mwd测量基础
- 格式:ppt
- 大小:269.00 KB
- 文档页数:24
mwd检验步骤
MWD检验的步骤主要包括以下几个方面:
1. 准备工作:在开始测试之前,需要对测量工具进行检查和校准。
确保所有传感器、电缆和配件的状态良好,并进行必要的校准工作。
同时,确保井孔内的环境适合进行测量。
2. 工具安装:将MWD工具安装到井孔中。
3. 测量参数设置:根据实际需求,设置MWD工具进行伽马探管测试。
参数包括测深范围、测量间隔和数据传输等。
4. 启动工具:启动MWD工具的测量功能。
此时,工具将开始实时地测量井孔的参数,并将数据传输给地面。
另外,在某些情况下,MWD检验可能还涉及到线性模型和对数线性模型的假设检验,具体步骤如下:
1. 估计线性模型,得到Y的估计值。
2. 估计线性对数模型,得到lnY的估计值。
3. 求Z1=ln(Y的估计值)-( InY的估计值)。
4. 做Y对X和Z1的回归。
如果根据t检验Z1的系数是统计显著的,则拒绝线性模型的假设。
5. Z2 = InY的反对数-Y的估计值。
6. 做lnY对X或lnX和Z2的回归。
如果Z2的系数是统计显著的,则拒绝对数线性模型的假设。
MWD工作原理?MWD(测井定向钻探)工作原理引言概述:MWD(测井定向钻探)是一项重要的技术,用于测量井下的地层信息和井眼轨迹,以匡助油田工程师进行钻井操作和油气勘探。
本文将详细介绍MWD的工作原理,包括传感器测量、数据传输、数据解析和应用等方面。
正文内容:1. 传感器测量1.1 方位传感器方位传感器用于测量钻头的方向,通常采用磁性传感器或者陀螺仪。
磁性传感器通过检测地球磁场的变化来确定方向,而陀螺仪则利用陀螺效应来测量方位。
1.2 倾角传感器倾角传感器用于测量钻井工具的倾斜度和偏离角度。
常见的倾角传感器包括加速度计和倾斜计,通过测量物体的加速度和倾斜角度来获取相关数据。
2. 数据传输2.1 电缆传输MWD系统通常使用电缆将传感器测量的数据传输到地面。
电缆通过井下的测井工具和地面的数据采集设备相连,实时传输各种测量参数。
2.2 无线传输为了避免电缆的限制,一些MWD系统采用无线传输技术。
通过无线电波或者声波,井下的测井工具可以将数据传输到地面设备,实现远程监测和控制。
3. 数据解析3.1 数据处理传感器测量的原始数据需要进行处理和校正,以获得准确的地层信息和井眼轨迹。
数据处理算法包括滤波、校正和插值等步骤,以提高数据的精确性和可靠性。
3.2 数据解释处理后的数据可以被解释为地层属性和井眼轨迹。
地层属性包括地层类型、岩性、含油气层等信息,井眼轨迹则显示了钻井工具的运动路径和井眼的几何形状。
4. 应用4.1 钻井导向MWD技术可以提供钻井导向服务,匡助工程师控制钻头的方向和位置。
通过实时监测井眼轨迹,工程师可以调整钻井参数,以避免钻头偏离目标层位。
4.2 地层评价MWD数据可以用于地层评价,包括测量地层厚度、岩性、孔隙度等参数。
这些数据对于油气勘探和储层评估非常重要。
4.3 油井管理MWD技术还可以用于油井管理,包括监测井底动态、检测井下设备的状态和健康状况。
这对于油井的安全和生产效率至关重要。
总结:MWD技术在油田工程中起着重要作用,通过传感器测量、数据传输、数据解析和应用等步骤,可以提供准确的地层信息和井眼轨迹。
第七章随钻测量随钻测量(Measurement While Drilling)简称MWD,是定向钻进中一种先进的技术手段,可以不间断定向钻进而测量近钻头孔底某些信息,并将信息即刻传送到地表的过程。
随着技术的进步,现代随钻测量已发展为随钻测井(Logging While Drilling),简称LWD,不仅可以监控定向钻进,还可以进行综合测井,获取信息的种类有:(1)定向数据(井斜角,方位角,工具面角);(2)地层特性(伽马射线,电阻率测井记录);(3)钻井参数(井底钻压,扭矩,每分钟转数)。
传感器是装在作为下部钻具组合整体的一部分的特殊井下仪器中。
井下仪器中还有一个发射器,通过某种遥测信道将信号发送到地面。
目前使用的最普通的遥测信道是钻柱内的钻井液柱。
信号在地面上被检测到后,经过译码和处理,就按方便和可用的方式提供所需的信息。
图7-1示出了MWD系统的主要部分。
MWD的最大优点是它使司钻和地质工作者实时地“看”到井下正在发生的情况,从井底测量参数到地面接收到数据只延误几分钟,所以可以改善决策过程。
图7-1 MWD系统概况尽管MWD的概念不是新的,但只是在近几年钻井技术的进步才使之成为现实。
30年代出现的电测技术对鉴别和评价地层起了很大作用。
但是,它的主要缺点是必须在起出钻柱后才能使用电缆下井。
等到实际测井时,由于钻井液浸入的影响,妨碍了地层真实特性的测量。
当钻头钻穿不同地层时,由于没有确定的方法辨别出岩性的变化,—些重要的层位可能没有检测到。
有时,后来的电测显示出错过了油层段顶部的取心点,或是钻头钻得过深钻到了产油层下部的水层中。
钻井液测井和监测钻速虽可指供一些井底情况,但由于要等到岩屑循环到地面的时间延误使这一过程效率太低。
所以,需要一种能够在钻井时瞬时而连续地监测地层的系统。
对这一系统有如下要求:(1)坚固可靠的传感器,可在钻进动态条件下在钻头处或钻头附近测量需要的数据;(2)将资料传送到地面的方法简单有效;(3)可以方便地在任何钻机上安装并操作的系统,对正常钻进作业影响不大;(4)成本合理,并能给作业者带来效益。
MWD工作原理?MWD(Measurement While Drilling)是一种在钻井过程中实时测量井下参数的技术。
它通过在钻头或底部测量井下方向、倾角、温度、压力等参数,帮助钻井工程师更好地了解井下情况,指导钻井作业。
本文将详细介绍MWD的工作原理。
一、传感器测量1.1 MWD系统中包含各种传感器,如倾角传感器、方向传感器、温度传感器等。
1.2 这些传感器安装在钻头或钻柱上,实时测量井下各种参数。
1.3 传感器通过无线或有线方式将测量数据传输到地面系统,供工程师分析和处理。
二、数据处理2.1 地面系统接收到传感器传来的数据后,进行实时处理和分析。
2.2 地面系统会根据传感器测量的数据,计算出井的倾角、方向、井底温度等参数。
2.3 工程师可以通过地面系统实时监测井下情况,及时调整钻井方案。
三、数据传输3.1 MWD系统采用无线或有线方式将测量数据传输到地面系统。
3.2 无线传输方式通常采用电磁波或声波,有线传输方式则通过钻柱内的电缆传输数据。
3.3 数据传输的稳定性和实时性对于钻井作业至关重要,因此MWD系统的传输技术必须具备高可靠性。
四、实时监测4.1 MWD系统可以实时监测井下的倾角、方向、温度等参数,帮助工程师及时调整钻井作业。
4.2 实时监测可以避免钻井事故的发生,提高钻井作业的效率和安全性。
4.3 通过MWD系统实时监测,工程师可以更好地掌握井下情况,做出更准确的决策。
五、应用范围5.1 MWD技术广泛应用于油田、天然气开采等领域,为钻井作业提供了重要的技术支持。
5.2 MWD系统的工作原理和技术不断创新和发展,为钻井工程师提供了更多的数据和信息。
5.3 MWD技术的应用将进一步提高钻井作业的效率和安全性,推动油气勘探开发领域的发展。
总结:MWD技术通过传感器测量、数据处理、数据传输、实时监测和应用范围等方面的工作原理,为钻井作业提供了重要的技术支持,帮助工程师更好地了解井下情况,提高钻井作业的效率和安全性。
Sperry-Sun MWD操作培训提纲定向井徐飙2003-7-17学习目的:通过学习使定向井仪器人员能够对MWD结构组成及原理有一个较深层次的认识,要求操作人员能够掌握该仪器的操作规程,能够独立工作。
第一部分:MWD仪器简介工作原理:1.脉冲器工作原理严格地说脉冲器应该称为泥浆压力脉冲器。
其主要功能是使泥浆产生压力脉冲是井下仪器的关键部件,主要由两个部分:发电机+液压泵①发电机:依靠钻井液的流动为动力产生电能,供井下探管使用。
②液压泵:也是以钻井液的流动为动力产生液压动力,来推动蘑菇头的伸缩产生了泥浆压力脉冲,将探管测量的信号传送到地面。
2.探管测量方式①关泵测量:井下BHA在钻进中需要在某点测斜时,将BHA在某点处静只稳定循环2分钟(确保井下探管稳定)后,停泵1分钟(测量),再开泵到稳定排量至到测斜数据完全返出。
②开泵测量:井下BHA在开泵后(泵压稳定),开始测量并自动将测斜数据返出。
3.探管数据传送频率①0.5HZ :使用该频率传送时的缺点是速度慢,但抗干扰能力强,脉冲器井下使用寿命增大。
②0.8HZ :使用该频率的条件是井下稳度必须>40℃,否则地面计算机检测信号将非常困难,有时不能提供完整的测斜数据。
用该频率时速度快,抗干扰能力弱。
4.探管测量类型测量类型可以分为长测量和短测量。
长测量方式是将探管测量得到的各种原始数据,通过脉冲器传送到地面。
(传送一组数据的时间3.5分钟)短测量方式是探管测量出的原始数据经过微处理器的处理后,在通过脉冲器的发送到地面。
(传送时间为2分钟)①长测量(SURVEY)它将提供全程的测量数据(Gx,Gy,Gz,Gtotal,Bx,By,Bz和Btotal,温度,转速,Inc,Az,DMT,Goxy,Boxy)来分析井下的情况。
②短测量(survey)只提供基本的测量数据(Inc,Az,DMT,)。
③测量结果的分析Gtotal: 仪器在井下相对静止时Gtotal=1。
一、MWD测量原理及方式1.MWD测量原理。
Sperry—Sun MWD由装在无磁悬挂内的脉冲发生器和探管构成。
探管内部有三个相互垂直的重力加速度计和三个相互垂直的磁通门传感器,分别测量三个方向上的重力分量和磁力分量,分别以Gx、Gy、Gz和Bx、By、Bz表示。
z轴方向即为探管的轴向,也就是钻具和井眼方向。
2.MWD测量方式。
MWD测量系统具有全测量和短测量功能。
(1)全测量:井下仪器将测量到的Gx、Gy、Gz、Bx、By、Bz及其它参数直接传到地面,由地面计算机进行井斜、方位的计算。
采用此方法可以减少磁干扰,在采用短钻铤施工的情况下,数据仍正常。
(2)短测量:井下仪器根据测量到的Gx、Gy、Gz、Bx、By、Bz计算出井斜、方位后,将井斜、方位和其它参数一起传到地面。
对于磁干扰大的测量环境,短测量数据不可靠。
二、磁干扰的原因分析与判断方法1.磁干扰的原因分析MWD测量参数的精确程度除了与仪器自身有关外,还与MWD测量时所处的环境有直接关系。
因此,在钻井现场使用MWD、LWD等磁性传感仪器进行方位测量时,必须保证仪器测点位置没有磁干扰。
MWD受到的磁干扰主要来自两个方面:地壳中磁性矿物、岩石引起的地磁场异常;地下存在铁质东西(如邻井套管等)使MWD的测量值失真。
后者在丛式井中表现尤为突出。
2.磁干扰的判断方法目前,通常判断井下是否存在磁干扰的方法是通过比较本地磁场强度与井下磁性测量仪器所测得的磁场强度值。
如果二者比较接近,就认为没有磁干扰;如果差别较大,表示井下存在磁干扰并认为干扰来自邻井套管、测量仪器探管等横向干扰。
但是,不可避免的是现场可能会出现一些意外的情况,如仪器损坏、无磁钻铤磁化等情况都可能导致现场测得的井下磁场强度与本地磁场强度存在较大差别。
因此,需根据现场数据准确判断出现差别的具体原因。
在实测过程中:Boxy表示探管检测到的径向磁场强度和量,如果径向方向存在铁质东西,将引起测量值Boxy的变化。
MWD无线随钻测量仪操作规程1 主题内容与适用范围本标准规定了SPERRY-SUN MWD无线随钻测斜仪上井前的准备与检查、吊装与运输、设备安装、浅层测试、测量施工、仪器回收、维护保养、存放等内容。
本标准其他类型无线随钻测斜仪亦可参照使用。
2 上井前的准备与检查2.1传感器配备仪器传感器,做到双配置,工作性能可靠,见附录。
2.2配件及工具配备仪器配件双配置,工具配备齐全,灵活好用,见附录。
2.3 设备配备仪器设备双配置,符合施工要求,见附录。
2.4 工作间2.4.1 接入电源为210-230Vac, 60±5 Hz 的交流电。
2.4.2 室内供电线路完好,排气扇与逃生门性能可靠。
2.4.3 稳压电源和UPS工作正常,变压电源输出110 Vac。
2.4.4 空调、电热器工作正常。
2.5 仪器总成2.5.1下井探管MWD的探管外观无损伤、变形,两端螺纹无损伤并带保护帽,地面通电检查工作正常;短外筒与保护筒无过度冲蚀,无弯曲变形,两端螺纹无损伤,配有保护帽,扶正器外径与所用无磁钻铤内径匹配。
2.5.2脉冲发生器MWD脉冲发生器本体外观无损坏变形,丝扣无损坏,接线端子清洁完好,橡胶体完好无漏油现象,蘑菇头伸缩正常,测试电阻值在规定范围内(见附录).2.5.3脉冲发生器短节MWD悬挂短节本体完好,两端丝扣与端面无磨损,配有保护帽;内键完好,内孔清洁,无冲蚀,探伤合格。
2.5.4 地面操作系统MWD:司钻阅读器及压力传感器与地面仪器连接,PCDWD软件运行正常,连接正常,连接上探管,做流体模拟,显示正常。
3吊装与运输3.1吊装前将探管、计算机、接口箱应放在厂家配备专用运输箱内, 脉冲发生器与探管隔离放置,以免磁化传感器元件,精密配件用棉布或吹塑泡沫包装隔离。
操作室内可移动物件,要绑扎牢固,达到吊装与运输的要求。
3.2吊装要避开三线(高压线、低压线、通讯线), 绳套与仪器房、井下仪器串之间固定牢固后,进行作业,专人指挥,操作平稳。
mwdc单位-回复什么是MWD(测量控制)单位?MWD(Measurement While Drilling)即测量控制单位,是石油钻井中一种用于实时测量井下数据的技术设备。
它安装于钻井工具中,通过传感器测量相关的物理和化学参数,从而提供钻井工程师或地球物理师所需的数据以进行决策和分析。
MWD单位的工作原理如何?要了解MWD单位的工作原理,我们需要首先了解它的组成部分。
MWD单位通常由以下几个部分组成:惯性导航系统(Inertial Navigation System,INS)、测量传感器单元、位移传感器单元和通信模块。
首先,惯性导航系统使用加速度计和陀螺仪等设备测量钻井工具的位移和姿态变化。
这些数据可以帮助确定钻井工具的位置和朝向。
接下来,测量传感器单元使用各种传感器,如密度传感器、磁性传感器和声波传感器等,测量井下的物理和化学参数。
这些参数包括地层密度、磁性、声波速度等,对于确认获得地质成像和确定井筒状况至关重要。
位移传感器单元通过测量井下工具与井筒壁的距离,帮助确定井筒形貌和方向。
最后,通信模块将测量的数据传输到地面系统。
这些数据可以通过有线或无线方式传输。
地面系统会对这些数据进行处理和分析,并提供相应的决策和操作建议。
整个过程可以简述为:MWD单位通过惯性导航系统测量钻井工具的位移和姿态变化,测量传感器单元测量井下物理和化学参数,位移传感器单元确定井筒形貌和方向,通信模块将数据传输到地面系统进行分析和决策。
MWD单位在石油钻井中的应用有哪些?MWD单位在石油钻井中有许多应用。
首先,它能够提供实时的井底参数,如地层属性、井筒形貌等,帮助钻井工程师和地球物理师了解井下情况。
其次,MWD单位能够帮助钻井工程师确定井筒的位置和方向,确保井眼的控制和导向。
这对于钻井过程中的导向井和平推井非常重要。
再次,MWD单位还能提供井下工具的状态和性能监测。
通过测量一些关键参数,如温度、压力等,可以及时发现异常情况并采取相应措施。
目录1 准备工作(1) 1.1安装井深传感器。
1.2大钩悬垂传感器的安装。
1.3井深仪(DTU)的安装。
1.4井深仪(DTU)操作规程。
2 井下伽玛仪现场安装(3) 2.1 室内组装启动伽玛仪。
2.2 再确定一次仪器是否正常工作。
2.3 钻台联接。
3 随钻自然伽玛仪测试作业(5) 3.1 测前准备。
3.2 测试操作。
3.3 地面读出数据。
4 编辑伽玛曲线图(6) 4.1 数据准备。
4.2 产生九个文件中的前四个文件。
4.3 产生九个文件中的后五个(DBF)文件。
4.4 伽玛曲线图形编辑。
5 确定打印轨迹并打印出曲线(9) 5.1 选中一个文件。
5.2 关键设置。
5.3 打印预览。
5.4 打印曲线。
1.准备工作1.1安装井深传感器A.把井深传感器中空轴的公扣端缠绕特夫龙带,将位于绞车滚筒的一侧的气刹轴接头卸下装上井深传感器,用扳手上紧,用力不要过大,取下气刹空心接头,缠上特夫龙带拧到井深传感器的母扣端,用扳手上紧,用力不要过大。
B.井深传感器的导线与井深信号电缆联接好,信号电缆另一端联到井深十大钩负荷的接线盒上。
1.2大钩悬重传感器的安装A.找到指重表注油三通的注油口,把大钩悬重传感器的快速接头插到注油孔上,观察接口处不漏油即可。
B.大钩负荷传感器另一端的接线盒是联着的。
把接线盒与主信号电缆联接好,用胶带封好,用扎条或绳子把电缆固定好,引到值班室里。
1.3井深仪(DTU)的安装井深仪(以下简称DTU)的SERIAL(串)口用RS-232九芯电缆联到地面接口箱后面的DTU口上,从外面引入的井深主信号电缆联到DTU 的信号接口上,地面接口箱的接线与定向测试作业接法一样。
1.4井深仪(DTU)操作规程1.4.1确定传感器类型A.打开DTU电源显示主参数屏。
B.按A键:出主菜单,共五项。
C.按“5”键,按“CR”键:出传感器类型屏。
D.按“1”键,再按“CR”键。
即选中ROTRAY(旋转)型。
1.4.2 用方钻杆(或钻杆)长度标定DTUA.按“A”键,出主菜单。
MWD工作原理?MWD工作原理引言概述:MWD(测井定向钻进)是一种在钻井过程中用于测量井下参数的技术。
它通过测量井内的方位、倾角以及其他相关参数,为工程师提供实时数据,以便更好地掌握井下情况。
本文将详细介绍MWD的工作原理。
一、传感器技术1.1 方位传感器方位传感器是MWD系统中的关键组件之一。
它通过使用磁场传感器,测量井下工具相对于地球磁场的方位。
这些传感器通常采用三轴磁强计技术,能够提供井下工具在三个方向上的方位信息。
1.2 倾角传感器倾角传感器用于测量井下工具的倾斜度。
它通常采用MEMS(微机电系统)技术,通过测量微小变形或加速度来确定倾角。
这种传感器能够提供井下工具在垂直和水平方向上的倾角信息。
1.3 温度和压力传感器除了方位和倾角,MWD系统还需要测量井下的温度和压力。
温度传感器通常使用热电偶或热敏电阻来测量井内温度的变化。
压力传感器则通过测量井内气体或液体的压力来提供井下压力信息。
二、数据传输技术2.1 无线传输MWD系统通常采用无线传输技术将测量数据传输到地面。
这种技术可以通过电磁波或声波来传输数据。
无线传输具有实时性好、传输距离远等优点,能够满足工程师对井下数据的实时监测需求。
2.2 有线传输有些情况下,由于井深或井壁条件限制,无线传输可能无法实现。
此时,MWD系统可以采用有线传输技术。
有线传输通常通过电缆将井下数据传输到地面。
尽管有线传输受到距离限制,但其传输稳定可靠,不受外界干扰。
2.3 数据处理与显示无论是无线传输还是有线传输,井下传输的数据都需要在地面进行处理和显示。
通常,地面的数据处理系统会接收和解码井下传输的数据,并将其显示为工程师可以理解的形式,如图表或曲线。
三、井下工具控制3.1 井下工具定向控制MWD系统不仅可以提供井下参数的测量数据,还可以用于控制井下工具的定向。
通过在井下工具中集成陀螺仪或其他定向传感器,工程师可以根据实时数据调整井下工具的方位和倾角,从而实现井下工具的定向控制。
MWD是一种由井下涡轮发电机供电的无线随钻测量系统
MWD是一种由井下涡轮发电机供电的无线随钻测量系统。
该仪器是将探管传感器测得的井下参数按照一定的编码,产生脉冲信号,该脉冲信号控制脉冲发生器蘑菇头伸缩,从而控制蘑菇头与限流环之间的泥浆流通面积。
在蘑菇头缩回时,钻柱内的泥浆可以顺利地从限流环通过;在蘑菇头升起时,泥浆流通面积减少,从而在钻柱内产生了一个正的泥浆压力脉冲。
接在立管上的压力传感器,将接收到的压力信号转换为电信号,经过防爆箱、接口箱传给计算机,进行信号滤波、解码、计算,得出井下测量参数。
蘑菇头与限流环之间的泥浆流通面积决定着信号的强弱,选用不同尺寸的限流环能够使该仪器在不同的井眼、不同排量、不同井深的工作环境中,均能得到理想幅值的压力信号。
结论:综上所述常规MWD需在停止旋转的状态下进行井斜和方位的测量,但对于地质导向中使用的MWD+LWD,应具备旋转测量的功能,但精度应该没有在静止状态下测量的结果高,一般都是静止测量为准,动态测量只是钻进中参考。
对于利用泥浆传输测量的数据的MWD,则必须在开泵的情况下传输数据。