACD是△ABC的一个外角.请用尺规作图法,求作射线CP,使CP∥AB.(保留作图痕迹,不写作法)命题点2无刻度直尺作图类型一网格中作图22.(2022•长春)图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中△ABC的形状是;(2)在图①中确定一点D,连结DB、DC,使△DBC与△ABC全等;(3)在图②中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA;(4)在图③中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ∽△ABC,且相似比为1:2.23.(2022•江西)如图是4×4的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).(1)在图1中作∠ABC的角平分线;(2)在图2中过点C作一条直线l,使点A,B到直线l的距离相等.类型二根据图形性质作图24.(2022•湖北)已知四边形ABCD为矩形,点E是边AD的中点,请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD的对称轴m,使m∥AB;(2)在图2中作出矩形ABCD的对称轴n,使n∥AD.25.(2022•无锡)如图,△ABC为锐角三角形.(1)请在图1中用无刻度的直尺和圆规作图:在AC右上方确定点D,使∠DAC=∠ACB,且CD⊥AD;(不写作法,保留作图痕迹)(2)在(1)的条件下,若∠B=60°,AB=2,BC=3,则四边形ABCD的面积为.26.(2022•绥化)已知:△ABC.(1)尺规作图:用直尺和圆规作出△ABC内切圆的圆心O.(只保留作图痕迹,不写作法和证明)(2)如果△ABC的周长为14cm,内切圆的半径为1.3cm,求△ABC的面积.27.(2022•扬州)【问题提出】如何用圆规和无刻度的直尺作一条直线或圆弧平分已知扇形的面积?【初步尝试】如图1,已知扇形OAB,请你用圆规和无刻度的直尺过圆心O 作一条直线,使扇形的面积被这条直线平分;【问题联想】如图2,已知线段MN,请你用圆规和无刻度的直尺作一个以MN为斜边的等腰直角三角形MNP;【问题再解】如图3,已知扇形OAB,请你用圆规和无刻度的直尺作一条以点O为圆心的圆弧,使扇形的面积被这条圆弧平分.(友情提醒:以上作图均不写作法,但需保留作图痕迹)。
尺规作图法一、作图法则:1.直尺没有刻度,只能用于连接两点之间的直线;2.圆规用于作已知半径的圆或弧。
二、作图公法:1.通过两已知点可以作一条直线;2.已知圆心和半径可作一圆;3.两已知直线,一已知直线和一已知圆,或两已知圆,如其相交,可求其交点。
三、作图成法:1.在已知射线上自端点起截一已知长度的线段;2.以一已知射线为一边,在指定的一侧作一已知大小的角;3.已知边长作正三角形;4.已知⑴三边(两边之和大于余一边)⑵两边及夹角⑶一边及两邻角(两角之和小于二直角)⑷两角及其中一角的对边(两角之和小于二直角)作三角形;5.作已知线段的中点;6.作已知线段的中垂线;7.作已知角的平分线;8.作已知弧的中点;9.过已知直线上一点作此线的垂线;10.过已知直线外一点作此线的垂线;11.过已知直线外一点作此线的平行线;12.已知斜边及一腰(斜边大于腰),作直角三角形;13.已知边长作正方形;14.已知弦及内接角,作弓形;15.作已知三角形的外接圆、内切圆、旁切圆;16.过圆上一点作此圆的切线;17.过圆外一点作此圆的切线;18.作两个已知圆的公切线;19.作已知圆的内接三角形、正方形、正六边形;20.作已知圆的外切三角形、正方形、正六边形;21.作一线段使等于已知n 条线段之和;22.作一线段使等于已知两条线段之差;23.作一线段使等于一已知线段的n 倍(n 是自然数);24.n 等分已知线段;25.作一线段使等于已知线段的n 分之m ,(m 、n 都 是自然数);26.内分或外分一已知线段,使所得分比等于已知的两线段之比;27.按已知的n 条线段所组成的连比,将一已知线段分为n 段;28.作一线段x ,使有b a =x c,其中,a 、b 、c 都是已知线段;(比例第四项作图)29.作一线段x=ab ,其中,a 、b 都是已知线段;(比例中项作图)30.作一线段x=a p ,其中,a 是已知线段,p 是有理数。
第七章图形的变化
第23讲尺规作图
(建议用时∶45分钟总分∶100分)
拔高篇
一、选择题(本大题共6个小题,每小题4分,共24分)
1.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:①分别以点A,D为圆心,以大于1
2
AD的长为半径在AD两侧作弧,两弧交
于两点M,N;②作直线MN分别交AB,AC于点E,F;③连接DE,DF.若BD=6,AE=4,CD=3,则CF的长是( C )
A.1 B.1.5 C.2 D.3
第1题图第2题图
2.(2019·洛阳一模)如图,点B是直线l外一点,在l的另一侧任取一点K,以点B为圆心,BK为半径作弧,交直线l于点M,N;
再分别以点M,N为圆心,以大于1
2
MN的长为半径作弧,两弧相交于点P,连接BP交直线l于点A.点C是直线l上一点,点D,E
分别是线段AB,BC的中点,点F在CA的延长线上,∠FDA=∠B,AC=8,AB=6,则四边形AEDF的周长为( D )
A.8 B.10 C.16 D.18
3.(2019·安阳一模)如图,矩形ABCD中,AB=7,BC=4,按以下步骤作图:①以点B为圆心,适当长为半径画弧,分别交AB,BC
于点E,F;②再分别以点E,F为圆心,大于1
2
EF的长为半径画弧,两弧在∠ABC内部相交于点H,③作射线BH,交DC于点G,则
DG的长为( B )
A.2 B.3 C.4 D.5
第3题图 第4题图
4.(2019·禹州二模)如图,已知菱形ABCD 的顶点B(-2,0),且∠ABC=60°,点A 在y 轴的正半轴上,按以下步骤作图:①以点B 为圆心,适当长度为半径作弧,分别交边AB ,BC 于点M ,N ;②分别以点M ,N 为圆心,大于1
2MN 的长为半径作弧,两弧在∠ABC
内交于点P ;③作射线BP ,交菱形的对角线AC 于点E ,则点E 的坐标为( A ) A .(1,3)
B .(1,2)
C .⎝
⎛⎭
⎪
⎪⎫12,1 D .⎝
⎛⎭
⎪⎪⎫
1
2,3 5.(2019·焦作一模)如图,已知矩形AOBC 的三个顶点的坐标分别为O(0,0),A(0,3),B(4,0),按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交OC ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于1
2DE 的长为半径作弧,两弧在∠BOC 内交于
点F ;③作射线OF ,交边BC 于点G ,则点G 的坐标为( A )
A .⎝
⎛⎭⎪⎪⎫4,43 B .⎝
⎛⎭⎪
⎪⎫
43,4 C .⎝
⎛⎭
⎪
⎪⎫
53,4 D .⎝
⎛⎭⎪⎪⎫4,53
第5题图 第6题图
6.(2019·郑州二模)如图,在△ABC 中,AD 平分∠BAC,按如下步骤作图:①分别以点A ,D 为圆心,以大于1
2AD 的长为半径在AD
两侧作弧,分别交于两点M ,N ;②连接MN 分别交AB ,AC 于点E ,F ;③连接DE ,DF .若BD =8,AF =5,CD =4,则下列说法中正确的是( D )
A .DF 平分∠ADC
B .AF =3CF
C .DA =DB
D .B
E =10
二、填空题(本大题共6个小题,每小题4分,共24分)
7.(2019·信阳二模)如图,依据尺规作图的痕迹,计算∠α= 56° .
第7题图 第8题图
8.(2019·开封一模)如图,在Rt △ABC 中,∠ACB =90°.分别以点A ,B 为圆心,大于1
2AB 的长为半径画弧,两弧交于两点,过这
两点作直线交BC 于点P ,连接AP ,当∠B 为 30 度时,AP 平分∠CAB.
9.如图,在Rt △ABC 中,∠C =90°,按以下步骤作图:①以点A 为圆心,以小于AC 的长为半径作弧,分别交AC ,AB 于点M ,N ;②分别以点M ,N 为圆心,以大于1
2MN 的长为半径作弧,两弧相交于点P ;③连接AP ,交BC 于点D .若CD =3,BD =5,则AC 的长为
6 .
第9题图 第10题图
10.如图,在△ABC 中,AB =AC ,以点B 为圆心,BC 长为半径作弧,交AC 于点C 和点D ,连接BD ;再分别以点C ,D 为圆心,大于
1
2CD 的长为半径作弧,两弧相交于点E ,作射线BE 交AC 于点F .若∠A=40°,则∠DBF 的度数为 20° .
11.(2019·淅川一模)如图,在▱ABCD 中,AB =2,BC =3.以点C 为圆心,适当长为半径画弧,交BC 于点P ,交CD 于点Q ,再分别以点P ,Q 为圆心,大于1
2
PQ 的长为半径画弧,两弧相交于点N ,作射线CN 交BA 的延长线于点E ,则AE 的长是 1 .
第11题图 第12题图
12.(2019·镇平一模)如图,在▱ABCD 中,按以下步骤作图:①以点A 为圆心,任意长为半径作弧,分别交AB ,AD 于点M ,N ;②分别以点M ,N 为圆心,以大于1
2MN 的长为半径作弧,两弧相交于点P ;③作射线AP ,交边CD 于点Q .若DQ =2QC ,BC =3,则▱ABCD
的周长为 15 .
三、解答题(本大题共1个小题,共10分)
13.(2019·省实验一模)(10分)如图,网格线的交点称为格点.双曲线y =k 1
x 与直线y =k 2x 在第二象限交于格点A .
(1)填空:k 1= ,k 2= .
(2)双曲线与直线的另一个交点B 的坐标为 ,在图中标出来. (3)在图中仅用直尺、2B 铅笔画△ABC,使其面积为2|k 1|,其中点C 为格点.
解:(1)-2,-2. (4分) (2)(1,-2),B 点的位置如解图1所示.
(6分)
(3)∵k1=-2,
∴2|k1|=4. (8分)
∴满足条件的点C有四个,如解图2所示.
(10分)
拓展篇
一、选择题(本大题共3个小题,每小题5分,共15分)
1.(2019·长春)如图,在△ABC中,∠ACB为钝角.用直尺和圆规在边AB上确定一点D,使∠ADC=2∠B,则符合要求的作图痕迹是( B )
A B
C
D
2.(2019·北京)已知锐角∠AOB,如图.(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作PQ ︵
,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交PQ ︵
于点M ,N ;(3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( D ) A .∠COM =∠COD
B .若OM =MN ,则∠AOB=20°
C .MN ∥C
D D .MN =3CD
3.(2019·河北)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是( C )
A
B
C
D
二、填空题(本大题共3个小题,每小题6分,共18分)
4.(2019·深圳)如图,已知AB=AC,AB=5,BC=3,以A,B两点为圆心,大于1
2
AB的长为半径画圆弧,两弧相交于点M,N,连接
MN与AC相交于点D,则△BDC的周长为 8 .
5.(2019·贵阳)如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D;再分别以点B,D为圆心,大
于1
2
BD的长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE=1,则EC的长度是 5 .
第5题图第6题图
6.(2019·成都)如图,▱ABCD的对角线AC与BD相交于点O,按以下步骤作图:①以点A为圆心,以任意长为半径作弧,分别交AO,AB于点M,N;②以点O为圆心,以AM的长为半径作弧,交OC于点M′;③以点M′为圆心,以MN的长为半径作弧,在∠COB 的内部交前面的弧于点N′;④过点N′作射线ON′交BC于点E.若AB=8,则线段OE的长为 4 .
三、解答题(本大题共1个小题,共9分)
7.(2019·玉林)(9分)如图,已知等腰三角形ABC的顶角∠A=36°.
(1)在AC上作一点D,使AD=BD.(要求:尺规作图,保留作图痕迹,不必写作法和证明,最后用黑色墨水笔加墨)
(2)求证:△BCD是等腰三角形.
(1)解:所求的图形如解图所示.
(3分) (2)证明:∵AB=AC,
∴∠ABC=∠C=1
2
(180°-36°)=72°. (5分)
∵DA=DB,
∴∠ABD=∠A=36°.
∴∠BDC=∠A+∠ABD=36°+36°=72°. (7分) ∴∠BDC=∠C.
∴△BCD是等腰三角形. (9分) 【错误反思】。