第四节析因设计与方差分析
- 格式:pdf
- 大小:156.98 KB
- 文档页数:22
第四节析因设计与方差分析1. 基本概念完全随机设计(单因素)随机区组设计(两因素, 无重复)拉丁方设计(三因素, 无重复)析因设计(两因素以上, 至少重复2次以上)析因设计的意义在评价药物疗效时,除需知道A药和B药各剂量的疗效外(主效应),还需知道两种药同时使用的协同疗效。
析因设计及相应的方差分析能分析药物的单独效应、主效应和交互效应。
例:A因素食物中蛋白含量; B因素食物中脂肪含量B A 平均a2-a1a1 a2b1 30 32 31 2b2 36 44 40 8平均33 38 35.5 5b2-b1 6 12 9(1)单独效应: 在每个B水平, A的效应。
或在每个A水平,B的效应。
(2)主效应:某因素各水平的平均差别。
(3)交互效应:某因素各水平的单独效应随另一因素水平变化而变化,则称两因素间存在交互效应。
如果)()()(000μμμμμμ-+-≠-b a ab ,存在交互效应。
如果)()()(000μμμμμμ-+->-b a ab ,协同作用。
如果)()()(000μμμμμμ-+-<-b a ab ,拮抗作用。
2527293133353739414345a1a22527293133353739414345a1a2如果不存在交互效应,则只需考虑各因素的主效应。
在方差分析中,如果存在交互效应,解释结果时,要逐一分析各因素的单独效应,找出最优搭配。
在两因素析因设计时,只需考虑一阶交互效应。
三因素以上时,除一阶交互效应外,还需考虑二阶、三阶等高阶交互效应,解释将更复杂。
析因设计的优点:用相对较小样本,获取更多的信息,特别是交互效应分析。
析因设计的缺点:当因素增加时,实验组数呈几何倍数增加。
实际工作中部分交互效应,特别是高阶交互效应可以根据临床知识排除,这时可选用正交设计。
2. 析因设计与结果的方差分析(1)实验设计设有k个因素,每个因素有L1, L2, …, L k个水平,那么共有G= L1×L2×…×L k个处理组。