深度优先搜索
- 格式:ppt
- 大小:571.50 KB
- 文档页数:33
深度优先搜索与回溯算法深度优先(Depth First Search,简称DFS)和回溯算法是两种常见的算法,它们可以用来解决图和树相关的问题。
尽管它们在一些情况下可能无法找到最优解,但在许多实际应用中都有着广泛的应用。
深度优先是一种常用的遍历算法,其基本原理是从起始节点开始,沿着图的深度遍历到达最深处,然后回溯到上一层节点,继续遍历其他子节点直到所有节点都被访问过为止。
DFS可以用递归或者栈来实现。
在深度优先中,每个节点只能访问一次,避免陷入死循环。
通常,我们需要维护一个访问过的节点列表,以确保不会重复访问。
深度优先的时间复杂度为O(,V,+,E,),其中,V,表示图中节点的数量,E,表示边的数量。
在最坏的情况下,DFS需要遍历图中的所有节点和边。
深度优先的一个经典应用是在图中查找特定路径。
它也被广泛应用于迷宫问题、拓扑排序、连通性问题等。
回溯算法是一种通过枚举所有可能解的方法来解决问题的算法。
在过程中,如果当前路径无法达到目标,就返回上一层,寻找另一种可能的路径。
回溯算法通常使用递归来实现。
回溯算法通常包含三个步骤:1.选择:在当前节点选择一个可行的选项,并向前进入下一层节点。
2.约束:在进入下一层之前,检查当前节点的状态是否符合要求,即剪枝操作。
3.撤销选择:在下一层节点完毕后,返回上一层节点,撤销当前选择。
通过不断地进行选择、约束和撤销选择,回溯算法可以遍历所有可能的解空间,并找到满足条件的解。
回溯算法的时间复杂度取决于问题的规模和约束条件。
在最坏的情况下,回溯算法需要遍历所有的可能解,因此时间复杂度可以达到指数级。
回溯算法的一个经典应用是在数独游戏中寻找解。
它也被广泛应用于组合优化问题、八皇后问题、0-1背包问题等。
总结起来,深度优先和回溯算法是两种常用的算法,它们在图和树的遍历以及问题求解中有着广泛的应用。
深度优先通过遍历到达最深处再回溯,而回溯算法则是通过枚举所有可能解并进行剪枝来寻找解。
深度优先搜索和广度优先搜索一、深度优先搜索和广度优先搜索的深入讨论(一)深度优先搜索的特点是无论问题的内容和性质以及求解要求如何不同,它们的程序结构都是相同的,即都是深度优先算法(一)和深度优先算法(二)中描述的算法结构,不相同的仅仅是存储结点数据结构和产生规则以及输出要求。
(2)深度优先搜索法有递归以及非递归两种设计方法。
一般的,当搜索深度较小、问题递归方式比较明显时,用递归方法设计好,它可以使得程序结构更简捷易懂。
当搜索深度较大时,当数据量较大时,由于系统堆栈容量的限制,递归容易产生溢出,用非递归方法设计比较好。
(3)深度优先搜索方法有广义和狭义两种理解。
广义的理解是,只要最新产生的结点(即深度最大的结点)先进行扩展的方法,就称为深度优先搜索方法。
在这种理解情况下,深度优先搜索算法有全部保留和不全部保留产生的结点的两种情况。
而狭义的理解是,仅仅只保留全部产生结点的算法。
本书取前一种广义的理解。
不保留全部结点的算法属于一般的回溯算法范畴。
保留全部结点的算法,实际上是在数据库中产生一个结点之间的搜索树,因此也属于图搜索算法的范畴。
(4)不保留全部结点的深度优先搜索法,由于把扩展望的结点从数据库中弹出删除,这样,一般在数据库中存储的结点数就是深度值,因此它占用的空间较少,所以,当搜索树的结点较多,用其他方法易产生内存溢出时,深度优先搜索不失为一种有效的算法。
(5)从输出结果可看出,深度优先搜索找到的第一个解并不一定是最优解.如果要求出最优解的话,一种方法将是后面要介绍的动态规划法,另一种方法是修改原算法:把原输出过程的地方改为记录过程,即记录达到当前目标的路径和相应的路程值,并与前面已记录的值进行比较,保留其中最优的,等全部搜索完成后,才把保留的最优解输出。
二、广度优先搜索法的显著特点是:(1)在产生新的子结点时,深度越小的结点越先得到扩展,即先产生它的子结点。
为使算法便于实现,存放结点的数据库一般用队列的结构。
深度优先搜索和⼴度优先搜索 深度优先搜索和⼴度优先搜索都是图的遍历算法。
⼀、深度优先搜索(Depth First Search) 1、介绍 深度优先搜索(DFS),顾名思义,在进⾏遍历或者说搜索的时候,选择⼀个没有被搜过的结点(⼀般选择顶点),按照深度优先,⼀直往该结点的后续路径结点进⾏访问,直到该路径的最后⼀个结点,然后再从未被访问的邻结点进⾏深度优先搜索,重复以上过程,直⾄所有点都被访问,遍历结束。
⼀般步骤:(1)访问顶点v;(2)依次从v的未被访问的邻接点出发,对图进⾏深度优先遍历;直⾄图中和v有路径相通的顶点都被访问;(3)若此时图中尚有顶点未被访问,则从⼀个未被访问的顶点出发,重新进⾏深度优先遍历,直到图中所有顶点均被访问过为⽌。
可以看出,深度优先算法使⽤递归即可实现。
2、⽆向图的深度优先搜索 下⾯以⽆向图为例,进⾏深度优先搜索遍历: 遍历过程: 所以遍历结果是:A→C→B→D→F→G→E。
3、有向图的深度优先搜索 下⾯以有向图为例,进⾏深度优先遍历: 遍历过程: 所以遍历结果为:A→B→C→E→D→F→G。
⼆、⼴度优先搜索(Breadth First Search) 1、介绍 ⼴度优先搜索(BFS)是图的另⼀种遍历⽅式,与DFS相对,是以⼴度优先进⾏搜索。
简⾔之就是先访问图的顶点,然后⼴度优先访问其邻接点,然后再依次进⾏被访问点的邻接点,⼀层⼀层访问,直⾄访问完所有点,遍历结束。
2、⽆向图的⼴度优先搜索 下⾯是⽆向图的⼴度优先搜索过程: 所以遍历结果为:A→C→D→F→B→G→E。
3、有向图的⼴度优先搜索 下⾯是有向图的⼴度优先搜索过程: 所以遍历结果为:A→B→C→E→F→D→G。
三、两者实现⽅式对⽐ 深度优先搜索⽤栈(stack)来实现,整个过程可以想象成⼀个倒⽴的树形:把根节点压⼊栈中。
每次从栈中弹出⼀个元素,搜索所有在它下⼀级的元素,把这些元素压⼊栈中。
并把这个元素记为它下⼀级元素的前驱。
广度优先和深度优先的例子广度优先搜索(BFS)和深度优先搜索(DFS)是图遍历中常用的两种算法。
它们在解决许多问题时都能提供有效的解决方案。
本文将分别介绍广度优先搜索和深度优先搜索,并给出各自的应用例子。
一、广度优先搜索(BFS)广度优先搜索是一种遍历或搜索图的算法,它从起始节点开始,逐层扩展,先访问起始节点的所有邻居节点,再依次访问其邻居节点的邻居节点,直到遍历完所有节点或找到目标节点。
例子1:迷宫问题假设有一个迷宫,迷宫中有多个房间,每个房间有四个相邻的房间:上、下、左、右。
现在我们需要找到从起始房间到目标房间的最短路径。
可以使用广度优先搜索算法来解决这个问题。
例子2:社交网络中的好友推荐在社交网络中,我们希望给用户推荐可能认识的新朋友。
可以使用广度优先搜索算法从用户的好友列表开始,逐层扩展,找到可能认识的新朋友。
例子3:网页爬虫网页爬虫是搜索引擎抓取网页的重要工具。
爬虫可以使用广度优先搜索算法从一个网页开始,逐层扩展,找到所有相关的网页并进行抓取。
例子4:图的最短路径在图中,我们希望找到两个节点之间的最短路径。
可以使用广度优先搜索算法从起始节点开始,逐层扩展,直到找到目标节点。
例子5:推荐系统在推荐系统中,我们希望给用户推荐可能感兴趣的物品。
可以使用广度优先搜索算法从用户喜欢的物品开始,逐层扩展,找到可能感兴趣的其他物品。
二、深度优先搜索(DFS)深度优先搜索是一种遍历或搜索图的算法,它从起始节点开始,沿着一条路径一直走到底,直到不能再继续下去为止,然后回溯到上一个节点,继续探索其他路径。
例子1:二叉树的遍历在二叉树中,深度优先搜索算法可以用来实现前序遍历、中序遍历和后序遍历。
通过深度优先搜索算法,我们可以按照不同的遍历顺序找到二叉树中所有节点。
例子2:回溯算法回溯算法是一种通过深度优先搜索的方式,在问题的解空间中搜索所有可能的解的算法。
回溯算法常用于解决组合问题、排列问题和子集问题。
例子3:拓扑排序拓扑排序是一种对有向无环图(DAG)进行排序的算法。
的遍历算法详解深度优先搜索与广度优先搜索的遍历算法详解——深度优先搜索与广度优先搜索遍历算法是计算机科学中常用的算法之一,用于按照一定规则遍历图或树的各个节点。
本文将详细介绍两种常用的遍历算法——深度优先搜索和广度优先搜索。
1. 深度优先搜索(Depth-First Search,DFS)深度优先搜索是一种先序遍历的算法,其主要思想是从某一个节点出发,优先访问它的所有邻接节点,并递归地遍历各个邻接节点的邻接节点,直到到达没有未访问节点的情况,然后回溯到前一节点,重复上述过程,直到遍历完整个图或树。
深度优先搜索可以使用递归或栈来实现。
以递归方式实现的深度优先搜索算法如下:```procedure DFS(node):if node is null:returnvisit(node)node.visited = truefor each adj_node in node.adjacentNodes:if adj_node.visited is false:DFS(adj_node)```2. 广度优先搜索(Breadth-First Search,BFS)广度优先搜索是一种层序遍历的算法,其主要思想是从某一个节点出发,依次访问其所有邻接节点,然后再访问邻接节点的邻接节点,以此类推,直到遍历完整个图或树。
广度优先搜索可以使用队列来实现。
广度优先搜索算法如下:```procedure BFS(start_node):queue = new Queue()start_node.visited = trueenqueue(queue, start_node)while queue is not empty:node = dequeue(queue)visit(node)for each adj_node in node.adjacentNodes:if adj_node.visited is false:adj_node.visited = trueenqueue(queue, adj_node)```深度优先搜索和广度优先搜索各自有其应用场景。
信息学竞赛中的深度优先搜索算法深度优先搜索(Depth First Search, DFS)是一种经典的图遍历算法,在信息学竞赛中被广泛应用。
本文将介绍深度优先搜索算法的原理、应用场景以及相关的技巧与注意事项。
一、算法原理深度优先搜索通过递归或者栈的方式实现,主要思想是从图的一个节点开始,尽可能地沿着一条路径向下深入,直到无法继续深入,然后回溯到上一个节点,再选择其他未访问的节点进行探索,直到遍历完所有节点为止。
二、应用场景深度优先搜索算法在信息学竞赛中有广泛的应用,例如以下场景:1. 图的遍历:通过深度优先搜索可以遍历图中的所有节点,用于解决与图相关的问题,如寻找连通分量、判断是否存在路径等。
2. 剪枝搜索:在某些问题中,深度优先搜索可以用于剪枝搜索,即在搜索的过程中根据当前状态进行一定的剪枝操作,提高求解效率。
3. 拓扑排序:深度优先搜索还可以用于拓扑排序,即对有向无环图进行排序,用于解决任务调度、依赖关系等问题。
4. 迷宫求解:对于迷宫类的问题,深度优先搜索可以用于求解最短路径或者所有路径等。
三、算法实现技巧在实际应用深度优先搜索算法时,可以采用以下的一些技巧和优化,以提高算法效率:1. 记忆化搜索:通过记录已经计算过的状态或者路径,避免重复计算,提高搜索的效率。
2. 剪枝策略:通过某些条件判断,提前终止当前路径的搜索,从而避免无效的搜索过程。
3. 双向搜索:在某些情况下,可以同时从起点和终点进行深度优先搜索,当两者在某个节点相遇时,即可确定最短路径等。
四、注意事项在应用深度优先搜索算法时,需要注意以下几点:1. 图的表示:需要根据实际问题选择合适的图的表示方法,如邻接矩阵、邻接表等。
2. 访问标记:需要使用合适的方式标记已经访问过的节点,避免无限循环或者重复访问造成的错误。
3. 递归调用:在使用递归实现深度优先搜索时,需要注意递归的结束条件和过程中变量的传递。
4. 时间复杂度:深度优先搜索算法的时间复杂度一般为O(V+E),其中V为节点数,E为边数。
深度优先搜索算法深度优先搜索算法(Depth-First Search,DFS)是一种用于遍历或搜索树或图数据结构的算法。
在DFS中,我们会尽可能深地探索一个分支,直到无法继续为止,然后回溯到前一个节点,继续探索其他分支。
DFS通常使用递归或栈数据结构来实现。
在本文中,我们将深入探讨DFS的原理、实现方法、应用场景以及一些相关的扩展主题。
1.原理深度优先搜索算法的原理非常简单。
从图或树的一个起始节点开始,我们首先探索它的一个邻居节点,然后再探索这个邻居节点的一个邻居节点,依此类推。
每次都尽可能深地探索一个分支,直到无法继续为止,然后回溯到前一个节点,继续探索其他分支。
这个过程可以用递归或栈来实现。
2.实现方法在实现DFS时,我们可以使用递归或栈来维护待访问的节点。
下面分别介绍这两种实现方法。
2.1递归实现递归是实现DFS最直观的方法。
我们可以定义一个递归函数来表示探索节点的过程。
该函数接受当前节点作为参数,并在该节点上进行一些操作,然后递归地调用自身来探索当前节点的邻居节点。
这样就可以很容易地实现DFS。
```pythondef dfs(node, visited):visited.add(node)#对当前节点进行一些操作for neighbor in node.neighbors:if neighbor not in visited:dfs(neighbor, visited)```2.2栈实现除了递归,我们还可以使用栈来实现DFS。
我们首先将起始节点入栈,然后循环执行以下步骤:出栈一个节点,对该节点进行一些操作,将其未访问的邻居节点入栈。
这样就可以模拟递归的过程,实现DFS。
```pythondef dfs(start):stack = [start]visited = set()while stack:node = stack.pop()if node not in visited:visited.add(node)#对当前节点进行一些操作for neighbor in node.neighbors:if neighbor not in visited:stack.append(neighbor)```3.应用场景深度优先搜索算法在实际的软件开发中有着广泛的应用。
深度优先搜索的基本原理深度优先搜索是一种常用的搜索算法,它的主要思想是沿着搜索空间中的可能路径以深度优先的方式搜索整个空间,而不是广度优先的方式。
深度优先搜索可以用来解决多种种类的问题,包括最短路径,最大收益,最小化损失等等。
本文将对深度优先搜索的原理及应用进行简要介绍。
一、深度优先搜索原理深度优先搜索(Depth-FirstSearch,DFS)是一种搜索算法,它受到树的结构性质的启发,在给定的搜索空间中以深度优先的方式搜索整个空间,而不是广度优先的方式,也就是说,从一个节点出发之后,探索它的所有可能的路径,直到找到目标状态为止。
深度优先搜索的步骤分为以下几步:1.首先,在搜索空间中选择一个节点作为起点,并把它标记为处理过;2.然后,搜索深度优先,如果当前节点有直接相连的节点,则把它也标记为处理过,并选择一个未标记节点作为当前节点,重复上述步骤;3.最后,如果找到了目标状态,则结束搜索,否则,回退到尚未访问过的节点,重新开始搜索。
二、深度优先搜索的应用深度优先搜索可以应用于多种类的问题,其中最常用的是给定搜索空间中最短路径的搜索。
比如导航问题,给定搜索空间,从出发点到目标点,深度优先搜索可以帮助我们在最短的时间里找到最短路径。
深度优先搜索也可以应用于最大收益的搜索,比如深度优先搜索可以应用于棋盘游戏的最佳路径搜索,它可以帮助我们找到棋盘游戏中最大收益的路径。
另外,深度优先搜索也可以用来搜索最小化损失的路径。
三、深度优先搜索的优势1.深度优先搜索可以快速地找到最短路径,它可以帮助我们节省问题解决中的很多时间;2.深度优先搜索也可以应用于最大收益的搜索,比如棋盘游戏等;3.它不需要记录太多的搜索状态,从而提高搜索的效率;4.深度优先搜索不需要考虑太多的约束条件,并且也并不需要在搜索空间中记录太多的信息,使得搜索问题更加易于理解。
四、深度优先搜索的不足1.深度优先搜索只能从当前节点出发,很容易陷入死胡同,因此,有时候可能会导致搜索的中断或无法从死胡同出发,直至搜索完全空间;2.它只能找到单条最优路径,而不能找到整个搜索空间中的最优路径;3.深度优先搜索的空间复杂度较高,因此它的执行效率较低,在处理高维空间的问题时,它的效率就更低了。