塞曼效应简介
- 格式:pdf
- 大小:322.45 KB
- 文档页数:9
塞曼效应一、背景介绍☆1896年8月,塞曼在探测磁场对谱线的影响的实验中发现,磁力作用于火焰时,火焰发出的光周期和频率发生了变化,钠双线光谱发生分裂。
一条谱线即会分裂成几条偏振化的谱线,后来这种现象称为塞曼效应。
☆洛仑兹根据经典电子论解释了分裂为三条的正常塞曼效应☆ 1902年,塞曼与洛仑兹因这一发现共同获得了诺贝尔物理学奖☆ 1912年,帕邢和拜克(E .E .A .Back )发现在极强磁场中,反常塞曼效应又表现为三重分裂,叫做帕邢-拜克效应☆ 1921年,德国杜宾根大学教授朗德引进一因子g 代表原子能级在磁场作用下的能量改变比值☆ 1925年,乌伦贝克与哥德斯密特提出了电子自旋的概念☆ 1926年,海森伯和约旦引进自旋S ,从量子力学对反常塞曼效应作出了正确的计算1896年,荷兰著名的实验物理学家塞曼(Zeeman )将光源置于强磁场中,研究磁场对谱线的影响,结果发现原来的一条光谱线,分裂成几条光谱线,分裂的谱线成份是偏振的,这一现象称为塞曼效应。
由于发现了这个效应,塞曼在1902年获得诺贝尔物理学奖。
这是当时实验物理学家的重要成就之一,它使人们对物质的光谱、原子和分子的结构有了更多的了解。
通过塞曼效应实验,可由能级分裂的个数知道能级的值,由能级的裂距可以知道因子。
如果原子遵从耦合,则可由值判断该能级的和值。
二.实验原理塞曼效应的产生是由于原子的总磁矩(轨道磁矩和自旋磁矩)受外磁场作用的结果1. 外磁场对原子能级的影响具有总磁矩μJ 的体系, 在外磁场B 的作用下,由于绕外磁场B 的方向旋进而获得的附加能量ΔE 为:(1)式中,β为PJ 和B 的夹角。
μJ 或P J 在外磁场中取向是量子化的,则PJ 在外磁场方向的分量PJcos β 也是量子化的:.cos(.)cos cos 2JJ JE P B B e g P B mμαβ∆=-=-=-J μBM P J =βcos(2)J 一定时,磁量子数M 的取值为:-J ,-(J-1),……,(J-1),J ,共2J+1个数值 附加能量ΔE 的表达式:玻尔磁子(3)结论:无外场时的一个能级,在外磁场的作用下分裂成2J+1个能级,每个能级附加的能量由(3)式决定2. Hg 原子绿光塞曼效应Hg 原子绿光(546.1nm )在磁场中的分裂是由6s7s (3S1)跃迁到6s6p (3P2)而产生的,为反常塞曼效应。
塞曼效应实验简介
塞曼效应,是指在外加磁场下,各种光谱线的分裂现象。
这个效应首先由瑞典物理学
家塞曼(Pieter Zeeman)于1896年发现的,由此获得1902年的诺贝尔物理学奖。
实验过程中,需要使用较强的磁场,通常是1特斯拉以上。
然后,通过光源照射气体,观察气体光谱的变化。
光谱中原来只有一条谱线,但是在磁场的作用下,谱线会被分裂成
多条并排的细线。
这些细线的数量和排列方式与磁场的性质、气体类型和光源的特性有
关。
塞曼效应的理论证明来源于量子力学的结论。
磁场将影响原子的能级,使能级发生分裂。
原子发射的光子带有特定的能量,对应特定的波长和频率。
然而,在磁场中,能级发
生分裂,这会导致原子的光谱线分裂成多条。
这个效应可以通过塞曼效应的公式来计算,
公式的形式基于原子的量子力学特性和磁场的特性。
塞曼效应不仅仅在光谱分析方面应用广泛,它还有重要的应用于磁共振成像技术(MRI)。
MRI是一种医学成像技术,它使用强磁场和无线电波来生成人体内部的图像。
磁共振现象来源于塞曼效应,MRI中使用的磁场通常在1至3特斯拉之间。
通过改变磁场的强度和方向,可以对人体不同区域产生不同的成像结果,从而获取体内组织的详细信息。
总之,塞曼效应是磁场对原子光谱线分裂的影响,是现代物理学基础研究的重要内容。
其在光谱分析、物理学和医学成像等领域均有广泛的应用。
塞曼效应1896年,荷兰物理学家塞曼(P.Zeeman )在实验中发现,当光源放在足够强的磁场中时,原来的一条光谱线会分裂成几条光谱线,分裂的条数随能级类别的不同而不同,且分裂的谱线是偏振光。
这种效应被称为塞曼效应。
需要首先指出的是,由于实验先后以及实验条件的缘故,我们把分裂成三条谱线,裂距按波数计算正好等于一个洛伦兹单位的现象叫做正常塞曼效应(洛伦兹单位mc eB L π4=)。
而实际上大多数谱线的塞曼分裂谱线多于三条,谱线的裂距可以大于也可以小于一个洛伦兹单位,人们称这类现象为反常塞曼效应。
反常塞曼效应是电子自旋假设的有力证据之一。
通过进一步研究塞曼效应,我们可以从中得到有关能级分裂的数据,如通过能级分裂的条数可以知道能级的J 值;通过能级的裂距可以知道g 因子。
塞曼效应至今仍然是研究原子能级结构的重要方法之一,通过它可以精确测定电子的荷质比。
一、实验目的1、 学习观察塞曼效应的方法观察汞灯发出谱线的塞曼分裂;2、 观察分裂谱线的偏振情况以及裂距与磁场强度的关系;3、 利用塞曼分裂的裂距,计算电子的荷质比e m e 数值。
二、实验原理1、谱线在磁场中的能级分裂设原子在无外磁场时的某个能级的能量为0E ,相应的总角动量量子数、轨道量子数、自旋量子数分别为S L J 、、。
当原子处于磁感应强度为B 的外磁场中时,这一原子能级将分裂为12+J 层。
各层能量为B Mg E E B μ+=0 (1)其中M 为磁量子数,它的取值为J ,1-J ,...,J -共12+J 个;g 为朗德因子;B μ为玻尔磁矩(mhcB πμ4=);B 为磁感应强度。
对于S L -耦合 )()()()(121111++++-++=J J S S L L J J g (2)假设在无外磁场时,光源某条光谱线的波数为)(010201~E E hc-=γ (3)式中 h 为普朗克常数;c 为光速。
而当光源处于外磁场中时,这条光谱线就会分裂成为若干条分线,每条分线波数为别为hc B g M g M E E hcBμγγγγγ)()(112201200~1~~~~-+=∆-∆+=∆+=L g M g M )(11220~-+=γ 所以,分裂后谱线与原谱线的频率差(波数形式)为mcBe g M g M L g M g M πγγγ4~~~112211220)()(-=-=-=∆ (4) 式中脚标1、2分别表示原子跃迁后和跃迁前所处在的能级,L 为洛伦兹单位(B L 7.46=),外磁场的单位为T (特斯拉),波数L 的单位为 []11--特斯拉米。
塞曼效应实验1896 年,荷兰物理学家塞曼(P.Zeeman(1865-1943))发现当光源放在足够强的磁场中 时,原来的一条光谱线分裂成几条光谱线,分裂的谱线成分是偏振的,分裂的条数随能级的 类别而不同,后人称此现象为塞曼效应。
塞曼效应是继英国物理学家法拉第 (M.Faraday(1791-1863))1845 年发现磁致旋光效应,克尔(John Kerr)1876 年发现磁光克 尔效应之后,发现的又一个磁光效应。
法拉第旋光效应和克尔效应的发现在当时引起了众多物理学家的兴趣。
1862 年法拉第出于" 磁力和光波彼此有联系"的信念, 曾试图探测磁场对钠黄光的作用, 但因仪器精度欠佳未果。
塞曼在法拉第的信念的激励下,经过多次的失败,最后用 当时 分辨本领最高的罗兰凹面光栅和强大的电磁铁,终于在 1896 年发现了钠黄线在磁场中变宽的现象,后来又观察到了 镉蓝线在磁场中的分裂。
塞曼在洛仑兹的指点及其经典电子论的指导下,解释了正 常塞曼效应和分裂后的谱线的偏振特性,并且估算出的电子的 荷质比与几个月后汤姆逊从阴极射线得到的电子荷质比相同。
塞曼效应不仅证实了洛仑兹电子论的准确性, 而且为汤姆 逊T发现电子提供了证据。
还证实了原子具有磁矩并且空间取 向是量子化的。
1902 年,塞曼与洛仑兹因这一发现共同获得 了诺贝尔物理学奖。
直到今日, 塞曼效应仍旧是研究原子能级 结构的重要方法。
早年把那些谱线分裂为三条,而裂距按波数计算正好等于 P.Zeeman(1865-1943) 一个洛伦兹单位的现象叫做正常塞曼效应(洛伦兹单位L = eB / 4πmc )。
正常塞曼效应用经典理论就能给予解释。
实际上大多数谱线的塞曼分裂不是正常塞曼分裂,分裂的谱线多于三条,谱线的裂距可以大于也可以小于一个洛伦兹单位, 人们称这类现象为反常塞曼效应。
反常塞曼效应只有用量子理论才能得到满意的解释。
塞曼效应
塞曼效应(Zeeman effect),在原子、分子物理学和化学中的光谱分析里是指原子的光谱线在外磁场中出现分裂的现象。
这个现象的发现是对光的电磁理论的有力支持,证实了原子具有磁矩和空间取向量子化,使人们对物质光谱、原子、分子有更多了解,特别是由于及时得到洛仑兹的理论解释,更受到人们的重视,被誉为继X射线之后物理学最重要的发现之一。
反常塞曼效应和正常的塞曼效应区别:
原子核会产生电场,电子在其中运动的时候,由狭义相对论,这个运动的电子会受到一个磁场的作用,这个磁场正比于电子的轨道角动量,从而自旋和轨道磁矩合成一个总的磁矩。
电子的自旋和轨道的磁矩都是分立的,因此自旋-轨道耦合也是分立的。
此时总磁矩是绕着总角动量在做进动,总角动量绕外磁场做进动。
当外磁场较弱时,自旋-轨道耦合没有被破坏。
正常与反常的区别在于正常塞曼效应中总自旋为零,于是就没那么多劈裂的能级。
外磁场比较强的时候,不是正常或反常塞曼效应,而是Paschen-Back效应。
自旋-轨道耦合被破坏,而显现出仍然是三条谱线的看起来像正常塞曼效应的实验现象。
但是这时候的原理和正常塞曼效应的原理并不一样。
正常和反常塞曼效应都是在磁场比较弱的情况下的,而这时候则是自旋-轨道角动量不再耦合。