微电子与集成电路设计2
- 格式:ppt
- 大小:3.22 MB
- 文档页数:81
课后习题答案1.1 为什么经典物理无法准确描述电子的状态?在量子力学中又是用什么方法来描述的? 解:在经典物理中,粒子和波是被区分的。
然而,电子和光子是微观粒子,具有波粒二象性。
因此,经典物理无法准确描述电子的状态。
在量子力学中,粒子具有波粒二象性,其能量和动量是通过这样一个常数来与物质波的频率ω和波矢k 建立联系的,即 k n c h p h E ====υωυ 上述等式的左边描述的是粒子的能量和动量,右边描述的则是粒子波动性的频率ω和波矢k 。
1.2 量子力学中用什么来描述波函数的时空变化规律?解:波函数ψ是空间和时间的复函数。
与经典物理不同的是,它描述的不是实在的物理量的波动,而是粒子在空间的概率分布,是一种几率波。
如果用()t r ,ψ表示粒子的德布洛意波的振幅,以()()()t r t r t r ,,,2ψψψ*=表示波的强度,那么,t 时刻在r 附近的小体积元z y x ∆∆∆中检测到粒子的概率正比于()z y x t r ∆∆∆2,ψ。
1.3 试从能带的角度说明导体、半导体和绝缘体在导电性能上的差异。
解:如图1.3所示,从能带的观点来看,半导体和绝缘体都存在着禁带,绝缘体因其禁带宽度较大(6~7eV),室温下本征激发的载流子近乎为零,所以绝缘体室温下不能导电。
半导体禁带宽度较小,只有1~2eV ,室温下已经有一定数量的电子从价带激发到导带。
所以半导体在室温下就有一定的导电能力。
而导体没有禁带,导带与价带重迭在一起,或者存在半满带,因此室温下导体就具有良好的导电能力。
1.4 为什么说本征载流子浓度与温度有关?解:本征半导体中所有载流子都来源于价带电子的本征激发。
由此产生的载流子称为本征载流子。
本征激发过程中电子和空穴是同时出现的,数量相等,i n p n ==00。
对于某一确定的半导体材料,其本征载流子浓度为kT E V C i g e N N p n n ==002式中,N C ,N V 以及Eg 都是随着温度变化的,所以,本征载流子浓度也是随着温度变化的。
微电子技术与集成电路设计电子与电气工程是现代科技发展中不可或缺的重要学科,而微电子技术与集成电路设计则是电子与电气工程领域中的一个重要分支。
随着科技的不断进步和社会的快速发展,微电子技术与集成电路设计在各个领域都起到了至关重要的作用。
微电子技术是电子与电气工程中研究微型电子器件和电路的一门学科,它主要研究微型电子器件的制备、工艺和性能等方面。
微电子技术的发展使得电子器件的体积不断缩小,性能不断提高,功耗不断降低,从而实现了电子设备的迅猛发展和智能化的提升。
微电子技术的应用非常广泛,涵盖了通信、计算机、医疗、汽车、航天等众多领域。
在微电子技术的基础上,集成电路设计则是将多个电子器件集成在一个芯片上,形成一个完整的功能电路系统。
集成电路设计的核心是设计和优化电路的结构和功能,以满足特定的应用需求。
集成电路设计需要综合考虑电路的性能、功耗、可靠性、成本等因素,并通过模拟、数字和混合信号设计技术实现。
集成电路设计的发展使得电子设备的功能更加强大,体积更加小巧,功耗更加低,从而推动了信息技术的快速发展和社会的智能化进程。
在微电子技术与集成电路设计领域,有许多重要的技术和方法。
例如,半导体工艺技术是微电子器件制备的基础,通过不同的工艺步骤,可以实现不同类型的电子器件。
而电路设计方法包括了模拟电路设计、数字电路设计和混合信号电路设计等,通过不同的设计方法,可以实现不同功能和性能的电路。
此外,集成电路设计还需要考虑电磁兼容性、故障诊断和可靠性等方面的问题,以确保电路系统的稳定运行和长期可靠性。
微电子技术与集成电路设计在现代科技和工业生产中起到了重要的推动作用。
它们不仅改变了人们的生活方式,也推动了社会的发展和进步。
例如,智能手机、计算机、无线通信设备等现代电子产品的快速发展,离不开微电子技术与集成电路设计的支持。
此外,微电子技术与集成电路设计在医疗设备、汽车电子、航空航天等领域也发挥着重要的作用,为人类提供了更加便捷、高效和安全的生活方式。
“微处理器系统结构与嵌入式系统设计”第一章习题解答1.2 以集成电路级别而言,计算机系统的三个主要组成部分是什么?中央处理器、存储器芯片、总线接口芯片1.3 阐述摩尔定律。
每18个月,芯片的晶体管密度提高一倍,运算性能提高一倍,而价格下降一半。
1.5 什么是SoC?什么是IP核,它有哪几种实现形式?SoC:系统级芯片、片上系统、系统芯片、系统集成芯片或系统芯片集等,从应用开发角度出发,其主要含义是指单芯片上集成微电子应用产品所需的所有功能系统。
IP核:满足特定的规范和要求,并且能够在设计中反复进行复用的功能模块。
它有软核、硬核和固核三种实现形式。
1.8 什么是嵌入式系统?嵌入式系统的主要特点有哪些?概念:以应用为中心,以计算机技术为基础,软硬件可裁剪,适应应用系统对功能、可靠性、成本、体积和功耗的严格要求的专用计算机系统,即“嵌入到应用对象体系中的专用计算机系统”。
特点:1、嵌入式系统通常是面向特定应用的。
2、嵌入式系统式将先进的计算机技术、半导体技术和电子技术与各个行业的具体应用相结合的产物。
3、嵌入式系统的硬件和软件都必须高效率地设计,量体裁衣、去除冗余,力争在同样的硅片面积上实现更高的性能。
4、嵌入式处理器的应用软件是实现嵌入式系统功能的关键,对嵌入式处理器系统软件和应用软件的要求也和通用计算机有以下不同点。
①软件要求固体化,大多数嵌入式系统的软件固化在只读存储器中;②要求高质量、高可靠性的软件代码;③许多应用中要求系统软件具有实时处理能力。
5、嵌入式系统和具体应用有机的结合在一起,它的升级换代也是和具体产品同步进行的,因此嵌入式系统产品一旦进入市场,就具有较长的生命周期。
6、嵌入式系统本身不具备自开发能力,设计完成以后用户通常也不能对其中的程序功能进行修改,必须有一套开发工具和环境才能进行开发。
第二章习题答案2.2 完成下列逻辑运算(1)101+1.01 = 110.01(2)1010.001-10.1 = 111.101(3)-1011.0110 1-1.1001 = -1100.1111 1(4)10.1101-1.1001 = 1.01(5)110011/11 = 10001(6)(-101.01)/(-0.1) = 1010.12.3 完成下列逻辑运算(1)1011 0101∨1111 0000 = 1111 0101(2)1101 0001∧1010 1011 = 1000 0001(3)1010 1011⊕0001 1100 = 1011 01112.4 选择题(1)下列无符号数中最小的数是( A )。
(第二讲)一. 集成电路设计基础1.4 版图设计规则 Design Rule李福乐 清华大学微电子所上一讲主要内容• 课程介绍 • 集成电路设计背景知识 • 硅栅CMOS集成电路版图流程 • CMOS工艺中集成元件的版图、结构和电特性版图设计规则Design Rule• 引言 • 设计规则(Topological Design Rule)– 上华0.6um DPDM CMOS工艺拓扑设计规则 – 设计规则的运用• 版图设计准则(‘Rule’ for performance)– 匹配 – 抗干扰 – 寄生的优化 – 可靠性引言• 芯片加工:从版图到裸片制加版工是一种多层平面“印刷”和 叠加过程,但中间是否会 带来误差?引言一个版图的例子:引言加工后得到的实际芯片版图例子:1引言• 加工过程中的非理想因素– 制版光刻的分辨率问题 – 多层版的套准问题 – 表面不平整问题 – 流水中的扩散和刻蚀问题 – 梯度效应引言• 解决办法– 厂家提供的设计规则(topological design rule),确保完成设计功能和一定的芯片成 品率,除个别情况外,设计者必须遵循– 设计者的设计准则(‘rule’ for performance),用以提高电路的某些性 能,如匹配,抗干扰,速度等设计规则(topological design rule)基本定义(Definition) WidthEnclosure设计规则ExtensionExtensionSpace SpaceOverlap1.请记住这些名称的定义 2.后面所介绍的 layout rules 必须熟记,在画layout 时须遵守这些规则。
上华0.6um DPDM CMOS工艺拓扑 设计规则版图的层定义N-well P+ implantpoly1contactvia High Resistoractive N+ implantpoly2 metal1metal2设计规则 Nwell符号 尺寸含义1.a 3.0 阱的最小宽度1.b 4.8 不同电位阱的阱间距1.c 1.5 相同电位阱的阱间距P+ Active gb P+ fe N+ ActiveN+ c da2设计规则 Nwell符号 尺寸含义1.d 0.4 阱对其中N+有源区最小覆盖1.e 1.8 阱外N+有源区距阱最小间距1.f 1.8 阱对其中P+有源区最小覆盖1.g 0.4 阱外P+有源区距阱最小间距P+ Active gb P+ fe N+ ActiveN+ c da设计规则 active符号 尺寸含义2.a 0.6 用于互连的有源区最小宽度2.b 0.75 最小沟道宽度2.c 1.2 有源区最小间距aN+ c.4b P+P+ c.2ac.3 N+c.1 N+b设计规则 poly1可做MOS晶体管栅极、 导线、poly-poly电容的 下极板符号 尺寸含义4.a 0.6 用于互连的poly1最小宽度4.b 0.75 Poly1最小间距4.c 0.6 最小NMOS沟道长度4.d 0.6 最小PMOS沟道长度eeN+fbgcP+fbgadb设计规则 poly1可做MOS晶体管栅极、 导线、poly-poly电容的 下极板符号 尺寸含义4.e 0.6 硅栅最小出头量4.f 0.5 硅栅与有源区最小内间距4.g 0.3 场区poly1与有源区最小内 间距eeN+fbgcP+fbgadb设计规则 High Resistor在Poly2上定义高阻区符号 尺寸含义5.a 2.0 高阻最小宽度5.b 1.0 高阻最小间距5.c 1.0 高阻对poly2的最小覆盖5.d 1.0 高阻与poly2的间距d/f ce ha bf设计规则 High Resistor其上禁止布线 高阻层定义电阻长度 Poly2定义电阻宽度d/f c符 尺寸 号含义5.e 0.6 高阻与poly2电阻接触孔间距5.f 0.8 高阻与低阻poly2电阻的间距5.g 0.5 高阻与有源区的间距5.h 1.0 高阻与poly1电阻的间距a behf3设计规则 poly2可做多晶连线、多晶 电阻和poly-poly电容 的上极板符号 6.a 6.b 6.c6.d 6.e 6.f 6.g尺寸 1.2 1.0 0.5 3.2 1.5 0.8 -含义 poly2做电容时的最小宽度 poly2做电容时的最小间距 Poly2与有源区的最小间距 做关键电容时的间距 电容底板对顶板的最小覆盖 电容Poly2对接触孔最小覆盖 Poly2不能在有源区上 Poly2不能跨过poly1边沿c j ibdea设计规则 poly2可做多晶连线、多晶 电阻和poly-poly电容 的上极板符号 6.h 6.i 6.j 6.k 6.l 6.m尺寸含义0.8 poly2做导线时的最小宽度1.0 poly2做电阻时的最小间距1.0 Poly2电阻之间的最小间距- Poly2不能用做栅0.5 电阻Poly2对接触孔最小覆盖- 除做电容外,Poly2不能与 poly1重叠c j ibdea设计规则 implantb a符号 尺寸含义8.a 0.9 注入区最小宽度8.b 0.9 同型注入区最小间距8.c 0.6 注入区对有源区最小包围8.d 0.6 注入区与有源区最小间距Hc d N+Ef设计规则 implant符号 尺寸含义8.E 0.75 N+(P+)注入区与P+(N+)栅 间距8.f 0.75 N+(P+)注入区与N+(P+)栅 间距8.H 0 注入区对有源区最小覆盖 (定义butting contact)Hb ac d N+Ef设计规则 contact定义为金属1与扩散 区、多晶1、多晶2 的所有连接!符号 尺寸含义10.a .6*.6 接触孔最小面积10.a.1 .6*1.6 N+/P+ butting contact面积10.b 0.7 接触孔间距dgcafaba.1 ec.3g设计规则 contact符号 尺寸含义10.c 0.4 有源区,(d, e)Poly1, Poly2对最小孔最小覆盖10.c.3 0.8 有源区对butting contact最小覆盖10.f 0.6 漏源区接触孔与栅最小间距10.g 0.6 Poly1,2上孔与有源区最小间距dgcafaba.1 ec.3g4设计规则 metal1符号 尺寸含义11.a 0.9 金属1最小宽度11.b 0.8 金属1最小间距11.c.1 0.3 金属1对最小接触孔的最小覆盖11.c.2 0.6 金属1对butting contact的最小覆盖- 1.5mA 最大电流密度/um-- 禁止并行金属线90度拐角,用135度拐角代替ac.2bc.1 c.2设计规则 via定义为两层金属之 间的连接孔符号 尺寸含义12.a .7*.7 过孔最小面积12.b 0.8 过孔间距12.d~f - 接触孔、poly-poly电容和栅 上不能打过孔12.g 0.4 金属1对过孔的最小覆盖12.h 0.5 过孔与接触孔的最小间距建议 12.k0.5 Poly与有源区对过孔的最小 间距或覆盖1.5mA 单个过孔的最大电流agbhh设计规则 metal2可用于电源线、地 线、总线、时钟线 及各种低阻连接符号 尺寸含义13.a 0.9 金属2最小宽度13.b(e) 0.8 金属2最小间距13.c 0.4 金属2对过孔的最小覆盖13.d 1.5 宽金属2与金属2的最小间距13.f - 禁止并行金属线90度拐角,用 135度拐角代替13.h 1.5mA 最大电流密度 /umac be dd Width>10um设计规则 power supply line由于应力释放原符号 尺寸含义则,在大晶片上会17.a 20.0 金属2最小宽度存在与大宽度金属17.b 300.0 金属2最小长度总线相关的可靠性 问题。
课后习题答案1.1 为什么经典物理无法准确描述电子的状态?在量子力学中又是用什么方法来描述的? 解:在经典物理中,粒子和波是被区分的。
然而,电子和光子是微观粒子,具有波粒二象性。
因此,经典物理无法准确描述电子的状态。
在量子力学中,粒子具有波粒二象性,其能量和动量是通过这样一个常数来与物质波的频率ω和波矢k 建立联系的,即k n ch p h E ====υωυ 上述等式的左边描述的是粒子的能量和动量,右边描述的则是粒子波动性的频率ω和波矢k 。
1.2 量子力学中用什么来描述波函数的时空变化规律?解:波函数ψ是空间和时间的复函数。
与经典物理不同的是,它描述的不是实在的物理量的波动,而是粒子在空间的概率分布,是一种几率波。
如果用()t r ,ψ表示粒子的德布洛意波的振幅,以()()()t r t r t r ,,,2ψψψ*=表示波的强度,那么,t 时刻在r 附近的小体积元z y x ∆∆∆中检测到粒子的概率正比于()z y x t r ∆∆∆2,ψ。
1.3 试从能带的角度说明导体、半导体和绝缘体在导电性能上的差异。
解:如图1.3所示,从能带的观点来看,半导体和绝缘体都存在着禁带,绝缘体因其禁带宽度较大(6~7eV),室温下本征激发的载流子近乎为零,所以绝缘体室温下不能导电。
半导体禁带宽度较小,只有1~2eV ,室温下已经有一定数量的电子从价带激发到导带。
所以半导体在室温下就有一定的导电能力。
而导体没有禁带,导带与价带重迭在一起,或者存在半满带,因此室温下导体就具有良好的导电能力。
1.4 为什么说本征载流子浓度与温度有关?解:本征半导体中所有载流子都来源于价带电子的本征激发。
由此产生的载流子称为本征载流子。
本征激发过程中电子和空穴是同时出现的,数量相等,i n p n ==00。
对于某一确定的半导体材料,其本征载流子浓度为kT E V C i g e N N p n n ==002式中,N C ,N V 以及Eg 都是随着温度变化的,所以,本征载流子浓度也是随着温度变化的。
对半导体技术、微电子技术、集成电路技术三者的浅略认识一、半导体技术、微电子技术、集成电路技术三者的联系与区别我们首先从三者的概念或定义上来分别了解一下这三种技术.半导体技术就是以半导体为材料,制作成组件及集成电路的技术。
在电子信息方面,绝大多数的电子组件都是以硅为基材做成的,因此电子产业又称为半导体产业。
半导体技术最大的应用便是集成电路,它们被用来发挥各式各样的控制功能,犹如人体中的大脑与神经。
微电子技术是随着集成电路,尤其是超大型规模集成电路而发展起来的一门新的技术,是建立在以集成电路为核心的各种半导体器件基础上的高新电子技术,为微电子学中的各项工艺技术的总和.集成电路技术,在电子学中是一种把电路小型化的技术。
采用一定的工艺,把一个电路中所需的各种电子元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构。
(以上三者概念均来源于网络)这般看来,三者概念上互相交叉,却也略有区别。
依我这个初次接触这三个名词、对电子信息几乎一窍不通的大一新生来看,半导体技术是其他二者技术的基础,因为半导体是承载整个电子信息的基石,不管是微电子还是集成电路,便是以半导体为材料才可以建造、发展。
而微电子技术,个人感觉比较广泛,甚至集成电路技术可以包含在微电子技术里。
除此之外,诸如小型元件,如纳米级电子元件制造技术,都可以归为微电子技术。
而集成电路技术概念上比较狭窄,单单只把电路小型化、集成化技术,上面列举的小型元件制造,便不能归为集成电路技术,但可以归为微电子技术。
以上便是鄙人对三者概念上、应用上联系与区别的区区之见,如有错误之处还望谅解。
二、对集成电路技术的详细介绍首先我们了解一下什么是集成电路。
集成电路是一种微型电子器件或部件.人们采用一定的工艺,把一个电路中所需的各种元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构。
微电子器件与集成电路设计电子与电气工程是一门研究电子器件和电路的学科,它涵盖了广泛的领域,包括微电子器件和集成电路设计。
微电子器件是电子系统的基础,而集成电路则是将多个微电子器件集成在一起形成的电路。
本文将重点探讨微电子器件与集成电路设计的相关内容。
微电子器件是指尺寸在微米级别的电子器件,如晶体管、二极管和电容器等。
微电子器件的设计与制造是电子与电气工程领域的核心任务之一。
在微电子器件的设计过程中,需要考虑器件的性能、功耗和可靠性等因素。
同时,还需要利用先进的材料和加工技术,以实现器件的微小尺寸和高性能。
集成电路是将多个微电子器件集成在一起形成的电路。
集成电路的设计是电子与电气工程中的重要研究方向之一。
集成电路设计的目标是在有限的芯片面积上实现尽可能多的功能,并保证电路的性能和可靠性。
在集成电路设计过程中,需要考虑电路的结构、布局和布线等因素,并利用计算机辅助设计工具进行模拟和验证。
微电子器件与集成电路设计的发展离不开先进的技术和方法。
随着纳米技术的发展,微电子器件的尺寸越来越小,性能越来越强。
同时,集成电路的规模也越来越大,功能越来越复杂。
为了满足这些需求,研究人员不断提出新的设计方法和工具。
例如,基于物理的器件模型和电路模拟技术可以更准确地预测器件和电路的性能。
此外,新材料的应用和三维集成电路的研究也为微电子器件与集成电路设计带来了新的机遇和挑战。
微电子器件与集成电路设计在现代科技的发展中发挥着重要的作用。
它们广泛应用于通信、计算机、医疗和能源等领域,推动了社会的进步和经济的发展。
随着人工智能、物联网和5G技术的兴起,对微电子器件和集成电路的需求将进一步增加。
因此,微电子器件与集成电路设计的研究具有重要的意义和广阔的前景。
总结起来,微电子器件与集成电路设计是电子与电气工程领域的重要研究方向。
它们的发展离不开先进的技术和方法,并在现代科技的发展中发挥着重要的作用。
随着科技的不断进步,微电子器件与集成电路设计的研究将继续深入,并为社会的进步和经济的发展做出更大的贡献。
电路的输入阻抗低于该临界值时(对于GaN p-i-n光伏探测器来说约为106),焦平面才能获得较高的注入效率。
图8表0参11TN386.52007050566基于W eb服务器的高性能C C D相机数据采集系统设计/赵凯生,刘爽,龙再川,杜昊(电子科技大学光电信息学院)//半导体光电.―2006,27(5).―621~623.讨论了高性能CCD相机数据采集的方法,给出基于嵌入式W eb服务器的相机数据采集系统的设计方法,并以ARM微处理器和Linux操作系统为核心,结合千兆光纤传输模块设计出嵌入式服务器平台,通过移植Boa 服务器和编写CGI程序实现了图像数据的远程采集和高速传输。
图2表0参5TN386.52007050567地面反射太阳光对C C D探测系统影响的研究/张雷,安源,孙小伟,金光(中国科学院长春光学精密机械与物理研究所)//半导体光电.―2006,27(5).―645~648.对地面反射太阳光对远距离CCD探测系统的影响机理和太阳光的发散特性进行了研究,推导了目标物体在CCD探测系统入瞳面上照度的计算公式,建立了地面反射太阳光对远距离CCD探测系统影响的数学模型,并利用mat lab软件对该数学模型进行仿真。
通过分析,从理论上证明地面反射太阳光对CCD探测系统的影响是十分显著的。
图6表0参5TN386.52007050568一种专用C C D摄像机的设计/祁琳,李凤苓,乔建社(重庆光电技术研究所)//半导体光电.―2006,27(5).―639~641.设计了一种具有自动和手动电子快门功能、伽玛系数校正功能和外同步功能的专用CCD摄像机。
分析了摄像机的工作原理,给出了摄像机整体结构图。
叙述了专用CCD摄像机的时序驱动电路,电子快门,伽玛校正,自动增益控制,以及外同步功能的设计思路。
图7表0参2TN386.52007050569 4096×96元可见光T D I C C D成像系统的设计/彭秀华,陈红兵,李仁豪,唐遵烈(重庆光电技术研究所)//半导体光电.―2006,27(5).―628~630,638.研制了4096×96元TDI(时间延迟积分)CCD成像系统。