矩阵分析复习
- 格式:pdf
- 大小:80.04 KB
- 文档页数:3
选修4-2 矩阵与变换第2课时 逆变换与逆矩阵、矩阵的特征值与特征向量(对应学生用书(理)189~191页)1. 设M =⎣⎢⎢⎡⎦⎥⎥⎤0110,N =⎣⎢⎢⎡⎦⎥⎥⎤1012,求MN . 解:MN =⎣⎢⎢⎡⎦⎥⎥⎤0110⎣⎢⎢⎡⎦⎥⎥⎤10012=⎣⎢⎢⎡⎦⎥⎥⎤01210. 2. 已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤a 273,若矩阵M 的逆矩阵M -1=⎣⎢⎢⎡⎦⎥⎥⎤b -2-7a,求a 、b 的值.解:由题意,知MM-1=E ,⎣⎢⎢⎡⎦⎥⎥⎤a 273⎣⎢⎢⎡⎦⎥⎥⎤b -2-7a =⎣⎢⎢⎡⎦⎥⎥⎤1001,即⎣⎢⎢⎡⎦⎥⎥⎤ab -1407b -213a -14=⎣⎢⎢⎡⎦⎥⎥⎤1001, 即⎩⎪⎨⎪⎧ab -14=1,7b -21=0,3a -14=1,解得a =5,b =3.3. 求矩阵⎣⎢⎢⎡⎦⎥⎥⎤ 12-12的特征多项式. 解:f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-21λ-2=(λ-1)(λ-2)+2=λ2-3λ+4.4. (选修42P 73习题第1题改编)求矩阵M =[ 1 6-2-6]的特征值.解:矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-62λ+6=(λ+2)·(λ+3)=0,令f(λ)=0,得M 的特征值为λ1=-2,λ2=-3.5. (选修42P 73习题第1题改编)求矩阵N =⎣⎢⎢⎡⎦⎥⎥⎤3652的特征值及相应的特征向量.解:矩阵N 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-3-6-5λ-2=(λ-8)·(λ+3)=0,令f(λ)=0,得N 的特征值为λ1=-3,λ2=8, 当λ1=-3时⎩⎪⎨⎪⎧-6x -6y =0,-5x -5y =0,一个解为⎩⎪⎨⎪⎧x =-1,y =1, 故特征值λ1=-3的一个特征向量为⎣⎢⎢⎡⎦⎥⎥⎤-1 1;当λ2=8时⎩⎪⎨⎪⎧5x -6y =0,-5x +6y =0,一个解为⎩⎪⎨⎪⎧x =6,y =5,故特征值λ2=8的一个特征向量为⎣⎢⎢⎡⎦⎥⎥⎤65.1. 逆变换与逆矩阵(1) 对于二阶矩阵A 、B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵.(2) 若二阶矩阵A 、B 均存在逆矩阵,则AB 也存在逆矩阵,且(AB )-1=B -1A -1.(3) 利用行列式解二元一次方程组. 2. 特征值与特征向量(1) 设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使Aα=λα,那么λ称为A 的一个特征值,而α称为A 的属于特征值λ的一个特征向量.(2) 从几何上看,特征向量的方向经变换矩阵A 的作用后,保持在同一条直线上,这时特征向量或者方向不变(λ>0),或者方向相反(λ<0).特别地,当λ=0时,特征向量就变换成零向量.[备课札记]题型1 求逆矩阵与逆变换例1 用解方程组的方法求下列矩阵M 的逆矩阵.(1) M =⎣⎢⎢⎡⎦⎥⎥⎤1101; (2) M =⎣⎢⎢⎡⎦⎥⎥⎤1221. 解:(1) 设M-1=⎣⎢⎢⎡⎦⎥⎥⎤a b c d , 则由定义知⎣⎢⎢⎡⎦⎥⎥⎤1101⎣⎢⎢⎡⎦⎥⎥⎤a b c d =⎣⎢⎢⎡⎦⎥⎥⎤1001,即⎩⎪⎨⎪⎧a +c =1,b +d =0,c =0,d =1,解得⎩⎪⎨⎪⎧a =1,b =-1,c =0,d =1,故M-1=⎣⎢⎢⎡⎦⎥⎥⎤1-10 1. (2) 设M-1=⎣⎢⎢⎡⎦⎥⎥⎤a b c d , 则由定义知⎣⎢⎢⎡⎦⎥⎥⎤1221⎣⎢⎢⎡⎦⎥⎥⎤a b c d =⎣⎢⎢⎡⎦⎥⎥⎤1001, 即⎩⎪⎨⎪⎧a +2c =1,b +2d =0,2a +c =0,2b +d =1,解得⎩⎪⎪⎨⎪⎪⎧a =-13,b =23,c =23,d =-13,故M-1=⎣⎢⎢⎡⎦⎥⎥⎤-13 23 23-13. 备选变式(教师专享) 已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤2-31-1所对应的线性变换把点A(x ,y)变成点A′(13,5),试求M 的逆矩阵及点A 的坐标.解:依题意,由M =⎣⎢⎢⎡⎦⎥⎥⎤2-31-1,得|M |=1,则M -1=⎣⎢⎢⎡⎦⎥⎥⎤-13-12.从而由⎣⎢⎢⎡⎦⎥⎥⎤2-31-1⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤135,得⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤-13-12⎣⎢⎢⎡⎦⎥⎥⎤135=⎣⎢⎢⎡⎦⎥⎥⎤-1×13+3×5-1×13+2×5=⎣⎢⎢⎡⎦⎥⎥⎤2-3, 故⎩⎪⎨⎪⎧x =2,y =-3,∴ A 点坐标为(2,-3).题型2 求特征值与特征向量 例2 已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤2a 21,其中a∈R ,若点P(1,-2)在矩阵M 的变换下得到点P′(-4,0).(1) 求实数a 的值;(2) 求矩阵M 的特征值及其对应的特征向量.解:(1) 由⎣⎢⎢⎡⎦⎥⎥⎤2a 21⎣⎢⎢⎡⎦⎥⎥⎤ 1-2=⎣⎢⎢⎡⎦⎥⎥⎤-4 0, 得2-2a =-4a =3.(2) 由(1)知M =⎣⎢⎢⎡⎦⎥⎥⎤2321,则矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=(λ-2)(λ-1)-6=λ2-3λ-4.令f(λ)=0,得矩阵M 的特征值为-1与4.当λ=-1时,⎩⎪⎨⎪⎧(λ-2)x -3y =0,-2x +(λ-1)y =0x +y =0,∴ 矩阵M 的属于特征值-1的一个特征向量为⎣⎢⎢⎡⎦⎥⎥⎤1-1;当λ=4时,⎩⎪⎨⎪⎧(λ-2)x -3y =0,-2x +(λ-1)y =02x -3y =0.∴ 矩阵M 的属于特征值4的一个特征向量为⎣⎢⎢⎡⎦⎥⎥⎤32.变式训练已知M =⎣⎢⎢⎡⎦⎥⎥⎤1221,β=⎣⎢⎢⎡⎦⎥⎥⎤17,计算M 5β. 解:矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1-2-2λ-1=λ2-2λ-3.令f(λ)=0,解得λ1=3,λ2=-1,从而求得对应的一个特征向量分别为α1=⎣⎢⎢⎡⎦⎥⎥⎤11,α2=⎣⎢⎢⎡⎦⎥⎥⎤1-1.令β=m α1+n α2,则m =4,n =-3.M 5β=M 5(4α1-3α2)=4(M 5α1)-3(M 5α2) =4(λ51α1)-3(λ52α2) =4×35⎣⎢⎢⎡⎦⎥⎥⎤11-3×(-1)5⎣⎢⎢⎡⎦⎥⎥⎤ 1-1=⎣⎢⎢⎡⎦⎥⎥⎤975969. 题型3 根据特征值或特征向量求矩阵 例3矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤1102有特征向量为e 1=⎣⎢⎢⎡⎦⎥⎥⎤11,e 2=⎣⎢⎢⎡⎦⎥⎥⎤10, (1) 求e 1和e 2对应的特征值; (2) 对向量α=⎣⎢⎢⎡⎦⎥⎥⎤41,记作α=e 1+3e 2,利用这一表达式间接计算M 4α,M 10α.解:(1) 设向量e 1、e 2对应的特征值分别为λ1、λ2,则⎣⎢⎢⎡⎦⎥⎥⎤1102⎣⎢⎢⎡⎦⎥⎥⎤11=λ1⎣⎢⎢⎡⎦⎥⎥⎤11,⎣⎢⎢⎡⎦⎥⎥⎤1102⎣⎢⎢⎡⎦⎥⎥⎤10=λ2⎣⎢⎢⎡⎦⎥⎥⎤10, 故λ1=2,λ2=1,即向量e 1,e 2对应的特征值分别是2,1. (2) 因为α=e 1+3e 2,所以M 4α=M 4(e 1+3e 2)=M 4e 1+3M 4e 2=λ41e 1+3λ42e2=⎣⎢⎢⎡⎦⎥⎥⎤1916, M 10α=M 10(e 1+3e 2)=M 10e 1+3M 10e 2=λ101e 1+3λ102e 2=⎣⎢⎢⎡⎦⎥⎥⎤210+3210.备选变式(教师专享)已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤200-1有特征向量e 1→=⎣⎢⎢⎡⎦⎥⎥⎤10,e 2→=⎣⎢⎢⎡⎦⎥⎥⎤01,相应的特征值为λ1,λ2.(1) 求矩阵M 的逆矩阵M -1及λ1,λ2;(2) 对任意向量α→=⎣⎢⎢⎡⎦⎥⎥⎤x y ,求M 100α→.解:(1) 由矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤200-1变换的意义知M -1=⎣⎢⎢⎡⎦⎥⎥⎤1200-1, 又Me 1→=λ1e 1→,即⎣⎢⎢⎡⎦⎥⎥⎤200-1⎣⎢⎢⎡⎦⎥⎥⎤10=λ1⎣⎢⎢⎡⎦⎥⎥⎤10,故λ1=2,同理Me 2→=λ2e 2→,即⎣⎢⎢⎡⎦⎥⎥⎤200-1⎣⎢⎢⎡⎦⎥⎥⎤01=λ2⎣⎢⎢⎡⎦⎥⎥⎤01,故λ2=-1. (2) 因为α→=⎣⎢⎢⎡⎦⎥⎥⎤x y =x e 1→+y e 2→,所以M 100α→=M 100(x e 1→+y·e 2→)=xM 100e 1→+yM 100e 2→=xλ1001e 1→+yλ2100e 2→=⎣⎢⎢⎡⎦⎥⎥⎤2100x y .1. 求函数f(x)=⎪⎪⎪⎪⎪⎪⎪⎪2cosx sinx -1的值域.解:f(x)=-2-sinxcosx =-2-12sin2x ∈⎣⎢⎡⎦⎥⎤-52,-32.2. 已知矩阵A 的逆矩阵A-1=⎣⎢⎢⎡⎦⎥⎥⎤-14 34 12-12,求矩阵A 的特征值.解:∵ A -1A =E ,∴ A =(A -1)-1.∵ A-1=⎣⎢⎢⎡⎦⎥⎥⎤-14 34 12-12,∴ A =(A -1)-1=⎣⎢⎢⎡⎦⎥⎥⎤2321.∴ 矩阵A 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=λ2-3λ-4.令f(λ)=0,解得矩阵A 的特征值λ1=-1,λ2=4.3. (2013·江苏)已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤-10 02,B =⎣⎢⎢⎡⎦⎥⎥⎤1206,求矩阵A -1B .解:设矩阵A的逆矩阵为⎣⎢⎢⎡⎦⎥⎥⎤a b c d , 则⎣⎢⎢⎡⎦⎥⎥⎤-10 02⎣⎢⎢⎡⎦⎥⎥⎤a b c d =⎣⎢⎢⎡⎦⎥⎥⎤1001, 即⎣⎢⎢⎡⎦⎥⎥⎤-a -b 2c 2d =⎣⎢⎢⎡⎦⎥⎥⎤1001, 故a =-1,b =0,c =0,d =12.∴ 矩阵A 的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-10 012,∴ A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-10012⎣⎢⎢⎡⎦⎥⎥⎤1206=⎣⎢⎢⎡⎦⎥⎥⎤-1-2 0 3. 4. 设曲线2x 2+2xy +y 2=1在矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤a 0b 1(a>0)对应的变换作用下得到的曲线为x 2+y 2=1.(1) 求实数a 、b 的值; (2) 求A 2的逆矩阵.解:(1) 设曲线2x 2+2xy +y 2=1上任一点P(x ,y)在矩阵A 对应的变换下的象是P′(x′,y ′),由⎣⎢⎢⎡⎦⎥⎥⎤x′y′=⎣⎢⎢⎡⎦⎥⎥⎤a 0b 1⎣⎢⎢⎡⎦⎥⎥⎤x y =[]axbx +y,得⎩⎪⎨⎪⎧x′=ax ,y ′=bx +y.因为P′(x′,y ′)在圆x 2+y 2=1上, 所以(ax)2+(bx +y)2=1,化简可得(a 2+b 2)x 2+2bxy +y 2=1, 依题意可得a 2+b 2=2,2b =2a =1,b =1或a =-1,b =1,而由a>0可得a =b =1.(2) 由(1)A =⎣⎢⎢⎡⎦⎥⎥⎤1011,A 2=⎣⎢⎢⎡⎦⎥⎥⎤1011⎣⎢⎢⎡⎦⎥⎥⎤1011=⎣⎢⎢⎡⎦⎥⎥⎤1021|A 2|=1,(A 2)-1=⎣⎢⎢⎡⎦⎥⎥⎤ 10-21. 1. 已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤1 -1a1,若点P(1,1)在矩阵A 对应的变换作用下得到点P′(0,-8).(1) 求实数a 的值; (2) 求矩阵A 的特征值.解:(1) 由⎣⎢⎢⎡⎦⎥⎥⎤1-1a1⎣⎢⎢⎡⎦⎥⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤ 0-8,得a +1=-8, 所以a =-9. (2) 由(1)知A =⎣⎢⎢⎡⎦⎥⎥⎤ 1 -1-91,则矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1 19 λ-1=(λ-1)2-9=λ2-2λ-8,令f(λ)=0,所以矩阵A 的特征值为-2或4.2. 已知M =⎣⎢⎢⎡⎦⎥⎥⎤2-1-43,N =⎣⎢⎢⎡⎦⎥⎥⎤4-1-31,求二阶方阵X ,使MX =N .解:(解法1)设X =⎣⎢⎢⎡⎦⎥⎥⎤x y z w ,据题意有⎣⎢⎢⎡⎦⎥⎥⎤2-1-43⎣⎢⎢⎡⎦⎥⎥⎤x y z w =⎣⎢⎢⎡⎦⎥⎥⎤4-1-31,根据矩阵乘法法则有⎩⎪⎨⎪⎧2x -z =4,2y -w =-1,-4x +3z =-3,-4y +3w =1.解得⎩⎪⎨⎪⎧x =92,y =-1,z =5,w =-1,所以X =⎣⎢⎢⎡⎦⎥⎥⎤92-15-1. (解法2)因为MX =N ,所以X =M -1N ,M -1=⎣⎢⎢⎡⎦⎥⎥⎤321221.所以X =M-1N =⎣⎢⎢⎡⎦⎥⎥⎤321221⎣⎢⎢⎡⎦⎥⎥⎤4-1-31=⎣⎢⎢⎡⎦⎥⎥⎤92-15-1. 3. 已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤2a 21,其中a∈R ,若点P(1,-2)在矩阵M 的变换下得到点P′(-4,0),求实数a 的值;并求矩阵M 的特征值及其对应的特征向量.解:由⎣⎢⎢⎡⎦⎥⎥⎤2a 21⎣⎢⎢⎡⎦⎥⎥⎤1-2=⎣⎢⎢⎡⎦⎥⎥⎤-40,∴ 2-2a =-4a =3.∴ M =⎣⎢⎢⎡⎦⎥⎥⎤2321,则矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=(λ-2)(λ-1)-6=λ2-3λ-4令f(λ)=0,得矩阵M 的特征值为-1与4. 当λ=-1时, ⎩⎪⎨⎪⎧(λ-2)x -3y =0-2x +(λ-1)y =0x +y =0,∴ 矩阵M 的属于特征值-1的一个特征向量为⎣⎢⎢⎡⎦⎥⎥⎤1-1;当λ=4时, ⎩⎪⎨⎪⎧(λ-2)x -3y =0-2x +(λ-1)y =02x -3y =0,∴ 矩阵M 的属于特征值4的一个特征向量为⎣⎢⎢⎡⎦⎥⎥⎤32.4. 设矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤a 00b (其中a>0,b>0).(1) 若a =2,b =3,求矩阵M 的逆矩阵M -1;(2) 若曲线C :x 2+y 2=1在矩阵M 所对应的线性变换作用下得到曲线C′:x 24+y 2=1,求a 、b 的值.解:(1) 设矩阵M 的逆矩阵M-1=⎣⎢⎢⎡⎦⎥⎥⎤x 1y 1x 2y 2,则MN -1= ⎣⎢⎢⎡⎦⎥⎥⎤1001.又M =⎣⎢⎢⎡⎦⎥⎥⎤2003,所以⎣⎢⎢⎡⎦⎥⎥⎤2003⎣⎢⎢⎡⎦⎥⎥⎤x 1y 1x 2y 2=⎣⎢⎢⎡⎦⎥⎥⎤1001,所以2x 1=1,2y 1=0,3x 2=0,3y 2=1,即x 1=12,y 1=0,x 2=0,y 2=13,故所求的逆矩阵M -1=⎣⎢⎢⎡⎦⎥⎥⎤120013.(2) 设曲线C 上任意一点P(x ,y),它在矩阵M 所对应的线性变换作用下得到P′(x′,y ′),则⎣⎢⎢⎡⎦⎥⎥⎤a 00b ⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x′y′,即⎩⎪⎨⎪⎧ax =x′,by =y′.又点P′(x′,y ′)在曲线C′上,所以x′24+y′2=1,则a 2x 24+b 2y2=1为曲线C 的方程.又已知曲线C 的方程为x 2+y 2=1,故⎩⎪⎨⎪⎧a 2=4,b 2=1.又a>0,b>0,所以⎩⎪⎨⎪⎧a =2,b =1.1. 矩阵的逆矩阵(1) 已知A 、B 、C 为二阶矩阵,且AB =AC ,若矩阵A 存在逆矩阵,则B =C .(2) 对于二阶可逆矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤a b c d (ad -bc≠0),它的逆矩阵为A-1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc -b ad -bc-c ad -bca ad -bc . 2. 二阶行列式与方程组的解对于关于x 、y的二元一次方程组⎩⎪⎨⎪⎧ax +by =m ,cx +dy =n ,我们把⎪⎪⎪⎪⎪⎪⎪⎪a b c d 称为二阶行列式,它的运算结果是一个数值(或多项式),记为det(A)=⎪⎪⎪⎪⎪⎪⎪⎪a b c d =ad -bc. 若将方程组中行列式⎪⎪⎪⎪⎪⎪⎪⎪a b c d 记为D ,⎪⎪⎪⎪⎪⎪⎪⎪m b n d 记为D x ,⎪⎪⎪⎪⎪⎪⎪⎪a m c n 记为D y,则当D≠0时,方程组的解为⎩⎪⎨⎪⎧x =D xD,y =DyD .请使用课时训练(B )第2课时(见活页).[备课札记]。
1.方程组的增广矩阵是()A.B.C.D.【答案】D【解析】试题分析:先将方程组化成,即可写出对应的增广矩阵.解:∵方程组,∴方程组可化为,∴其增广矩阵为.故选D.点评:本题主要考查了二元一次方程组的矩阵形式,以及方程组的增广矩阵,属于基础题.2.(2010•卢湾区二模)关于x、y的二元一次方程组的系数行列式D=0是该方程组有解的()A.充分非必要条件B.必要非充分条件C.充分且必要条件D.既非充分也非必要条件【答案】D【解析】试题分析:将原方程组写成矩阵形式为Ax=b,其中A为2×2方阵,x为2个变量构成列向量,b为2个常数项构成列向量.而当它的系数矩阵可逆,或者说对应的行列式D 不等于0的时候,它有唯一解.并不是说有解.解:系数矩阵D非奇异时,或者说行列式D≠0时,方程组有唯一的解;系数矩阵D奇异时,或者说行列式D=0时,方程组有无数个解或无解.∴系数行列式D=0,方程可能有无数个解,也有可能无解,反之,若方程组有解,可能有唯一解,也可能有无数解,则行列式D可能不为0,也可能为0.总之,两者之间互相推出的问题.故选D.点评:本题主要考查克莱姆法则,克莱姆法则不仅仅适用于实数域,它在任何域上面都可以成立.3.(2012•闵行区一模)已知关于x,y的二元一次线性方程组的增广矩阵为,记,则此线性方程组有无穷多组解的充要条件是()A. B.两两平行C. D.方向都相同【答案】B【解析】试题分析:二元一次线性方程组有无穷多组解等价于方程组中未知数的系数与常数项对应成比例,由此即可得到结论.解:由题意,二元一次线性方程组有无穷多组解等价于方程组中未知数的系数与常数项对应成比例∵,∴两两平行故选B.点评:本题考查二元线性方程组的增广矩阵的涵义,考查向量知识,属于基础题.4.下列四个算式:①;②;③a1b2c3+a2b3c1+a3b1c2﹣a1b3c2﹣a2b1c3﹣a3b2c1;④其中运算结果与行列式的运算结果相同的算式有()A.1个B.2个C.3个D.4个【答案】C试题分析:根据余子式的定义可知,在行列式中按照第一列展开后所余下的元素的代数余子式的和,即知①正确;同理,在行列式中按照第一行展开后所余下的元素的代数余子式的和,即得②正确;对于③,按照行列式展开的运算法则即得a1b2c3+a2b3c1+a3b1c2﹣a1b3c2﹣a2b1c3﹣a3b2c1;对于④,按照行列式展开的运算法则后与原行列式不相同.解:根据余子式的定义可知,在行列式中按照第一列展开后所余下的元素的代数余子式的和,即为.故①正确;同理,在行列式中按照第一行展开后所余下的元素的代数余子式的和,即为.故②正确;对于③,按照行列式展开的运算法则即得a1b2c3+a2b3c1+a3b1c2﹣a1b3c2﹣a2b1c3﹣a3b2c1;故正确;对于④故选C.点评:本题主要考查了二阶行列式的实际应用以及根据二阶行列式的定义,属于基础题.5.若规定=ad﹣bc则不等式≤0的解集()A.{x|x≤﹣2或x≥1}B.{x|﹣2<x<1}C.{x|﹣2≤x≤1}D.∅【答案】C【解析】试题分析:按照新的运算=ad﹣bc,则不等式≤0,可化为:2x•x+2(x﹣2)≤0,解此二次不等式即可得出答案.解:由题意可知:不等式的解集≤0可化为2x•x+2(x﹣2)≤0即x2+x﹣2≤0,求得x的解集﹣2≤x≤1.点评:本题考查其他不等式的解法,解答关键是理解行列式的计算方法,是基础题.6.若,都是非零向量,且与垂直,则下列行列式的值为零的是()A. B.C. D.【答案】D【解析】试题分析:利用向量数量积的运算,可得x1x2+y1y2=0.根据二阶行列式的定义可知行列式的值为零的行列式.解:∵,都是非零向量,且与垂直∴x1x2+y1y2=0根据二阶行列式的定义可知,∴故选D.点评:本题的考点是二阶行列式的定义,考查向量垂直的充要条件,考查行列式的定义,属于基础题.7.将函数的图象向右平移a(a>0)个单位,所得图象的函数为偶函数,则a的最小值为()A. B. C. D.【答案】D【解析】试题分析:先利用行列式的定义,化简函数,再利用两角和公式对函数解析式化简整理然后根据图象平移法则,得到平移后函数的解析式,利用诱导公式把正弦函数转化成余弦函数,然后根据偶函数关于y轴对称的性质求得a的最小值.解:由题意,函数==2( cosx﹣sinx)=2sin(﹣x)=﹣2sin(x﹣)图象向左平移a个单位,所得函数图象是y1=﹣2sin(x+a﹣)=﹣2cos[﹣(x+a﹣)]=﹣2cos(﹣x﹣a+)=2cos(x+a﹣)是偶函数则关于y轴对称,则a的最小值为a=故选D点评:本题以行列式为载体,考查行列式的定义,考查了函数奇偶性的性质.解题的关键是利用偶函数关于y轴对称的性质.8.定义运算,则满足的复数z为()A.1﹣2iB.﹣1﹣iC.﹣1+iD.1﹣i【答案】D【解析】试题分析:直接利用新定义,求出z的表达式,通过复数的基本运算,求出复数z即可.解:因为,所以=zi+z=2.所以z===1﹣i.故选D.点评:本题考查复数的基本运算,行列式的应用,考查计算能力.9.若规定则不等式log的解集是()A.(1,2)B.(2,+∞)C.(﹣∞,2)D.(﹣∞,3)【答案】A【解析】试题分析:由二阶行列式的定义知log等价于lg(x﹣1)<0,所以0<x﹣1<1,由此能求出不等式log的解集.解:∵,∴log等价于lg(x﹣1)<0,∴0<x﹣1<1,解得1<x<2,故选A.点评:本题考查二阶行列式的定义,是基础题.解题时要认真审题,注意对数函数的性质的灵活运用.10.(2005•朝阳区一模)定义运算,则符合条件的复数z为()A.3﹣iB.1+3iC.3+iD.1﹣3i【答案】A【解析】试题分析:根据定义,将已知转化,可以得出z(1+i)=4+2i,再利用复数的除法运算法则求出复数z即可.解:根据定义,可知1×zi﹣(﹣1)×z=4+2i,即z(1+i)=4+2i,∴z===3﹣i.故选A.点评:本题考查了复数的代数运算,利用所给的定义将已知转化为z(1+i)=4+2i是关键.11.(2008•静安区一模)下列以行列式表达的结果中,与sin(α﹣β)相等的是()A. B.C. D.【答案】C【解析】试题分析:根据行列式的运算法则对四个选项一一进行化简运算得结果.解:∵sin(α﹣β)=sinαcosβ﹣cosαsinβ,对于A:=sinαcosβ+cosαsinβ;故错;对于B:=cosαcosβ﹣sinαsinβ,故错;对于C:=sinαcosβ﹣cosαsinβ,正确;对于D:=cosαcosβ﹣sinαsinβ,故错.故选C.点评:本题考查行列式的运算,三角函数的变换公式、和角及二倍角的公式等基础知识,考查运算求解能力,考查化归与转化思想.属于基础题.12.(2010•宜春模拟)定义行列式运算:,将函数的图象向左平移m个单位(m>0),若所得图象对应的函数为偶函数,则m的最小值是()A. B. C. D.【答案】A【解析】试题分析:先用行列式展开法则求出f(x),再由函数的平移公式能够得到f(x+m),然后由偶函数的性质求出m的最小值.解:f(x)==sinx﹣cosx=2sin(x﹣),图象向左平移m(m>0)个单位,得f(x+m)=2sin(x+m﹣),由m﹣=+kπ,k∈Z,则当m取得最小值时,函数为偶函数.故选A.点评:本题考查二阶行列式的展开法则、函数的图象与图象变化,解题时要注意函数的平移和偶函数的合理运用.13.(2012•广州一模)∀a,b,c,d∈R,定义行列式运算.将函数的图象向右平移ϕ(ϕ>0)个单位,所得图象对应的函数为偶函数,则ϕ的最小值为()A. B. C. D.【答案】B【解析】试题分析:先利用新定义,将函数化简,再得到图象向右平移ϕ(ϕ>0)个单位的函数的解析式,结合函数的对称轴,我们可求ϕ的最小值解:,图象向右平移ϕ(ϕ>0)个单位可得对称轴为:∵所得图象对应的函数为偶函数∴x=0是函数的对称轴∴∴∴ϕ的最小值为故选B.点评:新定义问题,解题的关键是对新定义的理解,图象变换要把握变换的规律,属于基础题.14.(2012•闸北区一模)设直线l1与l2的方程分别为a1x+b1y+c1=0与a2x+b2y+c2=0,则“”是“l1∥l2”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】试题分析:若,则a1b2﹣a2b1=0,若a1c2﹣a2c1=0,则l1不平行于l2;若“l1∥l2”,则a1b2﹣a2b1=0,所以,故可得结论解:若,则a1b2﹣a2b1=0,若a1c2﹣a2c1=0,则l1不平行于l2,故“”是“l1∥l2”的不充分条件;若“l1∥l2”,则a1b2﹣a2b1=0,∴,故“”是“l1∥l2”的必要条件所以“”是“l1∥l2”的必要而不充分条件故选B.点评:本题重点考查四种条件的判定,解题的关键是理解行列式的定义,掌握两条直线平行的条件.15.(2013•上海)展开式为ad﹣bc的行列式是()A. B. C. D.【答案】B【解析】试题分析:根据叫做二阶行列式,它的算法是:ad﹣bc,再根据所给的式子即可得出答案.解:根据叫做二阶行列式,它的算法是:ad﹣bc,由题意得,=ad﹣bc.故选B.点评:本题考查的是二阶行列式与逆矩阵,根据题意二阶行列式的意义得出所求代数式是解答此题的关键.16.矩阵可逆的一个充分不必要条件是()A.ad﹣bc≠0B.ab﹣cd≠0C.D.【答案】C【解析】试题分析:根据矩阵可逆的充要条件是所对应的行列式|A|≠0即ab﹣cd≠0,再根据充分不必要条件的性质可得结论.解:∵∴ab﹣cd≠0即|A|≠0,则矩阵可逆当矩阵可逆,则|A|≠0即ab﹣cd≠0,但不一定成立所以是矩阵可逆的一个充分不必要条件故选C.点评:本题主要考查了矩阵存在逆矩阵的充要条件,同时考查了必要条件、充分条件与充要条件的判断,属于基础题.17.矩阵的逆矩阵是()A. B. C. D.【答案】A【解析】试题分析:本题可以直接根据逆矩阵的定义求出逆矩阵.解:设矩阵的逆矩阵为,则,∴,∴,∴矩阵的逆矩阵为.故选A.点评:本题考查的是逆矩阵的定义,还可用逆矩阵的公式求解,本题属于基础题.18.已知A=,B=,则(AB)﹣1=()A. B. C. D.【答案】A【解析】试题分析:直接根据二阶矩阵与平面向量的乘法的定义求出AB,进而利用逆矩阵公式即可求出其逆矩阵.解:∵A=,B=,∴AB==∴矩阵AB的行列式为:0﹣1=﹣1≠0∴(AB)﹣1=故选:A.点评:本题以矩阵为载体,考查矩阵的逆矩阵,矩阵的乘法,难度不大,属于基础题.19.已知矩阵A的逆矩阵A﹣1=,则矩阵A的特征值为()A.﹣1B.4C.﹣1,4D.﹣1,3【答案】C【解析】试题分析:利用AA﹣1=E,建立方程组,即可求矩阵A;先根据特征值的定义列出特征多项式,令f(λ)=0解方程可得特征值.解:设A=,则由AA﹣1=E得•=,即有解得,即A=,则矩阵A的特征多项式为f(λ)==(λ﹣2)(λ﹣1)﹣6=λ2﹣3λ﹣4,令f(λ)=0,则λ=﹣1或4.故矩阵A的特征值为﹣1,4.故选C.点评:本题考查矩阵的逆矩阵,考查矩阵特征值的计算等基础知识,属于基础题.20.矩阵的逆矩阵是()A. B. C. D.【答案】A【解析】试题分析:先求ad﹣bc=1,再利用逆矩阵公式求解即可.解:由题意,ad﹣bc=1∴矩阵的逆矩阵是故选A.点评:本题以矩阵为依托,考查矩阵的逆矩阵,关键是利用公式正确求解.21.矩阵A=的逆矩阵为()A. B. C. D.【答案】A【解析】试题分析:根据所给的矩阵求这个矩阵的逆矩阵,可以首先求出ad﹣bc的值,再代入逆矩阵的公式,求出结果.解:∵矩阵A=∴A﹣1==故选A.点评:本题考查逆变换与逆矩阵,本题是一个基础题,解题的关键是记住求你矩阵的公式,代入数据时,不要出错.22.若矩阵是表示我校2011届学生高二上学期的期中成绩矩阵,A中元素a ij(i=1,2,3,4;j=1,2,3,4,5,6)的含义如下:i=1表示语文成绩,i=2表示数学成绩,i=3表示英语成绩,i=4表示语数外三门总分成绩j=k,k∈N*表示第50k名分数.若经过一定量的努力,各科能前进的名次是一样的.现小明的各科排名均在250左右,他想尽量提高三门总分分数,那么他应把努力方向主要放在哪一门学科上()A.语文B.数学C.外语D.都一样【答案】B【解析】试题分析:先根据题意找出小明的大致成绩,然后根据经过一定量的努力,各科能前进的名次是一样的,就需要看哪课发展的空间大,从而得到所求.解:∵j=k,k∈N*表示第50k名分数,小明的各科排名均在250左右∴小明的各科的分数为语文62,数学59,外69,三门总分约为195数学成绩59在三门中最低,而第50名的成绩为81分,分差较大,有很大的空间提升而经过一定量的努力,各科能前进的名次是一样的,则他应把努力方向主要放在数学学科上.故选B.点评:本题主要考查了矩阵的表示,解题的关键就是弄清题意,属于基础题.23.定义运算.=,如.=.已知α+β=π,,则.=()A. B. C. D.【答案】A【解析】试题分析:根据题中的定义可把二阶矩阵的解析式化简,再利用和角或差角的三角函数公式化简后,即可得到正确答案.解:由题中的定义可知,则•===,故选A点评:考查学生利用和与差的正弦、余弦函数公式化简求值的能力,以及掌握题中的矩阵乘方法则来求值的能力.24.点通过矩阵M1=和M2=的变换效果相当于另一变换是()A. B. C. D.【答案】D【解析】试题分析:由矩阵的乘法运算法则,计算M1•M2即可得到.解:由于M1•M2=•=.则点通过矩阵M1=和M2=的变换效果相当于另一变换是.故选D.点评:本题考查矩阵的乘法运算,考查运算能力,属于基础题.25.若一个变换所对应的矩阵是,则抛物线y2=﹣4x在这个变换下所得到的曲线的方程是()A.y2=4xB.y2=xC.y2=﹣16xD.y2=16x【答案】D【解析】试题分析:确定变换前后点的坐标之间的关系,利用变换前的点在抛物线上,即可得到变换后曲线的方程.解:设抛物线y2=﹣4x上的点(a,b)在变换下变为(x,y),则∴,∴∵(a,b)满足抛物线y2=﹣4x∴b2=﹣4a∴∴y2=16x故选D.点评:本题考查矩阵变换,考查求曲线方程,解题的关键是确定变换前后点的坐标之间的关系.26.在直角坐标系下,若矩阵对应的变换将点P(2,﹣1)变到点p′(1,﹣2),则()A. B. C. D.【答案】C【解析】试题分析:根据矩阵对应的变换将点P(2,﹣1)变到点p′(1,﹣2),建立关系式,解之即可.解:=则解得故选C.点评:本题主要考查了矩阵的乘法,以及二元一次方程组的求解,同时考查了运算求解的能力,属于基础题.27.把矩阵变为后,与对应的值是()A. B. C. D.【答案】C【解析】试题分析:先把矩阵第一行乘﹣3加上第二行作为第二行得到,再把第一列乘2加上第二列作为第二列得到,最后第二行乘以即可得出符合要求的矩阵.解:把矩阵第一行乘﹣3加上第二行作为第二行→第一列乘2加上第二列作为第二列→第二行乘以→,对照得故选C.点评:本题主要考查了矩阵变换的性质,属于基础题.28.函数y=x2在矩阵M=变换作用下的结果为.【答案】y=x2【解析】试题分析:先设P(x,y)是函数y=x2图象上的任一点,P1(x′,y′)是P(x,y)在矩阵M对应变换作用下新曲线上的对应点,根据矩阵变换求出P与P1的关系,代入已知曲线求出所求曲线即可.解:设P(x,y)是函数y=x2图象上的任一点,P1(x′,y′)是P(x,y)在矩阵M=变换作用下新曲线上的对应点,则==即,所以,将代入y=x2得4y=x2,即y=x2(8分)故答案为:y=x2点评:本题主要考查了几种特殊的矩阵变换,以及轨迹方程等有关知识,属于基础题.29.已知一个关于x,y的二元线性方程组的增广矩阵是,则x+y= .【答案】2【解析】试题分析:先根据增广矩阵的涵义,由增广矩阵写出原二元线性方程组,解方程,最后求x+y.解:由一个关于x,y的二元线性方程组的增广矩阵是,可得到二元线性方程组,解得,则x+y=2,故答案为2.点评:此题主要考查二元线性方程组的增广矩阵的涵义、二元一次方程组的矩阵形式,计算量小,属于容易题.30.已知方程组,则其增广矩阵为.【答案】【解析】试题分析:先将方程组整理为,根据增广矩阵的定义即可得答案.解:由题意,方程组可化为∴其增广矩阵为故答案为点评:本题以方程组为载体,考查增广矩阵,属于基础题.31.线性方程组的增广矩阵是.【答案】【解析】试题分析:首先应理解方程增广矩阵的涵义,由原二元线性方程组写出增广矩阵即可.解:由二元线性方程组,可得到其增广矩阵为:.故答案为:.点评:本题的考点是二元一次方程组的矩阵形式,主要考查二元线性方程组的增广矩阵的涵义,计算量小,属于较容易的题型.32.已知二元一次方程组的增广矩阵为,则此方程组的解集为.【答案】{(3,2)}.【解析】试题分析:首先根据二元一次方程组的增广矩阵为,写出二元线性方程组的表达式,然后根据方程求解x,y即可.解:由二元线性方程组的增广矩阵为,可得二元线性方程组的表达式,解得:x=3,y=2,则此方程组的解集为:{(3,2)}.故答案为:{(3,2)}.点评:此题主要考查了二元一次方程组的矩阵形式,计算量小,属于基础题,解答的关键是理解二元线性方程组的增广矩阵的含义,并由此写出二元线性方程组的表达式.33.方程组的增广矩阵是.【答案】【解析】试题分析:理解方程增广矩阵的涵义,即可由二元线性方程组,写出增广矩阵.解:由题意,方程组的增广矩阵为其系数及常数项构成的矩阵故方程组的增广矩阵是故答案为:点评:本题的考点是二元一次方程组的矩阵形式,主要考查二元线性方程组的增广矩阵的涵义,计算量小,属于较容易的题型.34.一个方程组的增广矩阵为A=,则该方程组的解为.【答案】【解析】试题分析:由题意,可得方程组,解方程组,即可得出结论.解:由题意,可得方程组,∴.故答案为:.点评:本题考查二元一次方程组的矩阵形式,考查学生的计算能力,比较基础.35.方程组所对应的增广矩阵为.【答案】【解析】试题分析:先把方程组方程组改写为,再由增广矩阵的概念进行求解.解:∵方程组,∴,∴该方程组所对应的增广矩阵=.故答案为:.点评:本题考查二元一次方程组的矩阵形式,是基础题,解题时要认真审题,注意熟练掌握增广矩阵的概念.36.(2012•嘉定区三模)系数矩阵为,解为的一个线性方程组是.【答案】【解析】试题分析:先根据系数矩阵,写出线性方程组,再利用方程组的解,求出待定系数,从而可得线性方程组.解:可设线性方程组为=,由于方程组的解是,∴=,∴所求方程组为,故答案为:.点评:本题的考点是二元一次方程组的矩阵形式,主要考查待定系数法求线性方程组,应注意理解方程组解的含义.37.(2012•杨浦区二模)若线性方程组的增广矩阵为,则其对应的线性方程组【答案】【解析】试题分析:首先应理解方程增广矩阵的涵义,由增广矩阵写出原二元线性方程组即可解:由二元线性方程组的增广矩阵为,可得到线性方程组的表达式:.故答案为:.点评:本题的考点是二元一次方程组的矩阵形式,主要考查二元线性方程组的增广矩阵的涵义,计算量小,属于较容易的题型.38.(2013•杨浦区一模)若线性方程组的增广矩阵为,则该线性方程组的解是.【答案】【解析】试题分析:首先应理解方程增广矩阵的涵义,由增广矩阵写出原二元线性方程组,根据方程解出x,y,即可解:由二元线性方程组的增广矩阵为可得到二元线性方程组的表达式解得:故答案为:.点评:本题的考点是二元一次方程组的矩阵形式,主要考查二元线性方程组的增广矩阵的含义,计算量小,属于较容易的题型.39.(2014•杨浦区三模)已知一个关于x,y的二元线性方程组的增广矩阵是,则x+y= .【答案】6【解析】试题分析:首先应理解方程增广矩阵的涵义,由增广矩阵写出原二元线性方程组,再根据方程求解xy,最后求x+y.解由二元线性方程组的增广矩阵,可得到二元线性方程组的表达式,解得,所以x+y=6点评:此题主要考查二元线性方程组的增广矩阵的涵义,计算量小,属于较容易的题型.40.(2014•黄浦区一模)各项都为正数的无穷等比数列{a n},满足a2=m,a4=t,且是增广矩阵的线性方程组的解,则无穷等比数列{a n}各项和的数值是.【答案】32【解析】试题分析:利用是增广矩阵的线性方程组的解,可得m=8,t=2,从而可求公比与首项,利用无穷等比数列的求和公式,即可得出结论.解:由题意,,∴m=8,t=2,∴a2=8,a4=2,∵q>0,∴,∴a1=16,∴无穷等比数列{a n}各项和是=32.故答案为:32.点评:本题考查增广矩阵,考查无穷等比数列{a n}各项和,求出数列的公比与首项是关键.41.行列式的值为.【答案】3【解析】试题分析:考查行列式运算法则,按照行列式的运算法则,直接展开化简计算即可.解:=1×3﹣0×2=3.故答案为:3点评:本题考查二阶行列式的定义,运算法则,是基础题.42.若规定,则不等式的解集是.【答案】【解析】试题分析:根据二阶行列式的定义原不等式可化为:log2(x﹣1)<﹣1,再利用对数函数的单调性去掉对数符号得出关于x的整式不等式,即可求解.解:原不等式可化为:log2(x﹣1)<﹣1,即:⇒0<x﹣1<,⇒1<x<,故答案为:.点评:本小题主要考查函数单调性的应用、二阶行列式的定义、不等式的解法等基础知识,考查运算求解能力,考查化归与转化思想.属于基础题.43.定义运算=ad﹣bc,若复数z符合条件=3+2i则z= .【答案】【解析】试题分析:由=ad﹣bc,复数z符合条件=3+2i,知2zi﹣z=3+2i,设z=a+bi,则2i(a+bi)﹣a﹣bi=3+2i,所以(﹣2b﹣a)+(2a﹣b)i=3+2i,由复数相等的含义能求出z.解:∵=ad﹣bc,复数z符合条件=3+2i,∴2zi﹣z=3+2i,设z=a+bi,则2i(a+bi)﹣a﹣bi=3+2i,∴2ai﹣2b﹣a﹣bi=3+2i,整理,得(﹣2b﹣a)+(2a﹣b)i=3+2i,∴由复数相等的含义,得,解得,∴z=.故答案为:.点评:本题考查二阶行列式的定义,是基础题.解题时要认真审题,注意复数的代数形式的乘除运算和复数相等的性质的灵活运用.44.定义,则函数(x∈R)的值域为.【答案】[﹣4,4]【解析】试题分析:利用新定义,展开f(x)利用同角三角函数化为一个角的一个三角函数的二次函数的形式,根据余弦函数的值域求解即可.解:由题意=sin2x+4cosx=﹣cos2x+4cosx+1=﹣(cosx﹣2)2+5∈[﹣4,4].故答案为:[﹣4,4].点评:本题是基础题,考查三角函数的化简求值,新定义的应用,考查计算能力.45.不等式的解集为.【答案】[0,1]【解析】试题分析:利用,将不等式等价转化为一元二次不等式,可解.解:由题意,x2﹣x≤0,∴0≤x≤1,故答案为[0,1]点评:本题主要考查二阶行列式的定义,考查一元二次不等式的解法,属于基础题.46.定义运算,如果:,并且f(x)<m对任意实数x恒成立,则实数m的范围是.【答案】m>【解析】试题分析:由=sinx+cosx=∈[﹣],且f(x)<m对任意实数x恒成立,能得到实数m的范围.解:∵,=sinx+cosx=∈[﹣],∵f(x)<m对任意实数x恒成立,∴m>.故答案为:m>.点评:本题考查二阶行列式的定义和三角函数的知识,解题时要认真审题,注意不等式性质的灵活运用.47.将式子b2﹣4ac表示成行列式.【答案】【解析】试题分析:根据行列式的定义,可写出满足题意的行列式.解:根据行列式的定义得,故答案为.点评:本题以代数式为载体,考查行列式的定义,属于基础题.48.在三阶行列式中,5的余子式的值为.【答案】﹣21【解析】试题分析:去掉5所在行与列,即得5的余子式,从而求值.解:由题意,去掉5所在行与列得:故答案为﹣21.点评:本题以三阶行列式为载体,考查余子式,关键是理解余子式的定义.49.(2011•上海)行列式(a,b,c,d∈{﹣1,1,2})所有可能的值中,最大的是.【答案】6【解析】试题分析:先按照行列式的运算法则,直接展开化简得ad﹣bc,再根据条件a,b,c,d∈{﹣1,1,2}进行分析计算,比较可得其最大值.解:,∵a,b,c,d∈{﹣1,1,2}∴ad的最大值是:2×2=4,bc的最小值是:﹣1×2=﹣2,∴ad﹣bc的最大值是:6.故答案为:6.点评:本题考查二阶行列式的定义、行列式运算法则,是基础题.50.(2012•闵行区三模)若不等式<6的解集为(﹣1,1),则实数a等于.【答案】4【解析】试题分析:先根据二阶行列式,将原不等式等价转化为一元二次不等式,再对a分类讨论,求出a的值即可.解:原不等式可化为:ax2+2<6,即ax2<4.当a≤0时,得x∈R,不符合题意;当a>0时,得x2<,﹣<x<,由已知不等式<6的解集为(﹣1,1),得=1,∴a=4.故答案为:4.点评:本小题主要考查二次不等式的解法、二阶行列式等基础知识,考查运算求解能力,属于基础题.51.(2012•闵行区三模)若不等式<6的解集为(﹣1,+∞),则实数a等于.【答案】﹣4【解析】试题分析:利用行列式的定义,求出行列式的值,得到不等式,然后求解即可.解:不等式<6化为:ax+2<6,即ax<4,因为不等式的解集为(﹣1,+∞),所以a=﹣4.故答案为:﹣4.点评:本题考查行列式的解法,不等式的解法,考查计算能力.52.(2012•徐汇区一模)不等式≥0的解为.【答案】[0,+∞)【解析】试题分析:先根据行列式的运算法则进行化简变形,转化成一元二次不等式,然后解之即可求出所求.解:∵不等式≥0∴(2x+1)2x﹣2≥0,即22x+2x﹣2≥0解得2x≤﹣2舍去,2x≥1,解得x≥0.故答案为:[0,+∞)点评:本题主要考查了二阶行列式,同时考查了一元二次不等式的解法,属于中档题.53.(2012•德州一模)定义运算,函数图象的顶点是(m,n),且k、m、n、r成等差数列,则k+r= .【答案】﹣9【解析】试题分析:利用新定义的运算得出二次函数,利用配方法可求函数图象的顶点,利用k、m、n、r成等差数列,可求k+r的值.解:=(x﹣1)(x+3)﹣2(﹣x)=x2+4x﹣3=(x+2)2﹣7∵函数图象的顶点是(m,n),∴m=﹣2,n=﹣7,∵k、m、n、r成等差数列,∴k+r=m+n=﹣9.故答案为:﹣9点评:本题以新定义运算为素材,考查新定义的运用,考查二次函数,考查等差数列,解题的关键是对新定义的理解.54.(2013•宝山区二模)函数的最小正周期T= .【答案】π【解析】试题分析:利用行列式的计算方法化简f(x)解析式,再利用二倍角的余弦函数公式化为一个角的余弦函数,找出ω的值,即可求出最小正周期.解:f(x)=cos2x﹣sin2x=cos2x,∵ω=2,∴T=π.故答案为:π点评:此题考查了二倍角的余弦函数公式,三角函数的周期性及其求法,以及二阶行列式与逆矩阵,化简函数解析式是解本题的关键.55.(2013•徐汇区一模)方程组的增广矩阵是.【答案】【解析】试题分析:理解方程增广矩阵的涵义,即可由二元线性方程组,写出增广矩阵.解:由题意,方程组的增广矩阵为其系数及常数项构成的矩阵。
一、定义设V 是一个非空集合, F 为数域.上述的两种运算满足以下八条运算规律,那 么 就称为数域 F 上的线性空间.[ V, F, “+”, “.”, 8 ]判别线性空间的方法:一个集合,对于定义的加法和数乘运算不封闭,或者运算不满足八条性质的任一条,则此集合就不能构成线性空间.R[X]n 是次数不超过n 的多项式,构成了向量空间,其基是[1,X,X 2,……, X n ]。
P[X]n 是次数不超过n-1的多项式,构成了向量空间,其基是[1,X,X 2,……,X n-1]。
Q[X]n 是次数不超过n 的多项式,其中an 不等于0,不构成了向量空间,。
Ax=0的解空间,称为矩阵A 的核(零)空间,记N (A )设A 为实数(或复数)m*n 矩阵,x 为n 维列向量,则m 维列向量集合V={y ∈R m (C m )|y=Ax,x ∈R n (C n ),A ∈R m*n (C m*n)}构成实(或复)数域R (或C )上的线性空间,称为A 的列空间或A 的值域,记R (A )。
线性相关与无关略所有二阶实矩阵组成的集合 ,对于矩阵的加法和数量乘法,构成实数域 上的一个线性空间.对于 中的矩阵例 1.1.11⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=1000,0100,0010,000122211211E E E E ,4321224213122111⎪⎪⎭⎫⎝⎛=+++k k k k E k E k E k E k 有,0000 224213122111⎪⎪⎭⎫⎝⎛==+++O E k E k E k E k 因此 03321====⇔k k k k .,,,22211211线性无关即E E E E()(),,,,,,, 2121P n n αααβββ =基变换公式矩阵P 称为由基n ααα,,,21到基n βββ,,,21 的过渡矩阵.坐标变换公式 ,'''2121⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n n x x x P x x x 例1.2.6略P11设V l ,V 2是线性空间V 的两个子空间, 可以验证: 21V V 构成V 的线性子空间.称为 21V V 为V l 与 V 2 的交空间.可以验证: 21V V + 构成V 的线性子空间.称21V V +为 V l 与 V 2 的和空间例1.3.5◆{}{}2122112121,span ,,span ,1,3,5,1,1,3,5,4,1,31,1,131,2ββααββαα==-=-=--==V V T TT T )()(),(),,(试求;(1)V l +V 2的基与维数;(2) 21V V 的基与维数● [解] (1)由定理3知{}212121,,,span ββαα=+V V 121,,βαα是极大无关组.故它是V 1+V 2的基,维数=3,于是且,即)设(21212V V V V ∈∈∈ααα 24132211ββαααk k k k +=+=把2121,,,ββαα的坐标代入上式,解之得4342132,35,0k k k k k -===于是. 35,5,35,35214的向量表示为V V k T⎪⎭⎫ ⎝⎛--=α其维数=l线性映射:设V1,V2是数域F 上的两个线性空间,映射T :V1->V2,如果对于任何两个向量a1,a2∈V1和任何数K∈F,都有T (a1+a2)=T(a1)+T(a2);T (Ka1)=KT(a1)便称为映射。
第二章 内积空间一、基本要求1、掌握欧氏空间和酉空间的定义与性质,掌握Hermite 矩阵的定义,理解欧氏(酉)空间中度量的概念.2、掌握线性无关组的Schmidt 正交化与对角化方法,理解标准正交基的性质.3、理解Hermite 二次型的定义.4、掌握在一组基下的度量矩阵的概念,标准正交基下度量矩阵的性质及两组标准正交基下的度量矩阵的关系.5、了解欧氏子空间的定义.6、掌握正交矩阵与酉矩阵的定义与性质,理解正交(酉)变换与正交(酉)矩阵的关系.7、掌握对称矩阵与Hermite 矩阵的定义与性质,理解对称(Hermite)变换与对称(Hermite)矩阵的关系.8、掌握矩阵可对角化的条件,会求一个正交(酉)矩阵把实对称(Hermite)矩阵化为对角形矩阵,会求一组标准正交基使线性变换在该基下对应的矩阵是对角形矩阵.二、基本内容1、内积空间设数域F 上的线性空间)(F V n ,若)(F V n 中任意两个向量βα,都有一个确定的数与之对应,记为),(βα,且满足下列三个条件(1) 对称性:),(),(αββα=,其中),(αβ表示对数),(αβ取共轭; (2) 线性性:),(),(),(22112211βαβαβααk k k k +=+; (3) 正定性:0),(≥αα,当且仅当0=α时,0),(=αα,则称),(βα为向量α与β的内积.当R F =时,称)(R V n 为 欧氏空间;当C F =时,称)(C V n 为酉空间.注意:在n R 中,),(),(βαβαk k =;在n C 中,),(),(βαβαk k =. 通常的几个内积:(1) nR 中,αββαβαT T ni i i y x ===∑=1),(nC 中,βαβαH i ni i y x ==∑=1),(.其中T n T n y y y x x x ),,,(,),,,(2121 ==βα.(2) nm R⨯中,n m ij n m ij b B a A ⨯⨯==)(,)(,ij m i nj ij Hb a B A tr B A ∑∑====11)(),(.(3) 在实多项式空间][x P n 及],[b a 上连续函数空间],[b a C 中,函数)(),(x g x f 的内积为⎰=ba dx x g x f x g x f )()())(),((2、向量的长度、夹角、正交性定义 ),(ααα=,称为α的长度,长度为1的向量称为单位向量,ααα=0是α的单位向量.长度有三个性质:(1) 非负性:0≥α,且00),(=⇔=ααα; (2) 齐次性:k k k ,αα=表示数k 的绝对值; (3) 三角不等式:βαβα+≤+.定理(Cauchy-Schwarz 不等式)βαβα≤),(.α与β的夹角θ定义为βαβαθ),(arccos=.当0),(=βα时,称α与β正交,记βα⊥.若非零向量组s ααα,,,21 两两正交,即0),(ji j i ≠=αα,称s ααα,,,21 是一个正交组;又若s i i ,,2,1,1 ==α,则称s ααα,,,21 为标准正交组,即⎩⎨⎧≠==.,0,,1),(j i j i j i αα 定理(勾股定理) 0),(222=⇔+=+βαβαβα,即βα⊥.3、标准正交基标准正交基指欧氏(酉)空间中由两两正交的单位向量构成的基.构造方法:对欧氏(酉)空间的一个基进行Schmidt 正交化可得正交基,再对正交基进行单位化可得标准正交基.把线性无关向量s ααα,,,21 正交化为s βββ,,,21 正交向量组: 设.,,3,2,),(),(,1111s k i k i i i i k k k=-==∑-=ββββααβαβ再把i β单位化:s i i ii ,,2,1,1==ββε,则s εεε,,,21 为标准正交组.在标准正交组n εεε,,,21 下,向量可表为:=+++=n n x x x εεεα 2211n n εεαεεαεεα),(),(),(2211+++ ,坐标),(i i x εα=表示α在i ε上的投影长度. 4、基的度量矩阵度量矩阵是以欧氏(酉)空间的基中第i 个元素与第j 个元素的内积为i 行j 列元素构成的方阵.设欧氏(酉)空间V 的一个基为n x x x ,,,21 ,令),,2,1,)(,(n j i x x a j i ij ==,则该基的度量矩阵为n n ij a A ⨯=)(.基的度量矩阵是实对称(Hermite)正定矩阵,它的阶数等于欧氏(酉)空间的维数,正交基的度量矩阵是对角矩阵,标准正交基的度量矩阵是单位矩阵.设酉空间V 的一个基为n x x x ,,,21 ,该基的度量矩阵为A ,V y x ∈,在该基下的坐标(列向量)分别为α与β,那么x 与y 的内积βαA y x T =),(.当V 为欧氏空间时,βαA y x T =),(.当此基为标准正交基,酉空间V 的x 与y 的内积βαT y x =),(,欧氏空间V 的x 与y 的内积βαT y x =),(.设欧氏空间n V 的两个基分别为(Ⅰ)n x x x ,,,21 和(Ⅱ)n y y y ,,,21 ,且由基(Ⅰ)改变为基(Ⅱ)的过渡矩阵为C ,基(Ⅰ)的度量矩阵为A ,基(Ⅱ)的度量矩阵为B ,则有:(1) AC C B T =.(2) 基(Ⅰ)是标准正交基的充要条件是I A =.(3) 若基(Ⅰ)与基(Ⅱ)都是标准正交基,则C 是正交矩阵.(4) 若基(Ⅰ)(或(Ⅱ))是标准正交基,C 是正交矩阵,则基(Ⅱ)(或基(Ⅰ))是标准正交基.5、正交变换与对称变换(ⅰ) 关于正交变换,下面四种说法等价:1) T 是欧氏空间n V 的正交变换,即对于任意的n V x ∈,有),(),(x x Tx Tx =;2) 对于任意的n V y x ∈,,有),(),(y x Ty Tx =; 3) T 在n V 的标准正交基下的矩阵为正交矩阵; 4) T 将n V 的标准正交基变换为标准正交基. (ⅱ) 关于对称变换,下面两种说法等价:1) T 是欧氏空间n V 的对称变换,即对于任意的n V y x ∈,,有),(),(Ty x y Tx =; 2) T 在n V 的标准正交基下的矩阵为对称矩阵.(ⅲ) 若T 是欧氏空间n V 的对称变换,则T 在n V 的某个标准正交基下的矩阵为对角矩阵.(ⅳ) 在欧氏空间n V 中,若正交变换T 的特征值都是实数,则T 是对称变换. 6、相似矩阵(1) n n C A ⨯∈相似于上(下)三角矩阵. (2) n n C A ⨯∈相似于Jordan 标准形矩阵. (3) n n C A ⨯∈酉相似于上三角矩阵.(4) 设n n C A ⨯∈,则H H AA A A =的充要条件是存在酉矩阵P ,使得Λ=AP P H (对角矩阵).(5) 设n n C A ⨯∈的特征值都是实数,则T T AA A A =的充要条件是存在正交矩阵Q ,使得Λ=AQ Q T .(6) 实对称矩阵正交相似于对角矩阵.三、典型例题例1、在n R 中,设),,,(),,,,(2121n n ηηηβζζζα ==,分别定义实数),(βα如下:(1) 21212)(),(i ni i ηζβα∑==;(2) ))((),(11∑∑===nj j n i i ηζβα;判断它们是否为n R 中α与β的内积.解 (1) 设R k ∈,由==∑=21122))((),(ni i i k k ηζβα),()(21212βαηζk k ini i=∑=知,当0<k 且0),(≠βα时,),(),(βαβαk k ≠.故该实数不是n R 中α与β的内积.(2) 取0)0,,0,1,1(≠-= α,有0),(,01==∑=ααζni i故该实数不是n R 中α与β的内积.例2、n R 中,向量组n ααα ,,21线性无关的充要条件是0),(),(),(),(),(),(),(),(),(212221212111≠n n n n n n αααααααααααααααααα .证 方法一 设),,(21n A ααα =,则⇔≠====⨯⨯0),(2A A A A A T T nn jT i nn j i ααααn A ααα,,,021 ⇔≠线性无关.方法二 设02211=+++n n x x x ααα ,则n i x x x i n n ,,2,1,0),(2211 ==+++αααα,即⎪⎪⎩⎪⎪⎨⎧=++=++=++,0),(),(,0),(),(,0),(),(1121211111n n n n nn n n x x x x x x αααααααααααα 齐次方程组仅有零解的充要条件是系数矩阵的行列式0),(≠j i αα,即n ααα,,,21 线性无关.例3、设欧氏空间3][t P 中的内积为⎰-=11)()(),(dt t g t f g f(1) 求基2,,1t t 的度量矩阵.(2) 采用矩阵乘法形式计算21)(t t t f +-=与2541)(t t t g --=的内积. 解 (1) 设基2,,1t t 的度量矩阵为33)(⨯=ij a A ,根据内积定义计算)(j i a ij ≤2)1,1(1111===⎰-dt a ,0),1(1112===⎰-tdt t a ,32),1(112213===⎰-dt t t a ,32),(11222===⎰-dt t t t a ,0),(113223===⎰-dt t t t a ,52),(1142233===⎰-dt t t t a .由度量矩阵的对称性可得)(j i a a ji ij >=,于是有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=520203203202A . (2) )(t f 和)(t g 在基2,,1t t 下的坐标分别为T T )5,4,1(,)1,1,1(--=-=βα,那么054120320320202)1,1,1(),(=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==βαA g f T . 例4、欧氏空间3][t P 中的多项式)(t f 和)(t g 的内积为⎰-=11)()(),(dt t g t f g f ,取t t f =)(1,记子空间))((1t f L W =.(1) 求T W 的一个正交基;(2) 将T W 分解为两个正交的非零子空间的和.解 (1) 设T W t k t k k t g ∈++=2210)(,则有0),(1=g f ,即0)()()(112210111=++=⎰⎰--dt t k t k k t dt t g t f ,也就是01=k .于是可得},,)()({20220R k k t k k t g t g W T ∈+==.取T W 的一个基为2,1t ,并进行正交化可得,31),(),()(,1)(211112221-=-==t g g g g t t t g t g那么,)(),(21t g t g 是T W 的正交基.(2) 令))(()),((2211t g L V t g L V ==,则1V 与2V 正交,且21V V W T +=. 例5、已知欧氏空间2V 的基21,x x 的度量矩阵为⎥⎦⎤⎢⎣⎡=5445A , 采用合同变换方法求2V 的一个标准正交基(用已知基表示).解 因为A 对称正定,所以存在正交矩阵Q ,使得Λ=AQ Q T (对角矩阵),计算得,111121,9001⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=ΛQ ,131323121⎥⎦⎤⎢⎣⎡-=Λ=-Q C 则有E AC C T =.于是,由C x x y y ),(),(2121=可得2V 的一个标准正交基为)(231),(21212211x x y x x y +=-=.例6、在欧氏空间中,定义α与β的距离为:βαβα-=),(d ,试问:保持距离不变的变换是否为正交变换?答 不一定,例如2R 中向量的平移变换:)1,1(),(,),(2++=∈=∀y x y x T R y x α,)1,1()(),1,1()(,),(),,(2221112222111++=++=∈==y x T y x T R y x y x αααα, ),()()()()())(),((21212212212121ααααααααd y y x x T T T T d =-=-+-=-=. 虽然保持距离不变,但平移变换不是线性变换,更不是正交变换.例7、设n ααα,,,21 与n βββ,,,21 是n 维欧氏空间两个线性无关的向量组,证明存在正交变换T ,使n i T i i ,,2,1,)( ==βα的充要条件是n j i j i j i ,,2,1,),,(),( ==ββαα.证 必要性 因为T 是正交变换:),())(),((j i j i T T αααα=,又已知i i T βα=)(,故有),(),(j i j i ββαα=.充分性 定义变换T ,使得n i T i i ,,2,1,)( ==βα,则T 是线性变换,且是唯一的.下证T 是正交变换.已知),(),(j i j i ββαα=,则有),(),(j i j i T T αααα=,设n V ∈∀βα,,∑∑====nj j j ni i i y x 11,αβαα,则),(),(),(1111j i j ni nj i nj j j ni i i y x y x ααααβα∑∑∑∑======,))(),(())(,)(())(),((1111j i j n i nj i n j j j n i i i T T y x T y T x T T ααααβα∑∑∑∑======),(11j i j n i nj i y x αα∑∑===.即n V ∈∀βα,,),())(),((βαβα=T T ,故T 是正交变换.例8、设321,,ααα是欧氏空间3V 的一组标准正交基,求出3V 的一个正交变换T ,使得⎪⎩⎪⎨⎧+-=-+=).22(31)(),22(31)(32123211ααααααααT T 解 设3322113)(ααααx x x T ++=,使得)(),(),(321αααT T T 是标准正交的,因)(),(21ααT T 已标准正交,则只要满足1)(,0))(),((,0))(),((32313===αααααT T T T T ,即⎪⎩⎪⎨⎧=++=+-=-+.1,022,022232221321321x x x x x x x x x 解得32,32,1321==-=x x x ,即)22(31)(3213αααα++-=T ,得)(),(),(321αααT T T 是标准正交基.因T 把标准正交基变为标准正交基,故T 是正交变换.另法 设)(3αT 的坐标为T x x x ),,(321,由A x x x T T T ),,(2313132232),,())(),(),((321321321321ααααααααα=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=. T 是正交变换⇔A 为正交阵.由E A A T =,解得32,31321==-=x x x ,则)22(31)(3213αααα++-=T .例9、设0x 是欧氏空间V 中的单位元素,定义变换00),(2)(x x x x x T -= )(V x ∈(1) 验证T 是线性变换;(2) 验证T 既是正交变换,又是对称变换;(3) 验证0x 是T 的一个特征向量,并求其对应的特征值. 证 (1) 设V y x ∈,,R l k ∈,,则有00),(2)()(x x ly kx ly kx ly kx T +-+=+=]),(2[]),(2[0000x x y y l x x x x k -+-=))(())((y T l x T k +, 故T 是线性变换.(2) 因为),(),(),(4),)(,(4),())(),((002000x x x x x x x x x x x x x T x T =+-=所以T 是正交变换.设V y ∈,则00),(2)(x x y y y T -=,于是有).),((),)(,(2),())(,(),,)(,(2),()),((0000y x T x x x y y x y T x y x x x y x y x T =-=-=故T 也是对称变换.(3) 直接计算可得.)1(2),(2)(00000000x x x x x x x x T -=-=-=故0x 是T 的对应于特征值1-=λ的特征向量.例10、证明欧氏空间n V 的线性变换T 为反对称变换,即),()),(,()),((n V y x y T x y x T ∈-=的充要条件是T 在n V 的标准正交基下的矩阵为反对称矩阵.证 设n V 的一个标准正交基为n x x x ,,,21 ,线性变换T 在该基下的矩阵为n n ij a A ⨯=)(,即A x x x x x x T n n ),,(),,,(2121 =.则有.))(,(,)(,)),((,)(22112211ij j i n nj j j j ji j i n ni i i i a x T x x a x a x a x T a x x T x a x a x a x T =+++==+++=必要性 设T 是反对称变换,则有))(,()),((j i j i x T x x x T -=,即ij ji a a -=,),,2,1,(n j i =,故A A T -=.充分性 设A A T -=,则对任意的n V y x ∈,有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n n n A x x x T x x x ξξξξ 1111),,()(,),,(,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n n n A x x y T x x y ηηηη 1111),,()(,),,(. 因为n x x x ,,,21 是标准正交基,所以=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⋅=n T n A y x T ηηξξ 11),,()),(()).(,(),,(11y T x A n n -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⋅-ηηξξ 故T 是反对称变换.例11、设欧氏空间n V 的正交变换T 的特征值都是实数,证明存在n V 的标准正交基,使得T 在该基下的矩阵为对角矩阵.分析 正交矩阵是实的正规矩阵,当它的特征值都是实数时,它能够正交相似于对角矩阵.证 设n V 的一个标准正交基为n x x x ,,,21 ,正交变换T 在该基下的矩阵为A ,那么A 是正交矩阵,也是实的正规矩阵.因为T 的特征值都是实数,所以A 的特征值都是实数.于是存在正交矩阵Q ,使得Λ==defn Tdiag AQ Q ),,,(21λλλ ,其中),,2,1(n i i =λ是A 的特征值.令Q x x x y y y n n ),,,(),,,(2121 =,则n y y y ,,,21 是n V 的标准正交基,且T 在该基下的矩阵为Λ==-AQ Q AQ Q T 1【评注】 本例结果表明,特征值都是实数的正交变换是对称变换. 例12、设T 是欧氏空间V 的正交变换,构造子空间},),({},,)({21V x x T x y y V V x x x T x V ∈-==∈==证明⊥=21V V .证 先证⊥⊂21V V .任取10V x ∈,则有00)(x x T =.对于任意的2V y ∈,有))(,(),())(,(),(0000x T x x x x T x x y x -=-=0),(),())(),((),(0000=-=-=x x x x x T x T x x 所以,20⊥∈V x 故.21⊥⊂V V再证12V V ⊂⊥,任取⊥∈20V x ,那么200))((V x T x ∈-,从而有0))(,(000=-x T x x ,.0))(,(2),())(,(2),())(),(())(,(2),())(),((0000000000000000000=-=+-=+-=--x T x x x x x T x x x x T x T x T x x x x T x x T x所以0)(00=-x T x ,即00)(x x T =,也就是10V x ∈,故12V V ⊂⊥.例13、设n m C A ⨯∈,酉空间m C 中的向量内积为通常的,证明)()]([H A N A R =⊥.分析 设m C 中的向量T m ),,,(21ξξξα =与向量T m ),,,(21ηηηβ =的内积为βαηξηξηξβαT m m =+++= 2211),(,则0=βαT 的充要条件是0=βαH ,或者0=αβH .证 划分),,,(21n a a a A =,则有),,,()(21n a a a L A R =,},),({)]([11m j n n C C k a k a k A R ∈∈++⊥=⊥βββ},,,2,1,{m j C n j a ∈=⊥=βββ},,,2,1,0{mH jC n j a ∈===βββ )(},0{H m H A N C A =∈==βββ.例14、设n m C B A ⨯∈,,酉空间m C 中的内积为通常的,证明:)(A R 与)(B R 正交的充要条件是0=B A H .证 划分),,,(21n a a a A =,),,,(21n b b b B =,则有),,,()(21n a a a L A R =,),,,()(21n b b b L B R =根据例15结果可得,)(A R 与)(B R 正交的充要条件是)()]([)(H A N A R B R =⊂⊥,即)()(H j A N B R b ⊂∈ ),,2,1(n j =,或者0=j H b A ),,2,1(n j =,也就是0=B A H .例15、在4R 中,求一单位向量与)1,1,1,1(),1,1,1,1(---及)3,1,1,2(均正交. 解 设),,,(4321ξξξξ=x 和已知向量正交,即⎪⎩⎪⎨⎧=+++=+--=+-+.032,0,0432143214321ξξξξξξξξξξξξ 该齐次线性方程组的一个非零解为)3,1,0,4(-=x ,单位化可得)263,261,0,264(1-==x x y ,即y 为所求的单位向量. 例16、设A 为n 维欧氏空间V 的一个线性变换,试证:A 为正交变换的充分必要条件是βαβα-=-)()(A A .证 必要性))()(),()(()()(βαβαβαA A A A A A --=-),(),(),(),(βββααβαα+--= βαβαβα-=--=),(.充分性 取0=β,于是有αα=)(A ,即A 保持V 中的向量长度不变,所以A 为正交变换.例17、对于矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=542452222A ,求正交(酉)矩阵P ,使AP P AP P T =-1为对角矩阵.解 可求得)10()1()det(2--=-λλλA I ,于是A 的特征值为10,1321===λλλ.对应121==λλ的特征向量为T T x x )1,0,2(,)0,1,2(21=-=.正交化可得T T y y )1,54,52(,)0,1,2(21=-=;再单位化可得T T p p )535,534,532(,)0,51,52(21=-=.对应103=λ的特征向量为T x )1,1,21(3--=,单位化可得T p )32,32,31(3--=,故正交矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=32535032534513153252P 使⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1011AP P T . 例18、设A 是n 阶实对称矩阵,且A A =2(即A 是幂等矩阵),证明存在正交矩阵Q 使得)0,,0,1,,1(1 diag AQ Q =-.证 设A 的属于特征值λ的特征向量为x ,即x Ax λ=,则有x x A 22λ=.因为A A =2且0≠x ,所以02=-λλ,即0=λ或1.再由A 实对称知,存在正交矩阵Q 使得)0,,0,1,,1(1 diag AQ Q =-.例19、设21,V V 是欧氏空间V 的两个子空间,证明.)(,)(21212121⊥⊥⊥⊥⊥⊥+==+V V V V V V V V证 先证第一式.设⊥+∈)(21V V x ,即)(21V V x +⊥.于是1V x ⊥且2V x ⊥,或者⊥∈1V x 且⊥∈2V x ,即⊥⊥∈21V V x .故)()(2121⊥⊥⊥⊂+V V V V .又设⊥⊥∈21V V x ,即⊥∈1V x 且⊥∈2V x .于是1V x ⊥且2V x ⊥,或者)(21V V x +⊥,即⊥+∈)(21V V x .故⊥⊥⊥+⊂)()(2121V V V V .因此第一式成立.对⊥1V 与⊥2V 应用第一式,有212121)()()(V V V V V V ==+⊥⊥⊥⊥⊥⊥⊥,故⊥⊥⊥+=2121)(V V V V ,即第二式成立.例20、(1) 设A 为酉矩阵且是Hermite 矩阵,则A 的特征值为1或1-. (2) 若A 是正规矩阵,且A 的特征值1=λ,则A 是酉矩阵.证 (1) 因A 为酉矩阵,则A 的所有特征值λ具有1=λ;又A 是Hermite 矩阵,则A 的特征值皆为实数,故A 的特征值为1或1-.(2) 因A 是正规矩阵,且A 的特征值1=λ,则有酉矩阵U ,使得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n H H n H U A U AU U λλλλ 11,, .11221E AU A U n H H =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡= λλ故有E A A H =,即A 是酉矩阵.例21、A 为n 阶正规矩阵,),,2,1(n i i =λ是A 的特征值,证明A A H 与HAA 的特征值为n i i ,,2,1,2=λ.证 由A 正规,则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n H H n H U A U AU U λλλλ 11,,U AA U AU A U HH n H H =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=221λλ ,故A A H 与H AA 的特征值皆为22221,,,n λλλ .例22、设A 为n 阶正规矩阵,证明 (1) 若对于正数m ,有0=m A ,则0=A . (2) 若A A =2,则A A H =. (3) 若23A A =,则A A =2.证 (1) 若0=m A ,则A 的特征值皆为零,又A 是正规矩阵,A 可酉对角化,即有⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000 AU U H , 故有0=A .(2) A A =2,则A 的特征值为1或0,假定r A r =)(;A 可酉对角化为:⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=000,000)(,000r HH Hr H H rH E U A U E AU U E AU U , 可得A A H =.(3) 23A A =,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=22121)(,n H n H AU U AU U λλλλ , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=33132212,n H n H U A U U A U λλλλ ,由23A A =,得0,23==i i i λλλ或1=i λ,不妨设⎪⎪⎭⎫ ⎝⎛=000rH E AU U ,也有⎪⎪⎭⎫⎝⎛=0002r H E U A U , 故有A A =2.例23、A 为n 阶Hermite 矩阵,设A 的n 个特征值为n λλλ≤≤≤ 21,证明1m in ,m ax λλ==∈∈XX AXX XX AX X H H C X n H H C X n n . 证 对于Hermite 二次型AX X f H =,必有酉变换UY X =,使化为标准形2222211n n UYX Hy y y AX X λλλ+++== ,又2222122n H y y y Y X X X+++=== ,则n nn n H H y y y y y y X X AX X λλ=++++++≤2222122221)( . 设n X 为A 对应于n λ的特征向量,即n n n X AX λ=,则n nHn nH n n n H n n H n X X X X X X AX X λλ==, 故有n H H C X XX AX X n λ=∈max . 同理有1min λ=∈XX AX X H H C X n . 例24、A 是正规矩阵,证明(1) A 的特征向量也是H A 的特征向量. (2) n C X ∈∀,AX 与X A H 的长度相等. 证 (1) A 为正规矩阵,则有酉矩阵,使得⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n H H n HU A U AU U λλλλλλ2121,, 其中],,,[21n U ααα =,n ααα,,,21 为A 的特征向量,由上两式可见i i i A αλα=,i i i H A αλα=,故A 与H A 有相同的特征向量.(2) 由H H AA A A =,X AA X X A X A XA H H H H H H ==)()(22)()(AX AX AX AX A X H H H ===. 证得AX X A H =.例25、B A ,为n 阶实对称矩阵,B 为正定矩阵,证明存在同一可逆矩阵P ,使Λ=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==n T H u u AP P I BP P 1,. 证 B 为正定矩阵,必有可逆矩阵Q ,使.E BQ Q T =因A 为对称矩阵,则AQ Q T 也是对称矩阵,所以存在正交矩阵C ,使得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n T T u u AQC Q C 1, 令QC P =,就有Λ=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n T u u AP P 1. 又E C C EC C BQC Q C T T T T ===,即有E BP P T =,故存在同一可逆矩阵P ,使Λ==AP P E BP P T T ,.例26、(1) 设n n C A ⨯∈,则n n U A ⨯∈的充要条件是A 的n 个列(或者行)向量是标准的正交向量组.(2) r n r U U ⨯∈1的充要条件是E U U H =11. 证 (1) 必要性 设⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==H n H H Hn A A αααααα 2121],,,[.由于E A A H =,所以有E n H n H n H n n H H H n H H H nH n H H =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡αααααααααααααααααααααααα 2122212121112121],,,[, 于是可得⎪⎩⎪⎨⎧==≠=ji ji j Hi j Hi ,1,0αααα 这表明矩阵A 的n 个列向量是一个标准的正交向量组.同样可以证明A 的n 个行向量是一个标准的正交向量组.充分性 设矩阵A 的n 个列向量n ααα,,,21 是一个标准的正交向量组,那么有⎪⎩⎪⎨⎧==≠=ji ji j Hi j H i ,1,0αααα 从而可知E n H n H n H n n H H H n H H H nH n H H =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡αααααααααααααααααααααααα 2122212121112121],,,[, 此即E A A H =,进一步也有E AA H =,这表明A 为一个酉矩阵.类似地可以证明行的情况.(2) 必要性 设矩阵1U 的r 个列向量r ααα,,,21 是一个标准的正交向量组,那么有⎪⎩⎪⎨⎧==≠=j i ji jHi j Hi ,1,0αααα 由此可得r r H r H r H r r H H H r H H H r H r H H H E U U =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=αααααααααααααααααααααααα 212221************],,,[. 充分性 设.],,,,[211211⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡==H r H H Hr U U αααααα 由于r H E U U =11,所以有rr H r H r H r r H H H r H H H r H r H H E =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡αααααααααααααααααααααααα 2122212121112121],,,[.于是可得⎪⎩⎪⎨⎧==≠=j i ji jHi j Hi ,1,0αααα 这表明矩阵1U 的r 个列向量r ααα,,,21 是一个标准的正交向量组.例27、已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=502613803A , 试求酉矩阵U ,使得AU U H 是上三角矩阵.解 首先求出其特征多项式3)1(+=-λλA E .当1-=λ时,求出属于特征值1--1的一个单位特征向量T ]61,61,62[1-=η.解与1η内积为零的方程02321=++-x x x ,求得一个单位解向量T]33,33,33[2=η.解与21,ηη内积为零的方程⎩⎨⎧=++=++-002321321x x x x x x 又求得一个单位解向量T]22,22,0[3-=η. 于是取⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡--=223361223361033621U , 经过计算可得⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=6265036540337227111AU U H . 记⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=626536541A , 可得21)1(+=-λλA E .对于1-=λ时,求得一个单位特征向量T]515,510[1-=γ, 再求得一个与1γ正交的向量2γT]510,515[2=γ. 令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=5105155155101V , 经计算可得⎥⎥⎦⎤⎢⎢⎣⎡---=1066251111V A V H. 令⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=510515051551000012U , 记⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡---==5523030610630615515306221U U U , 则⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=1006625102015715301AU U H . 例28、设B A ,均为n 阶正规矩阵,试证A 与B 相似的充要条件是A 与B 酉相似.证 必要性 由于A 与B 均为正规矩阵,所以分别存在正规矩阵21,U U ,使得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n HAU U λλλ2111 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n H BU U μμμ2122 其中),,2,1(0n i i =>λ为A 的特征值,),,2,1(0n i i =>μ为B 的特征值.又A 与B 相似,于是有2211,BU U AU U H H i i ==μλ,此时B U AU U U H =--121121)(,这表明A 与B 相似.充分性 显然.例29、已知A 为实矩阵,且有T T AA A A =,证明A 必为对称矩阵. 证 由T T AA A A =可知,A 为正规矩阵,那么存在酉矩阵U ,使得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n H H n H U A U AU U λλλλ 11,, 从而有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=221n TH AU A U λλ .又A A T 为实矩阵,由上式可知其特征值也是实数,从而矩阵U 是一个正交矩阵,即1-==U U U T H ,从而有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-n AU U λλ 11, 其中n λλ,,1 一定为实数.同样也有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-n T U A U λλ 11. 由此可得A A T =,即A 为实对称矩阵.例30、设B A ,均为正规矩阵,且有BA AB =,证明: (1)B A ,至少有一个公共的特征向量;(2)B A ,可同时酉相似于上三角矩阵,即存在酉矩阵W ,使得AW W H 以及BW W H 均为上三角矩阵;(3)B A ,可同时酉相似于对角矩阵; (4)AB 与BA 均为正规矩阵.证 (1) 设λV 是矩阵A 的属于特征值λ的特征子空间,若λαV ∈,即λαα=A ,则αλαB BA =,由于BA AB =,所以有)()(αλαB B A =,这表明λαV B ∈,从而λV 是B 的不变子空间,故在λV 中存在B 的特征向量β,它也是A的特征向量.(2) 对B A ,的阶数用归纳法证明.当B A ,的阶数均为1时,结论显然成立.设单位向量1α是B A ,的一个公共特征向量,再适当选取1-n 个单位向量n αα,,2 ,使得},,,{21n ααα 为标准正交基,于是],,,[21n U ααα =为酉矩阵,且有],,,[,2111n B B b BU b B ααααα ==.进一步可得,01B B b BU U H=⎥⎦⎤⎢⎣⎡=β这里β是)1(1-⨯n 矩阵,1B 是一个1-n 阶矩阵,另外也有A A aAU U H =⎥⎦⎤⎢⎣⎡=10η,这里η是)1(1-⨯n 矩阵,1A 是一个1-n 阶矩阵.由BA AB =又有)()()()(H H H H UAU UBU UBU UAU ⋅=⋅,于是可得BA AB =,由此可推得1111A B B A =.故由归纳法假设,存在1-n 阶酉矩阵1V ,使得∆=111V B V H ,这里∆为一个上三角矩阵,记.,0011UV W V V =⎥⎦⎤⎢⎣⎡=于是有V BU U V BW W H H H )(=⎥⎦⎤⎢⎣⎡∆=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=000100011111V b V B b V H ββ, 显然BW W H 是一个上三角矩阵.容易验证W 是酉矩阵.同样可得,AW W H 也是一个上三角矩阵.(3) 由(2)可设R AW W H =,这里R 是一个上三角矩阵,那么H H H R W A W =,从而可得H H H H HH W RR W W WR WRWAA )(=⋅=,H H H H H H W R R W WRW W WR A A )(=⋅=.又A A AA H H =,所以可得R R RR H H =,从而知R 为一个对角矩阵.同样可证BW W H 也是一个对角矩阵.(4) 由(3)可设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n H n H u u BW W AW W 11,λλ, 于是有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=n n H ABW W μλμλ 11. 由正规矩阵结构定理可知AB 为正规矩阵,那么BA 也为正规矩阵.【评注】教材中已给出一种证明方法,但是与这里的证明方法完全不同,这里主要运用Schur 引理的证明思想.例31、已知下列正规矩阵,求酉矩阵U ,使得AU U H 为对角矩阵.(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=0000110i i A (2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+------+=062266234426434i i i i i i i iA (3)⎥⎦⎤⎢⎣⎡-=1111A 解 (1) 首先求出矩阵A 的特征多项式为)2(2+=-λλλA E ,所以A 的特征值为0,2,2321=-==λλλi i .对于特征值i 2,求得一个特征向量T i X ]1,,2[1-=. 对于特征值i 2-,求得一个特征向量T i X ]1,,2[2--=. 对于特征值0,求得一个特征向量T i X ]1,,0[3=.由于A 为正规矩阵,所以321,,X X X 是彼此正交的,只需分别将321,,X X X 单位化即可TTTi i i ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-=22,22,0,21,2,22,21,2,22321ααα,于是取⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡---==222121222202222],,[321i i iU ααα, 而且有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=000020002i i AU U H .(2) 首先求出矩阵A 的特征多项式为)9)(81(2-+=-λλλA E ,所以A 的特征值为9,9,9321==-=λλλi i .对于特征值i 9-,求得一个特征向量T iX ]1,1,2[1-=.对于特征值i 9,求得一个特征向量T i X ]1,21,[2-=.对于特征值9,求得一个特征向量T i X ]21,1,[3-=.由于A 为正规矩阵,所以321,,X X X 是彼此正交的,只需分别将321,,X X X 单位化即可TT T i i i ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-=31,32,32,32,31,32,32,32,3321ααα.于是取⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---==31323232313232323],,[321i ii U ααα, 从而有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=900090009i i AU U H . (3) 首先求出矩阵A 的特征多项式为222+-=-λλλA E ,所以A 的特征值为i i -=+=1,121λλ.对于特征值i +1,求得一个特征向量T i X ]1,[1=. 对于特征值i -1,求得一个特征向量T i X ]1,[2-=.由于A 为正规矩阵,所以21,X X 是彼此正交的,只需分别将21,X X 单位化即可TTi i ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=22,22,22,2221αα.于是取⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-==22222222],[21i i U αα, 从而有⎥⎦⎤⎢⎣⎡-+=i i AU U H1001. 【评注】这三个题目只需按照教材介绍的正规矩阵可对角化具体过程进行即可.例32、试举例说明:可对角化矩阵不一定可酉对角化.解 设Y X ,是两个线性无关但不正交的向量,记],[Y X P =,取b a b a D ≠⎥⎦⎤⎢⎣⎡=,00 那么1-=PDP A ,就是一个可对角化矩阵,但不是可酉对角化矩阵.例33、证明(1) Hermite 矩阵的特征值为实数;(2) 反Hermite 矩阵的特征值为零或纯虚数; (3) 酉矩阵特征值的模长为1.证 (1) 设A 为一个Hermite 矩阵,λ是A 的一个特征值,X 为对应于特征值为λ的一个特征向量,即有X AX λ=,在此式两端取共轭转置可得.,HHH H H X A X X A X λλ==用X 从右端乘上式两端有X X AX X H H λ=,于是有X X X X H H λλ=.由于0≠X ,所以0≠X X H ,从而有λλ=,这表明λ是实数.(2) 设A 为一个反Hermite 矩阵,λ是A 的一个特征值,X 为对应于特征值λ的一个特征向量,即有X AX λ=,在此式两端取共轭转置可得.,HHH H H X A X X A X λλ=-=用X 从右端乘上式两端有X X AX X H H λ=-,于是有X X X X H H λλ=-.由于0≠X ,所以0≠X X H ,从而有λλ=-,这表明λ为零或纯虚数. (3) 设A 为一个酉矩阵,λ是A 的一个特征值,X 为对应于特征值λ的一个特征向量,即有X AX λ=,在此式两端取共轭转置可得H H H X A X λ=.用AX 从右端乘上式两端有X X EX X H H λλ=,于是有0)1(=-X X H λλ.由于0≠X ,所以0≠X X H ,从而有1=λλ,这表明λ的模长为1.例34、设A 与B 均为Hermite 矩阵,试证A 与B 酉相似的充要条件是A 与B 的特征值相同.证 必要性 由于相似矩阵有相同的特征值,所以A 与B 的特征值相同.充分性 A 与B 均为Hermite 矩阵,所以分别存在酉矩阵21,U U ,使得.,2122211⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n H n H BU U AU U ηηηδδδ其中),,2,1(n i i =δ为A 的特征值,),,2,1(2n i =η为B 的特征值.又i i ηδ=,从而2211BU U AU U H H =,此即B U U A U U H H H =)()(2121,这表明A 与B 酉相似.例35、设A 是Hermite 矩阵,且A A =2,则存在酉矩阵U ,使得⎥⎦⎤⎢⎣⎡=000rH EAU U . 证 由于A 是Hermite 矩阵,所以存在酉矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n H AU U λλλ21, 其中),,2,1(n i i =λ为A 的特征值,又A 为幂等矩阵,于是0=i λ或1.不妨设A 的秩为r ,那么i λ中有r 个1,r n -个0.记0,12121========-++r n r r r λλλλλλ .即⎥⎦⎤⎢⎣⎡=000rH EAU U . 例36、设3R 中的向量为),,(321ξξξα=,线性变换为)32,32,22()(32132132ξξξξξξξξα+---+---=T ,求3R 的一个基,使T 在该基下的矩阵为对角矩阵.解 取3R 的简单基321,,e e e ,计算得),3,1,2()(),1,3,2()(),2,2,0()(321--=--=--=e T e T e T那么,T 在基321,,e e e 下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=312132220A . A 的特征值为2,4321-===λλλ,与之对应的线性无关的特征向量依次为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-112,201,021. 令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=Λ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=244,120102211P , 则有Λ=-AP P 1,由P e e e ),,(),,(321321=ααα求得3R 的另一个基为).1,1,2(2),2,0,1(2),0,2,1(23213312211=++=-=+-=-=+-=e e e e e e e ααα T 在该基下的矩阵为Λ.四、教材习题同步解析1、设V 是实数域R 上的n 维线性空间,12,,,n εεε是V 的一组基,对于V 中向量n n x x x εεεα+++= 2211,n n y y y εεεβ+++= 2211,定义内积为n n y nx y x y x +++= 22112),(βα,证明V 在此内积下构成一个内积空间.证 设R k V z z z n n ∈∈+++=,2211εεεγ ,则有n n x ny x y x y +++== 22112),(),(αββα;111222(,)()2()()n n n x y z x y z nx y z αβγ+=++++++11221122(2)(2)n n n n x y x y nx y x z x z nx z =+++++++(,)(,)αβαγ=+;1122(,)2(,)n n k kx y kx y nkx y k αβαβ=+++=.当0=α时,0),(=αα;当0≠α时,至少有一个00≠i x ,从而0),(200>=i x i αα,因此,该实数是V 上的内积,V 构成一个内积空间.2、设V 是实数域R 上的n 维线性空间,n εεε,,21 是V 的一组基,A 是一个n 阶正定实对称矩阵.定义V 的内积如下:对于V 中向量βα,,如果它们在基12,,,n εεε下的坐标分别为y x ,,则Ay x T =),(βα,证明V 是一个内积空间.证 设V ∈γ,在基12,,,n εεε下的坐标为z ,R k ∈,则有),()(),(αββα=====Ax y x A y Ay x Ay x T T T T T T ; ),(),()(),(γαβαγβα+=+=+=+Az x Ay x z y A x T T T ; ),()(),(βαβαk Ay kx Ay kx k T T ===;因为A 为n 阶正定实对称矩阵,所以Ax x T =),(αα为正定二次型.0≠α时,0),(>αα;0=α时,0),(=αα,所以V 是一个内积空间.3、在实内积空间4R (内积为实向量的普通内积)中,已知⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1111,1111,0011321βββ,试求出与321,,βββ都正交的单位向量.解 设T x x x x ),,,(4321=α满足,3,2,1,0),(==i i βα有⎪⎩⎪⎨⎧=-+-=--+=+0004321432121x x x x x x x x x x ,可取T)1,1,1,1(--=α,故单位向量为 T ⎪⎭⎫ ⎝⎛--21,21,21,21或T⎪⎭⎫⎝⎛--21,21,21,21. 4、设内积空间3C 中向量βα,的内积为αββαH =),(判断下述向量βα,是否正交:1)T T i i i i )2,1,1(,),,1(-+=--=βα; 2)T T i i i i i )3,1,,1(,)2,,1(-=+-=βα.解 1)01)2,1,1(),(=⎪⎪⎪⎭⎫⎝⎛--+-=i i i i βα,故正交.2)04721)3,,1(),(≠+=⎪⎪⎪⎭⎫ ⎝⎛+-+-=i i i i i i βα,故不正交.5、设12,,,n ααα是n 维内积空间V 的一组基,如果V 中向量β使.,2,1,0),(n i i ==αβ证明 0=β.证 令n n x x x αααβ+++= 2211,有0),(),(),(11===∑∑==ni i i ni i i x x αβαβββ,由内积定义,有0=β.6、设V 是实数域R 上的内积空间,321,,εεε是V 的一组标准正交基.证明)22(31),22(31),22(31321332123211εεεηεεεηεεεη--=+-=-+=也是V 的一组标准正交基.证 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=323231323132313232),,(),,(321321εεεηηη,记矩阵 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=323231323132313232A ,因为,E A A T =所以A 为正交矩阵,又因为321,,εεε为标准正交基,所以321,,ηηη也是标准正交基.7、设54321,,,,εεεεε是5维内积空间V 的一组标准正交基.32132125112,,εεεαεεαεεα++=-=+=.求子空间),,(321αααL 的一组标准正交基.解 设0332211=++αααk k k ,则0)()2(51332321321=+++-+++εεεεk k k k k k k ,因为5321,,,εεεε线性无关,则0321===k k k ,所以321,,ααα线性无关,所以他们是),,(321αααL 的一组基.将321,,ααα正交化,单位化,即得),,(321αααL 的一组标准正交基.记)0,0,1,1,2(),0,0,0,1,1(),1,0,0,0,1(321=-==x x x ,则正交化,11x y =; ⎪⎭⎫ ⎝⎛--=-=21,0,0,1,21),(),(1111222y y y y x x y ;()1,0,1,1,1),(),(),(),(13222231111333-=-=--=y x y y y y x y y y y x x y ;单位化)1,0,0,0,1(222211==y z ;)1,0,0,2,1(663622--==y z ; )1,0,1,1,1(213-=z 所以标准正交基)(21),2(66),(22532135212511εεεεγεεεγεεγ-++=--=+=. 8、已知线性空间4][x R 对于内积⎰-=11)()())(),((dx x g x f x g x f构成一个内积空间.从基32,,,1x x x 出发,经正交单位化求一组标准正交基.解 因为32),(,0)1,(,211)1,1(1121111=====⋅=⎰⎰⎰---dx x x x xdx x dx , 52),(,32)1,(,0),(2222===x x x x x ,…… 正交化,令11=β;x x x =⋅-=1)1,1()1,(2β; 31),(),(1)1,1()1,(22223-=⋅-⋅-=x x x x x x x x β;x x 5334-=β;再单位化x x x x x x 41434145;4104103;26),(;22)1,1(34232211-=-=====ηηβηβη9、对于实数域R 上的线性空间n m R ⨯,规定内积如下:对于n m R ⨯中任意元素][],[ij ij b B a A ==,则=),(B A 迹∑∑===n i mj ji ji Tb a A B 11)(.证明n m R ⨯对此内积构成欧氏空间.证 ∑∑∑∑=======n i m j m j ni ji ji ji ji A B a b b a B A 1111),(),(;对任意的R k ∈,n m ij R a C ⨯∈=][,有=+),(C B A 迹=+))((A C B T 迹()T T B A C A +=迹)(A B T +迹()T C A =(,)A B (,)A C +;=),(B kA 迹=))((kA B T 迹)(A kB T =k 迹)(A B T =),(B A k ;0),(112≥=∑∑==n i mj ji a A A ,当且仅当0=ji a (即0=A )时,0),(=A A ,所以nm R ⨯对此内积构成欧氏空间.10、设欧氏空间4R (内积为普通实数组向量的点积)的一组基为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1111,0111,0011,00014321αααα,求在这组基下的度量矩阵A .解 ⎪⎪⎪⎪⎪⎭⎫⎝⎛==4321332122211111)),((j i A αα.11、在线性空间4R 上定义一种内积成为欧氏空间.已知在基T T T T e e e e )1,0,0,0(,)0,1,0,0(,)0,0,1,0(,)0,0,0,1(4321====下的度量矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=3101121001211012A . 1) 求在基T T T T )1,1,0,1(,)1,2,1,0(,)0,0,2,1(,)0,0,1,1(4321==-=-=αααα下的度量矩阵B .2) 求实数a ,使向量T a )1,2,,1(-=α与向量T )0,2,1,1(-=β正交. 解 1) 因为由基4321,,,e e e e 到基4321,,,αααα的过渡矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛----=⎪⎪⎪⎪⎪⎭⎫⎝⎛--=-2100110010113112;11001200012110111P P , 设向量α在4321,,,e e e e 下的坐标为x ,则α在4321,,,αααα下的坐标为x P 1-,如果在基4321,,,αααα下的度量矩阵为B ,则Ax x x BP x P T T ==--11)(),(αα,所以⎪⎪⎪⎪⎪⎭⎫⎝⎛----===--79119130010631032,)(11AP P B A BP P T T2)βα,在4321,,,e e e e 下的坐标分别为T a )1,2,,1(-和T )0,2,1,1(-,所以0)0,2,1,1()1,2,,1(),(=--=T A a βα时,有310=a . 12、设321,,εεε是欧氏空间V 的一组基,内积在这组基下的度量矩阵为⎪⎪⎪⎭⎫ ⎝⎛----=612121211A已知V 的子空间1V 的一组基为112αεε=+,2123αεεε=+-.1) 证明21,αα是1V 的一组正交基; 2) 求1V 的正交补⊥1V 的一组基. 证 1) 因为12111213212223(,)(,)(,)(,)(,)(,)(,)ααεεεεεεεεεεεε=+-++-112(1)2(1)0=--+-+--=,故21,αα正交,所以21,αα是1V 的一组正交基.2) 只需再找到V 中向量3α使321,,ααα为V 的一组正交基,则3α即为⊥1V 的一组基.方法一:设3322113εεεαx x x ++=,利用正交条件⎩⎨⎧==0),(0),(3231αααα 即 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0)1,1,1(0)0,1,1(321321x x x A x x x A 可得一解为2,2,7321-===x x x ,即得3213227εεεα-+=.方法二:先将21,αα扩充为V 的一组基123,,ααξ,为此只需123,,αατ的坐标线性无关.例如取31ξε=即可.再将123,,ααξ正交化.因21,αα已是正交组,正交化过程只需从第三个向量做起.令(3)(3)311223k k αααξ=++,算出(3)(3)3132121122(,)(,)20,(,)(,)5k k ξαξααααα=-==-=,即得3213525257εεεα-+=.13、设4维欧氏空间V 在基4321,,,εεεε下的度量矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=1100162102100101A , 已知V 中向量323312211,,εεαεεαεεα-=+=+=,V 的子空间1123(,,)V L ααα=.1) 试求1V 的一组标准正交基; 2) 设有1V 的线性变换σ,使112()(1σαα=+,212()(1(2σααα=-++-,313()2σαα=+请判明σ是不是1V 的正交变换或对称变换?解 1) 显然321,,ααα线性相关,其极大无关组21,αα即为1V 的一组基,将。
第十二章系列4选讲考试内容等级要求矩阵的概念 A二阶矩阵与平面向量 B常见的平面变换 A变换的复合与矩阵的乘法 B二阶逆矩阵 B二阶矩阵的特征值与特征向量 B二阶矩阵的简单应用 B坐标系的有关概念 A简单图形的极坐标方程 B极坐标方程与直角坐标方程的互化 B参数方程 B直线、圆及椭圆的参数方程 B参数方程与普通方程的互化 B参数方程的简单应用 B不等式的基本性质 B含有绝对值的不等式的求解 B不等式的证明(比较法、综合法、分析法) B算术—几何平均不等式与柯西不等式 A利用不等式求最大(小)值 B运用数学归纳法证明不等式 B§12.1矩阵与变换考情考向分析矩阵命题出自三个方向:一是变换的复合与矩阵的乘法,通过研究曲线上任意一点的变换可以得出曲线的变换.二是逆变换与逆矩阵,主要由点或曲线的变换用待定系数法求矩阵或逆矩阵.三是特征值与特征向量.属于低档题.1.乘法规则 (1)行矩阵[a 11 a 12]与列矩阵⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21的乘法规则:[a 11a 12]⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21=[a 11×b 11+a 12×b 21].(2)二阶矩阵⎣⎢⎢⎡⎦⎥⎥⎤a 11a 12a 21a 22与列向量⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0的乘法规则: ⎣⎢⎢⎡⎦⎥⎥⎤a 11 a 12a 21a 22⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0=⎣⎢⎢⎡⎦⎥⎥⎤a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. (3)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法则如下:⎣⎢⎢⎡⎦⎥⎥⎤a 11 a 12a 21a 22⎣⎢⎢⎡⎦⎥⎥⎤b 11 b 12b 21 b 22 =⎣⎢⎢⎡⎦⎥⎥⎤a 11×b 11+a 12×b 21 a 11×b 12+a 12×b 22a 21×b 11+a 22×b 21 a 21×b 12+a 22×b 22. (4)两个二阶矩阵的乘法满足结合律,但不满足交换律和消去律. 即(AB )C =A (BC ),AB ≠BA ,由AB =AC 不一定能推出B =C .一般地,两个矩阵只有当前一个矩阵的列数与后一个矩阵的行数相等时才能进行乘法运算. 2.常见的平面变换(1)恒等变换:如⎣⎢⎢⎡⎦⎥⎥⎤1 001; (2)伸压变换:如⎣⎢⎢⎡⎦⎥⎥⎤100 12;(3)反射变换:如⎣⎢⎢⎡⎦⎥⎥⎤100-1; (4)旋转变换:如⎣⎢⎢⎡⎦⎥⎥⎤cos θ-sin θsin θcos θ,其中θ为旋转角度;(5)投影变换:如⎣⎢⎢⎡⎦⎥⎥⎤1000,⎣⎢⎢⎡⎦⎥⎥⎤1 010; (6)切变变换:如⎣⎢⎢⎡⎦⎥⎥⎤1k 01(k ∈R ,且k ≠0). 3.逆变换与逆矩阵(1)对于二阶矩阵A ,B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵;(2)若二阶矩阵A ,B 均存在逆矩阵,则AB 也存在逆矩阵,且(AB )-1=B -1A -1.4.特征值与特征向量设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使Aα=λα,那么λ称为A 的一个特征值,而α称为A 的属于特征值λ的一个特征向量. 5.特征多项式 设A =⎣⎢⎢⎡⎦⎥⎥⎤ab cd 是一个二阶矩阵,λ∈R ,我们把行列式f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =λ2-(a +d )λ+ad -bc ,称为A 的特征多项式.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)已知A ,B ,C 为二阶矩阵,且AB =AC ,若矩阵A 存在逆矩阵,则B =C .( √ )(2)⎣⎢⎢⎡⎦⎥⎥⎤1 -12 1⎝ ⎛⎭⎪⎪⎫⎣⎢⎢⎡⎦⎥⎥⎤1 02 1⎣⎢⎢⎡⎦⎥⎥⎤1 021=⎣⎢⎢⎡⎦⎥⎥⎤-3-1 61.( √ )(3)若二阶矩阵A ,B 均存在逆矩阵,则(AB )-1=B -1A -1.( × )(4)矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤3652的特征值为8和-3.( √ ) 题组二 教材改编 2.[P52例3]已知矩阵A =⎣⎢⎡⎦⎥⎤2 345,则A 的逆矩阵A -1=________. 答案 ⎣⎢⎢⎡⎦⎥⎥⎤-52 32 2 -1解析 因为det(A )=2×5-3×4=-2,所以A-1=⎣⎢⎢⎡⎦⎥⎥⎤-52 3242-22=⎣⎢⎢⎡⎦⎥⎥⎤-52 32 2 -1.3.[P11习题T7]已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤2 a 21,其中a ∈R .若点P (1,-2)在矩阵M 的变换下得到点P ′(-4,0),实数a 的值为________. 答案 3 解析由⎣⎢⎢⎡⎦⎥⎥⎤2 a 2 1 ⎣⎢⎢⎡⎦⎥⎥⎤ 1-2=⎣⎢⎢⎡⎦⎥⎥⎤-4 0,得2-2a =-4,解得a =3.4.[P39例1(1)]已知A =⎣⎢⎢⎡⎦⎥⎥⎤12 1212 12,B =⎣⎢⎢⎡⎦⎥⎥⎤12 -12-1212,求AB . 解AB =⎣⎢⎢⎡⎦⎥⎥⎤12 121212 ⎣⎢⎢⎡⎦⎥⎥⎤12 -12-1212 =⎣⎢⎢⎡⎦⎥⎥⎤12×12+12×⎝ ⎛⎭⎪⎫-12 12×⎝ ⎛⎭⎪⎫-12+12×1212×12+12×⎝ ⎛⎭⎪⎫-12 12×⎝ ⎛⎭⎪⎫-12+12×12 =⎣⎢⎢⎡⎦⎥⎥⎤0 00 0. 题组三 易错自纠5.A =⎣⎢⎢⎡⎦⎥⎥⎤-1 0 01,B =⎣⎢⎢⎡⎦⎥⎥⎤0-110,则AB 的逆矩阵为________.答案⎣⎢⎢⎡⎦⎥⎥⎤0 11 0 解析 ∵A-1=⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 1,B -1=⎣⎢⎢⎡⎦⎥⎥⎤ 0 1-1 0, ∴(AB )-1=B -1A-1=⎣⎢⎢⎡⎦⎥⎥⎤ 0 1-1 0⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 1=⎣⎢⎢⎡⎦⎥⎥⎤0 110. 6.设椭圆的方程为x 2+y 2a =1,若它在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤1 0012对应的伸压变换下变为一个圆,则实数a =________. 答案 4解析 设P (x ,y )为椭圆上任意一点,变换后为P ′(x ′,y ′),则⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤1 00 12⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x 12y,所以x =x ′,y =2y ′,代入椭圆的方程,得x ′2+4y ′2a=1.因为它表示圆,所以a =4.7.已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤-1 0 02,B =⎣⎢⎢⎡⎦⎥⎥⎤120 6,求矩阵A -1B . 解 设矩阵A的逆矩阵为⎣⎢⎢⎡⎦⎥⎥⎤ab cd , 则⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 2⎣⎢⎢⎡⎦⎥⎥⎤a b c d =⎣⎢⎢⎡⎦⎥⎥⎤1 00 1, 即⎣⎢⎢⎡⎦⎥⎥⎤-a -b 2c 2d =⎣⎢⎢⎡⎦⎥⎥⎤100 1, 故a =-1,b =0,c =0,d =12,从而A 的逆矩阵A -1=⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 12,所以A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 12 ⎣⎢⎢⎡⎦⎥⎥⎤1 20 6=⎣⎢⎢⎡⎦⎥⎥⎤-1 -2 0 3. 题型一 矩阵与变换1.已知a ,b 是实数,如果矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤2a b1所对应的变换将直线x-y =1变换成x +2y =1,求a ,b 的值.解 设点(x ,y )是直线x -y =1上任意一点,在矩阵M 的作用下变成点(x ′,y ′),则⎣⎢⎢⎡⎦⎥⎥⎤2a b1⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′,所以⎩⎪⎨⎪⎧x ′=2x +ay ,y ′=bx +y .因为点(x ′,y ′)在直线x +2y =1上,所以(2+2b )x +(a +2)y =1,即⎩⎪⎨⎪⎧2+2b =1,a +2=-1,所以⎩⎪⎨⎪⎧a =-3,b =-12.2.二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2). (1)求矩阵M ;(2)设直线l 在矩阵M 变换作用下得到了直线m :x -y =4,求直线l 的方程.解(1)设M =⎣⎢⎢⎡⎦⎥⎥⎤ab cd ,则有⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤ 1-1=⎣⎢⎢⎡⎦⎥⎥⎤-1-1, ⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤-2 1=⎣⎢⎢⎡⎦⎥⎥⎤ 0-2, 所以⎩⎪⎨⎪⎧a -b =-1,c -d =-1,且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4,所以M =⎣⎢⎢⎡⎦⎥⎥⎤1234. (2)设直线l 上任意一点P (x ,y ),在矩阵M 的变换作用下得到点P ′(x ′,y ′).因为⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤1234 ⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x +2y 3x +4y , 且m :x ′-y ′=4,所以(x +2y )-(3x +4y )=4, 整理得x +y +2=0,所以直线l 的方程为x +y +2=0.思维升华已知变换前后的坐标,求变换对应的矩阵时,通常用待定系数法求解. 题型二 求逆矩阵例1已知矩阵det(A )=⎣⎢⎡⎦⎥⎤2 14 3,B =⎣⎢⎡⎦⎥⎤1 10 -1. (1)求A 的逆矩阵A -1; (2)求矩阵C ,使得AC =B .解 (1)因为|A |=2×3-1×4=2,所以A-1=⎣⎢⎢⎡⎦⎥⎥⎤ 32 -12-4222=⎣⎢⎢⎡⎦⎥⎥⎤32 -12-2 1.(2)由AC =B 得(A -1A )C =A -1B ,故C =A -1B =⎣⎢⎢⎡⎦⎥⎥⎤ 32 -12-2 1 ⎣⎢⎢⎡⎦⎥⎥⎤1 10 -1 =⎣⎢⎢⎡⎦⎥⎥⎤32 2-2 -3.思维升华求逆矩阵的方法 (1)待定系数法 设A是一个二阶可逆矩阵⎣⎢⎢⎡⎦⎥⎥⎤ab cd ,AB =BA =E ;(2)公式法|A |=⎪⎪⎪⎪⎪⎪⎪⎪a b cd =ad -bc ≠0,有A -1=⎣⎢⎢⎡⎦⎥⎥⎤d |A | -b |A |-c |A | a |A |. 跟踪训练1已知矩阵A =⎣⎢⎡⎦⎥⎤10 2-2,矩阵B 的逆矩阵B -1=⎣⎢⎢⎡⎦⎥⎥⎤1 -120 2,求矩阵AB .解 B =(B -1)-1=⎣⎢⎢⎢⎡⎦⎥⎥⎥⎤22 1220212=⎣⎢⎢⎡⎦⎥⎥⎤114012.∴AB =⎣⎢⎢⎡⎦⎥⎥⎤1 20-2 ⎣⎢⎢⎡⎦⎥⎥⎤1 140 12=⎣⎢⎢⎡⎦⎥⎥⎤1 540-1.题型三 特征值与特征向量例2已知矩阵A 的逆矩阵A -1=⎣⎢⎢⎡⎦⎥⎥⎤2 11 2. (1)求矩阵A ;(2)求矩阵A -1的特征值以及属于每个特征值的一个特征向量. 解 (1)因为矩阵A 是矩阵A -1的逆矩阵,且|A -1|=2×2-1×1=3≠0,所以A =13⎣⎢⎢⎡⎦⎥⎥⎤ 2 -1-1 2=⎣⎢⎢⎡⎦⎥⎥⎤23 -13-1323. (2)矩阵A -1的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-2 -1 -1 λ-2=λ2-4λ+3=(λ-1)(λ-3),令f (λ)=0,得矩阵A -1的特征值为λ1=1或λ2=3,所以ξ1=⎣⎢⎢⎡⎦⎥⎥⎤1 -1是矩阵A -1的属于特征值λ1=1的一个特征向量,ξ2=⎣⎢⎢⎡⎦⎥⎥⎤11是矩阵A -1的属于特征值λ2=3的一个特征向量.思维升华已知A =⎣⎢⎢⎡⎦⎥⎥⎤ab cd ,求特征值和特征向量的步骤 (1)令f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-a -b -c λ-d =(λ-a )(λ-d )-bc =0,求出特征值λ;(2)列方程组⎩⎪⎨⎪⎧λ-ax -by =0,-cx +λ-d y =0;(3)赋值法求特征向量,一般取x =1或者y =1,写出相应特征的向量.跟踪训练2(2018·无锡期末)已知变换T 将平面内的点⎝ ⎛⎭⎪⎫1,12,(0,1)分别变换成点⎝ ⎛⎭⎪⎫94,-2,⎝ ⎛⎭⎪⎫-32,4.设变换T 对应的矩阵为M .(1)求矩阵M ;(2)求矩阵M 的特征值.解(1)设M =⎣⎢⎢⎡⎦⎥⎥⎤ab cd ,则⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤112=⎣⎢⎢⎡⎦⎥⎥⎤ 94-2,⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤01=⎣⎢⎢⎡⎦⎥⎥⎤-324, 得a =3,b =-32,c =-4,d =4,∴M =⎣⎢⎢⎡⎦⎥⎥⎤3 -32-4 4. (2)设矩阵M 的特征多项式为f (λ),∴f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-3 32 4 λ-4=(λ-3)(λ-4)-6 =λ2-7λ+6.令f (λ)=0,则λ1=1,λ2=6.1.已知A =⎣⎢⎢⎡⎦⎥⎥⎤1562,求A 的特征值. 解 A 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1 -5 -6 λ-2=(λ-1)(λ-2)-30=λ2-3λ-28=(λ-7)(λ+4), ∴A 的特征值为λ1=7,λ2=-4. 故A 的特征值为7和-4.2.(2018·南通、泰州模拟)设矩阵A 满足:A ⎣⎢⎢⎡⎦⎥⎥⎤1206=⎣⎢⎢⎡⎦⎥⎥⎤-1-2 03,求矩阵A 的逆矩阵A -1.解 方法一 设矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤a b cd , 则⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤1 20 6=⎣⎢⎢⎡⎦⎥⎥⎤-1 -2 0 3, 所以a =-1,2a +6b =-2,c =0,2c +6d =3. 解得b =0,d =12,所以A =⎣⎢⎢⎡⎦⎥⎥⎤-1 0 012. 根据逆矩阵公式得A -1=⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 2. 方法二在A ⎣⎢⎢⎡⎦⎥⎥⎤1 206=⎣⎢⎢⎡⎦⎥⎥⎤-1 -2 0 3两边同时左乘逆矩阵A -1, 得⎣⎢⎢⎡⎦⎥⎥⎤1 20 6=A -1⎣⎢⎢⎡⎦⎥⎥⎤-1 -2 0 3. 设A-1=⎣⎢⎢⎡⎦⎥⎥⎤a b c d ,则⎣⎢⎢⎡⎦⎥⎥⎤1 20 6=⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤-1 -2 0 3, 所以-a =1,-2a +3b =2,-c =0,-2c +3d =6. 解得a =-1,b =0,c =0,d =2,从而A-1=⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 2. 3.(2019·徐州模拟)已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤2101,向量b =⎣⎢⎢⎡⎦⎥⎥⎤10 2.求向量a ,使得A 2a =b . 解 A2=⎣⎢⎢⎡⎦⎥⎥⎤210 1⎣⎢⎢⎡⎦⎥⎥⎤210 1=⎣⎢⎢⎡⎦⎥⎥⎤4 30 1, 设a =⎣⎢⎢⎡⎦⎥⎥⎤x y ,由A2a =b ,得⎣⎢⎢⎡⎦⎥⎥⎤4301 ⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤10 2, 即⎩⎪⎨⎪⎧4x +3y =10,y =2,解得⎩⎪⎨⎪⎧x =1,y =2,所以a =⎣⎢⎢⎡⎦⎥⎥⎤12.4.(2018·宿迁期中)已知变换T 把直角坐标平面上的点A (3,-4),B (0,5)分别变换成点A ′(2,-1),B ′(-1,2),求变换T 对应的二阶矩阵M . 解设矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤ab cd ,则⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤ 3-4=⎣⎢⎢⎡⎦⎥⎥⎤ 2-1, 且⎣⎢⎢⎡⎦⎥⎥⎤ab c d ⎣⎢⎢⎡⎦⎥⎥⎤05=⎣⎢⎢⎡⎦⎥⎥⎤-1 2. 所以⎩⎪⎨⎪⎧3a -4b =2,3c -4d =-1,且⎩⎪⎨⎪⎧5b =-1,5d =2.解得⎩⎪⎪⎨⎪⎪⎧a =25,b =-15,c =15,d =25,所以矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤25 -151525. 5.曲线C 1:x 2+2y 2=1在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤1201的作用下变换为曲线C 2,求C 2的方程.解 设P (x ,y )为曲线C 2上任意一点,P ′(x ′,y ′)为曲线x 2+2y 2=1上与P 对应的点,则⎣⎢⎢⎡⎦⎥⎥⎤1 20 1⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤x y ,即⎩⎪⎨⎪⎧x =x ′+2y ′,y =y ′,即⎩⎪⎨⎪⎧x ′=x -2y ,y ′=y .因为P ′是曲线C 1上的点,所以C 2的方程为(x -2y )2+2y 2=1. 6.(2015·江苏)已知x ,y ∈R ,向量α=⎣⎢⎢⎡⎦⎥⎥⎤1-1是矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤x1y0的属于特征值-2的一个特征向量,求矩阵A 以及它的另一个特征值. 解 由已知,得Aα=-2α,即⎣⎢⎢⎡⎦⎥⎥⎤x 1y 0⎣⎢⎢⎡⎦⎥⎥⎤ 1-1=⎣⎢⎢⎡⎦⎥⎥⎤x -1 y =⎣⎢⎢⎡⎦⎥⎥⎤-2 2, 则⎩⎪⎨⎪⎧x -1=-2,y =2,即⎩⎪⎨⎪⎧x =-1,y =2,所以矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤-11 20. 从而矩阵A 的特征多项式f (λ)=(λ+2)(λ-1), 所以矩阵A 的另一个特征值为1.7.求曲线|x |+|y |=1在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤100 13对应的变换作用下得到的曲线所围成图形的面积.解 设点(x 0,y 0)为曲线|x |+|y |=1上的任一点,在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤1 00 13对应的变换作用下得到的点为(x ′,y ′), 则由⎣⎢⎢⎡⎦⎥⎥⎤1 00 13⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0=⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′,得⎩⎪⎨⎪⎧x ′=x 0,y ′=13y 0,即⎩⎪⎨⎪⎧x 0=x ′,y 0=3y ′,所以曲线|x |+|y |=1在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤100 13对应的变换作用下得到的曲线为|x |+3|y |=1,所以围成的图形为菱形,其面积为12×2×23=23.8.(2018·江苏省丰县中学质检)在平面直角坐标系xOy 中,A (0,0),B (-2,0),C (-2,1),设k ≠0,k ∈R ,M =⎣⎢⎢⎡⎦⎥⎥⎤k001,N =⎣⎢⎢⎡⎦⎥⎥⎤0 11 0,点A ,B ,C 在矩阵MN 对应的变换下得到点A 1,B 1,C 1,△A 1B 1C 1的面积是△ABC 面积的2倍,求实数k 的值. 解由题设得MN =⎣⎢⎢⎡⎦⎥⎥⎤k001⎣⎢⎢⎡⎦⎥⎥⎤0 11 0=⎣⎢⎢⎡⎦⎥⎥⎤0 k 10, 由⎣⎢⎢⎡⎦⎥⎥⎤0 k 1 0⎣⎢⎢⎡⎦⎥⎥⎤0 -2 -20 0 1=⎣⎢⎢⎡⎦⎥⎥⎤0 0 k 0 -2 -2, 可知A 1(0,0),B 1(0,-2),C 1(k ,-2).计算得△ABC 的面积是1,△A 1B 1C 1的面积是|k |,则由题设知|k |=2×1=2,即k =±2.9.(2018·高邮考试)已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤1-1a1,其中a ∈R ,若点P (1,1)在矩阵A 对应的变换作用下得到点P ′(0,-3). (1)求实数a 的值;(2)求矩阵A 的特征值及特征向量. 解(1)∵⎣⎢⎢⎡⎦⎥⎥⎤1 -1a1⎣⎢⎢⎡⎦⎥⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤0-3, ∴⎣⎢⎢⎡⎦⎥⎥⎤ 0a +1=⎣⎢⎢⎡⎦⎥⎥⎤0-3,∴a =-4. (2)∵A =⎣⎢⎢⎡⎦⎥⎥⎤ 1 -1-41,∴f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-1 1 4 λ-1=λ2-2λ-3. 令f (λ)=0,得λ1=-1,λ2=3, 对于特征值λ1=-1,解相应的线性方程组⎩⎪⎨⎪⎧-2x +y =0,4x -2y =0,得一个非零解⎩⎪⎨⎪⎧x =1,y =2,因此α1=⎣⎢⎢⎡⎦⎥⎥⎤12是矩阵A 的属于特征值λ1=-1的一个特征向量.对于特征值λ2=3,解相应的线性方程组⎩⎪⎨⎪⎧2x +y =0,4x +2y =0得一个非零解⎩⎪⎨⎪⎧x =1,y =-2,因此α2=⎣⎢⎢⎡⎦⎥⎥⎤ 1-2是矩阵A 的属于特征值λ2=3的一个特征向量.∴矩阵A 的特征值为λ1=-1,λ2=3, 属于特征值λ1=-1,λ2=3的特征向量分别为⎣⎢⎢⎡⎦⎥⎥⎤12,⎣⎢⎢⎡⎦⎥⎥⎤1-2.10.设a >0,b >0,若矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤a00b 把圆C :x 2+y 2=1变换为椭圆E :x 24+y 23=1.(1)求a ,b 的值;(2)求矩阵A 的逆矩阵A -1.解 (1)设点P (x ,y )为圆C :x 2+y 2=1上任意一点, 经过矩阵A 变换后对应点为P ′(x ′,y ′),则⎣⎢⎢⎡⎦⎥⎥⎤a 00 b ⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤ax by =⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′,所以⎩⎪⎨⎪⎧x ′=ax ,y ′=by ,因为点P ′(x ′,y ′)在椭圆E :x 24+y 23=1上,所以a 2x 24+b 2y 23=1,这个方程即为圆C 方程,所以⎩⎪⎨⎪⎧a 2=4,b 2=3,又因为a >0,b >0,所以a =2,b = 3.(2)由(1)得A =⎣⎢⎢⎡⎦⎥⎥⎤2 003,所以A-1=⎣⎢⎢⎡⎦⎥⎥⎤1200 33. 11.(2017·江苏)已知矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤0110,B =⎣⎢⎢⎡⎦⎥⎥⎤1 00 2. (1)求AB ;(2)若曲线C 1:x 28+y 22=1在矩阵AB 对应的变换作用下得到另一曲线C 2,求C 2的方程. 解(1)因为A =⎣⎢⎢⎡⎦⎥⎥⎤0110,B =⎣⎢⎢⎡⎦⎥⎥⎤100 2, 所以AB =⎣⎢⎢⎡⎦⎥⎥⎤0110 ⎣⎢⎢⎡⎦⎥⎥⎤100 2=⎣⎢⎢⎡⎦⎥⎥⎤021 0.(2)设Q (x 0,y 0)为曲线C 1上任意一点,它在矩阵AB 对应的变换作用下变为点P (x ,y ),则⎣⎢⎢⎡⎦⎥⎥⎤0 21 0⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0=⎣⎢⎢⎡⎦⎥⎥⎤x y , 即⎩⎪⎨⎪⎧2y 0=x ,x 0=y ,所以⎩⎪⎨⎪⎧x 0=y ,y 0=x2.因为点Q (x 0,y 0)在曲线C 1上,所以x 208+y 202=1,从而y 28+x 28=1,即x 2+y 2=8.因此曲线C 1在矩阵AB 对应的变换作用下得到曲线C 2:x 2+y 2=8.12.(2018·江苏省镇江中学质检)已知二阶矩阵M 有特征值λ=8及对应的一个特征向量e 1=⎣⎢⎢⎡⎦⎥⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换成(-2,4). (1)求矩阵M ;(2)求矩阵M 的另一个特征值及对应的一个特征向量e 2的坐标之间的关系;(3)求直线l :x -y +1=0在矩阵M 的作用下的直线l ′的方程. 解(1)设M =⎣⎢⎢⎡⎦⎥⎥⎤ab cd ,则⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤11=8⎣⎢⎢⎡⎦⎥⎥⎤11=⎣⎢⎢⎡⎦⎥⎥⎤88, 故⎩⎪⎨⎪⎧a +b =8,c +d =8.⎣⎢⎢⎡⎦⎥⎥⎤a b c d ⎣⎢⎢⎡⎦⎥⎥⎤-1 2=⎣⎢⎢⎡⎦⎥⎥⎤-2 4,故⎩⎪⎨⎪⎧-a +2b =-2,-c +2d =4.联立以上两个方程组,解得a =6,b =2,c =4,d =4,故M =⎣⎢⎢⎡⎦⎥⎥⎤6 244. (2)由(1)知,矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-6 -2 -4 λ-4=(λ-6)(λ-4)-8=λ2-10λ+16,故其另一个特征值为λ=2. 设矩阵M 的特征值λ=2对应的一个特征向量是e 2=⎣⎢⎢⎡⎦⎥⎥⎤x y ,则Me 2=⎣⎢⎢⎡⎦⎥⎥⎤6x +2y 4x +4y =2⎣⎢⎢⎡⎦⎥⎥⎤x y , 解得2x +y =0.(3)设点(x ,y )是直线l 上的任一点,其在矩阵M 的变换作用下对应的点的坐标为(x ′,y ′),则⎣⎢⎢⎡⎦⎥⎥⎤624 4⎣⎢⎢⎡⎦⎥⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤x ′y ′,所以⎩⎪⎨⎪⎧6x +2y =x ′,4x +4y =y ′,即x =14x ′-18y ′,y =-14x ′+38y ′,代入直线l 的方程化简,得x ′-y ′+2=0, 即x -y +2=0.。
第三章 Jordan 标准形一、基本要求1、理解λ-矩阵的定义,可逆的条件,初等变换及等价.2、会求λ-矩阵(数字矩阵)的Smith 标准形,不变因子,初等因子组,行列式因子.3、掌握矩阵的Jordan 标准形的定义,会求矩阵的Jordan 标准形及其相似变换矩阵.4、掌握Hamilton-Cayley 定理的内容.5、理解最小多项式的定义,会计算矩阵的最小多项式.6、理解幂等矩阵的定义及性质.二、基本内容1、求方阵的Jordan 标准形设n n C A ⨯∈的全体初等因子为i m i )(λλ-,);,,2,1(21n m m m s i s =+++= ,对应第i 个初等因子i m i )(λλ-的Jordan 块为i J ,那么A 的Jordan 标准形为),,,(21s J J J diag J =,求A 的全体初等因子常用下面三种方法.(1) 行列式因子法1) 计算A E -λ的行列式因子),,2,1)((n k D k =λ; 2) 计算A E -λ的不变因子)1)(;,,2,1()()()(01===-λλλλD n k D D d k k k ;3) 对)(,),(),(21λλλn d d d 分解因式,全体不可约因式(一次因式方幂)为A 的全体初等因子.(2) 初等变换法1) 用初等变换将A E -λ化为对角矩阵))(,),(),((21λλλn f f f diag ,其中),,2,1)((n k f k =λ是首1多项式;2) 对)(,),(),(21λλλn f f f 分解因式,全体不可约因式为A 的全体初等因子. (3) 特征多项式分析法1) 计算A 的特征多项式)det()(A E -=λλϕ;2) 求出)(λϕ的全体不可约因式);,,2,11()(21n r r r l l r i i =+++=- λλ;3) 对于)(λϕ的第i 个不可约因式i r i )(λλ-,有1=i r 时,i λλ-是A 的一个初等因子;1>i r 时,i r i )(λλ-是A 的)(A E rank n i --λ个初等因子的乘积.在特征多项式分析法中,当3≤i r 时,一定能够确定出i r i )(λλ-是几个初等因子的乘积;而当3>i r 时,不一定能够确定出i r i )(λλ-是几个初等因子的乘积,此时该方法可能失效.2、求可逆矩阵P ,使得J AP P =-1确定相似变换矩阵P 一般比较困难(尽管P 是存在的).在特殊情形下,可以通过求解一系列线性方程组来获得P .例如,在A 的初等因子组中,当j i λλ≠(j i ≠)时,划分),,,(),()()(2)(121i m i i i s ix x x P P P P P==, 那么,i P 的列向量如下计算:0)(=-x A I i λ的一个非零解为)(1i x ;)(1)(i i x x A I -=-λ的一个解为)(2i x ;)(1)(i m i ix x A I --=-λ的一个解为)(i m i x . 3、方阵的最小多项式(1) 方阵是其特征多项式的矩阵根.(2) 方阵的最小多项式整除它的零化多项式.(3) 方阵的最小多项式与它的特征多项式有相同的零点(不计重数).(4) 设n 阶方阵A 的特征多项式为)(λϕ,特征矩阵A I -λ的1-n 阶行列式因子为)(1λ-n D ,则A 的最小多项式为)()()(1λλϕλ-=n D m .(5) 设n 阶方阵A 的全体初等因子为),1()(,,)(),1()(,,)(),1()(,,)(11221111221111s s t t t t rs r s t ll t k k r r l l k k ≤≤≤--≤≤≤--≤≤≤--λλλλλλλλλλλλ其中,s λλλ,,,21 互不相同,则A 的最小多项式为s t t t rs l k m )()()()(2121λλλλλλλ---= .三、典型例题例1、设)(λA 为一个5阶-λ矩阵,其秩为4,初等因子为,1,1,,,22--λλλλλ3)1(,1++λλ,试求)(λA 的不变因子及其Smith 标准形.解 因为)(λA 的秩为4,所以可知其有四个不变因子1)(,)(),1)(1()(,)1)(1()(1223324==+-=+-=λλλλλλλλλλλd d d d于是立即得到其Smith 标准形⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+-=322)1)(1()1)(1(1λλλλλλλJ . 例2、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=322045132634206,321106252321A A , 分别求1A E -λ与2A E -λ的Smith 标准形以及1A 与2A 的不变因子、行列式因子.解 首先求出1A E -λ的Smith 标准形为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--2)2(21λλ,再求出2A E -λ的Smith 标准形为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--2)2(21λλ, 于是1A 的不变因子为2)2(,2,1--λλ,2A 的不变因子与1A 的相同.1A 的行列式因子为2)2(,2,1--λλ,2A 的行列式因子与1A 的相同.【评注】由此题目可知不同矩阵的Smith 标准形、不变因子以及行列式因子可能相同.例3、已知E A k =(k 为正整数),证明:A 与对角矩阵相似.证 只要证明A 的每一个Jordan 块都是一阶的,那么A 必与对角矩阵相似.设A 的Jordan 标准形为i i n n i i i i s a a a J J J J J ⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=11,21 那么存在相似变换矩阵P 使得J AP P =-1.因此E P A P J k k ==-1,于是有i ii k n n k i k iki k i ki k i E a ka a ka a J =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⨯--11 , 故i J 必为一阶子块,即n s =.所以A 与对角矩阵相似.例4、试写出Jordan 标准形均为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200120001J的两个矩阵B A ,.解 用两种方法求解此题.方法一 相似变换矩阵的方法.对于任意一个可逆矩阵P ,矩阵1-PJP 均与矩阵J 相似,从而其Jordan 标准形必为J ,于是任取两个不同的可逆矩阵P ,即可得到两个矩阵B A ,.方法二 矩阵秩的方法.设A (或B )的Jordan 标准形为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200120001, 从而A (或B )得Smith 标准形为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--)1()2(112λλ. 由此可知A (或B )的行列式因子为2321)2)(1()(,1)(,1)(--===λλλλλD D D .这样的矩阵A (或B )有很多,取表达式较为简单的矩阵,下列任何一种矩阵都可以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1**02*002,2**02*001,2**01*002, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100*20**2,200*20**1,200*10**2, 下面分析“*”处元素取何值时才能保证以1为主对角元的Jordan 块只有一个,以2为主对角元的Jordan 块也只有一个.根据求矩阵Jordan 标准形的方法,只要使2)2(=-E A r 或2)2(=-E B r即可.例如⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200010102,100129002 均可以.但⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200120011,150020002 都不可以.例5、已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=203003b c a A , (1) 求A 的所有可能的Jordan 标准形.(2) 给出A 可对角化条件.解 首先计算特征多项式)2()3(2--=-λλλA E . 当3=λ时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-100000b c a A E λ. 若0=a ,则A E -λ的秩为1.A 的属于3=λ的线性无关的特征向量有两个,因此A 的Jordan 标准形为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=233J . 若0≠a ,则A E -λ的秩为2.A 的属于3=λ的线性无关的特征向量有一个,因此A 的Jordan 标准形为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2313J . 因此当0=a 时,A 可对角化.例6、设A 和B 都为n 阶幂等矩阵,且)()(),()(B N A N B R A R ==,证明A =B . 证 因A 和B 都是幂等矩阵,则A 和B 的特征值都为0或1,且A 和B 都可对角化.又因为)()(B R A R =,就有r B r A r ==)()(,当1=λ时,A 与B 有r 个线性无关的特征向量,设为r ααα,,,21 ;当0=λ,0,0==BX AX ,且因)()(B N A N =,故A ,B 有r n -个线性无关的特征向量n r r ααα ,,21++,构成矩阵),,,,,,(121n r r P ααααα +=,使得⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡==--0011111 BP P AP P ,故B A =.例7、A 为n 阶方阵,证明T A 与A 有相同的Jordan 标准形. 证 设有可逆矩阵P ,使得i i nn i ii i m J J J J J AP P ⨯-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==λλλ11,211 , ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡===--T m TTTT T T T J J J J P A P AP P2111)()(, 其中ii nn i ii Ti J ⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=λλλ11. 令in i Q ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=111 , 有1-==i i T i Q Q Q ,且i i T i T i J Q J Q =,再令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m Q Q Q Q21, 故J Q J Q Q P A P Q T T T T T T T ==--11)()(,即J PQ A PQ T T T =-1])[()(.令1])[(-=T PQ C ,于是AP P J C A C T 11--==.故T A 与A 相似同一个J .例8、举例说明,即使两个n 阶矩阵A ,B 有相同的特征多项式和相同的最小多项式,但A 与B 不一定相似.解 例如矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=0000000000000010,0000100000000010 B A .则0,0,224===-=-B A B E A E λλλ,矩阵A 和B 的最小多项式)()(λλB A m m =2λ=,但矩阵A 和B 不相似.例9、求下列各矩阵的Jordan 标准形.(1) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---112020021; (2) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3104252373; (3) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----0167121700140013. 解 (1) )1)(2)(1()det(+--=-λλλλA E ,A 有3个不同的特征值,从而A的Jordan 标准形为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-121. (2) ))()(1()det(i i A E +--=-λλλλ,A 有3个不同的特征值,从而A 的Jordan标准形为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-i i1. (3) 写出特征矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----+--=-λλλλλ167121700140013A E . 容易求得A 的行列式因子4421)1()(,1)(,1)(-===λλλλD D D .位于A E -λ的第2,3,4行与第1,2,4列处的三阶子式为1747671170142+-=---+λλλλ,它与)(4λD 互质,所以1)(3=λD ,从而A 的不变因子为4)1(,1,1,1-λ.于是A 的初等因子为4)1(-λ,A 的Jordan 标准形为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1111111J . 例10、已知,2126617215111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=A 求可逆矩阵P 使J AP P =-1. 解 采用行列式因子法求A 的初等因子组.A 的特征矩阵为.2126617215111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-----+=-λλλλA E 易见A E D -=λλ,1)(1的1,2行与2,3列处的2阶子式为4172111-=----λλ,而它的2,3行与1,2列处的2阶子式为)23(2266215+=--λλ,这两个多项式互质,故1)(2=λD .直接计算可得)1()(23+=λλλD .于是,不变因子为)1()()()(,1)()()(,11)()(223312211+======λλλλλλλλλλD D d D D d D d . 故A 的初等因子组为1,2+λλ,从而A 的Jordan 标准形为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1010J . 0)0(=-⋅x A E 的一个非零解为T x )4,3,1()1(1-=; )1(1)0(x x A E -=-⋅的一个解为T x )2,2,1()1(2--=; 0)1(=-⋅-x A E 的一个非零解为T x )1,1,1()2(1-=.于是可得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---==124123111),,()2(1)1(2)1(1x x x P , 且有J AP P =-1.例11、求下列矩阵的Jordan 标准形及其相似变换矩阵P .(1) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----211212112 (2) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-200120010201012解 (1) 记⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=211212112A , 首先求出A 的Jordan 标准形⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+--=-2)1(11211212112λλλλλλA E , 那么A 的初等因子为2)1(),1(--λλ,故A 的Jordan 标准形为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1111J .再设],,,[321X X X P =由J AP P =-1得J X X X X X X A ],,[],,[321321=由此可得方程组⎪⎩⎪⎨⎧=--=-=-0)()(0)(3321X A E X X A E X A E首先解第一个方程,可得基础解系为T T ]1,0,1[,]0,1,1[21==ηξ,不妨选取T X ]0,1,1[1=,但是不能简单选取T X ]1,0,1[3=,因为3X 还要保证非齐次线性方程组33)(X X A E -=-有解.又由于第三个方程与第一个方程是同解方程组,所以其的任意解具有形式T c c c c c c X ),,()(212122113+=+=ηξ.为了使第二个方程有解,可选21,c c 的值使下面的两个矩阵的秩相等⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-2121111222111,111222111c c c c A E 只要选取1,221-==c c 即可.于是T X ]1,2,1[3-=,将其代入第二个方程,并解之得T X ]1,1,1[2=.容易验证321,,X X X 线性无关,所以取⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=110121111P 且有J AP P =-1.(2) 记⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=2000120010201012A . 首先求出A 的Jordan 标准形⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------=-3)2(2112000120010201012λλλλλλλA E . 那么A 的初等因子为3)2(,2--λλ,故A 的Jordan 标准形为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=221212J . 再求相似变换矩阵P ,设],,,,[4321X X X X P =由J AP P =-1即⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=221212],,,[],,,[43214321X X X X X X X X A , 于是可得方程组.2,2,2,24432321211X AX X X AX X X AX X AX =+=+==先求解线性方程组112X AX =和442X AX =,这是同解线性方程组,可得其全部解为2121,,]0,1,0,0[]0,0,0,1[k k k k T T +不全为零.为使2122X X AX +=有解,取T X ]0,0,0,1[1=,求出32)2(X X E A =-的全部解为T l l ]0,,1,[21,为了使3232X X AX +=有解,取1,021==l l ,再求解T X X E A ]0,1,1,0[)2(23==-,其全部解为T m m ],0,,0[21.于是取T T T T X X X X ]0,1,0,0[,]1,0,1,0[,]0,1,1,0[,]0,0,0,1[4321====.从而⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0100101001100001P 且有J AP P =-1.例12、已知⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2000310020111001A , 求可逆矩阵P ,使J AP P =-1. 解 采用两种方法求A 的初等因子组(1) 初等变换法⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=-20003100100120112000310020111001λλλλλλλλλA E ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------→20003100210)1(0000120003100210)1(0201122λλλλλλλλλ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------→00200130)1(03000012000310030)1(0000122λλλλλλ ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------→⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--------→)2()1(31000)1(10000300001)2()1(31020)1(130003000012222λλλλλλλλλ ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---→)2()1(000010000100001)2()1(3100001000010000122λλλλλλ A 的初等因子组为2,)1(,12---λλλ.(2) 特征多项式分析法 容易求得A 的特征多项式为)2()1()det()(3--=-=λλλλϕA E因为2)1(=-⋅A E rank ,所以)(λϕ的不可约因式3)1(-λ是A 的4-2=2个初等因子的乘积,这两个初等因子只能是1-λ和2)1(-λ,因此A 的初等因子组为2,)1(,12---λλλ.综上所述,可写出A 的Jordan 标准形为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=21111J . 下面计算相似变换矩阵P .A 的初等因子1-λ和2)1(-λ有相同的零点(不考虑重数),容易求出齐次线性方程组0)1(=-⋅x A E (1) 的一个基础解系为T T p p )0,1,1,0(,)0,1,1,0(21-==,因为非齐次线性方程组)2,1()1(=-=-⋅i p x A E i无解,所以选取齐次线性方程组(1)的另一个非零解为T k k k k p k p k p )0,,,0(212122113+-=+= (21,k k 不全为零)使得非齐次线性方程组3)1(p x A E -=-⋅ (2) 有解,并由此求得021=+k k .取11=k 时12-=k ,从而T p )0,0,2,0(3=,非齐次线性方程组(2)的一个解为T p )0,0,0,2(4=,于是可得.,,4)2(23)2(11)1(1p X p X p X ===而齐次线性方程组0)2(=-X A E 的一个非零解为T X )1,3,3,1()3(1=,因此⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡==1000300130211200),,,()3(1)2(2)2(1)1(1X X X X P , 且有J AP P =-1. 例13、求E A A A A A A g 462819)(3457-++--=,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=201034011A .解 0)(),2()1(254)(223=--=-+-=-=A f A E f λλλλλλλ.462819)(3457-++--=λλλλλλg .令c b a f g +++=λλλϕλλ2)()()(,则cE bA aA cE bA aA A A f A g ++=+++=22)()()(ϕ.用待定系数法求c b a ,,.⎪⎩⎪⎨⎧=++==+='=++=.2424)2(,162)1(,11)1(c b a g b a g c b a g 解得8,22,3-==-=c b a ,故⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-+-=2431904364016218223)(2E A A A g . 例14、A ∽J ,求A 的最小多项式,其中⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⨯212515015566J . 解 方法一 24)2()5()(--=-=-=λλλλλJ E A E f .因为0)2(,0)5(,0)5(232=-=-≠-E J J J J J ,故23)2()5()(--=λλλϕ,0)2()5()(23=--=E A E A A ϕ,故23)2()5()(--=λλλA m 是J 的最小多项式,也是A 的最小多项式.方法二 由A 的最小多项式与J 的关系知,特征值5=λ对应的Jordan 块最高阶为3,2=λ对应的Jordan 块最高阶为2,故23)2()5()(--=λλλA m .例15、3C 中,线性变换在某一基下的矩阵为A ,且A 的特征多项式为)1)(2()(2+-==-λλλλA m A E , 令}0)({},0)2({221=+==-=ββααE A W E A W ,(1) 证明21,W W 是A 的不变子空间,且213W W C ⊕=.(2) 在子空间21,W W 选取适当的基,合并为3C 的一组基,使T 在此基下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=010100002B . 证 (1) ))()(2()(i i m A +--=λλλλ,可见1W 是A 的特征值2=λ的特征子空间,1W 是A 的不变子空间.当i =λ时,则存在21W ∈β,使;11ββi A =i -=λ,则存在22W ∈β,使22ββi A -=,于是有],[212ββL W =,且2W 是A 的不变子空间,}0{21=W W ,故213W W C ⊕=.(2) 设2=λ对应的特征向量为α,i i -==λλ,对应的特征向量21,ββ,则有基21,,ββα,使得A T ~),,(),,(2121ββαββα=,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=i iA 2~. 由11ββi T =,令1,1-=+=i iY X β,Y X ,为线性无关的实向量.Y iX iTY TX iY X T T -=+=+=)(1β,可得⎩⎨⎧=-=.,X TY Y TX故有=-==),,2(),,(),,(X Y TY TX T Y X T ααα⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-010100002),,(Y X α. T 在基Y X ,,α下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=010100002B . 例16、用矩阵的Jordan 标准形求解线性微分方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧-+-=+-=+-=32132122118834x x x dtdx x x dtdx x x dt dx 这里321,,x x x 都是t 的函数.解 对方程组的系数矩阵A 求出其Jordan 标准形J 以及相似变换矩阵P ,且J AP P =-1,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=188034011A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100010011J ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=124012001P ,作变量替换⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡221321y y y P x x x ,那么原方程组可化为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡3221321321321'''y y y y y y y J y y y dt dy dt dy dt dy 即⎪⎪⎪⎩⎪⎪⎪⎨⎧-==+=3322211y dtdy y dt dy y y dt dy 可求得t t t t e k y e k y te k e k y -==+=3322211,,,于是⎪⎩⎪⎨⎧+++=++=+=-,)24(4)(,)12(2)(,)(3213212211t t t t t t t e k e t k e k t x e t k e k t x te k e k t x 其中321,,k k k 为任意常数.四、教材习题同步解析1、用初等变换把下列λ-矩阵化为Smith 标准形.1) ⎪⎪⎭⎫ ⎝⎛+-λλλλλλ352223 2) ⎪⎪⎪⎭⎫ ⎝⎛++2)1()1(λλλλ 解 1)、 21[(1)]32232[1,2]3222323[1,2]522352533523λλλλλλλλλλλλλλλλλλλλλλλλ⎛⎫+⎛⎫⎛⎫⎛⎫--+ ⎪→→→ ⎪ ⎪ ⎪ ⎪++-- ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 222050(103)0(103)33λλλλλλλλλλ⎛⎫+⎛⎫ ⎪ ⎪→→ ⎪ ⎪---- ⎪ ⎪⎝⎭⎝⎭. 2)、3222(1)(1)(1)00020(1)(2)1021λλλλλλλλλλλλλλλλλ+++⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪→→++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-+--⎝⎭⎝⎭⎝⎭22(1)1(1)(1)1(1)λλλλλλλλ+⎛⎫⎛⎫ ⎪ ⎪→+→+ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭. 2、求出下列矩阵的不变因子和行列式因子.1)⎪⎪⎪⎭⎫ ⎝⎛++2)1()1(λλλλ 2)⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----a b b a b a n λλλ121 ,其中11,-n b b 都是不为0的常数.解 1) 易知32321)1()(),1()(,1)(+=+==λλλλλλλD D D ,所以22331221)1()()()(),1()()()(,1)(+==+===λλλλλλλλλλλD D d D D d d .2) 易知121()()()1,()()n n n D D D D a λλλλλ-=====- ,所以 121()()()1,()()n n n d d d d a λλλλλ-=====- .3、求下列矩阵的若当标准形.1)⎪⎪⎪⎭⎫ ⎝⎛---502613803; 2)⎪⎪⎪⎭⎫ ⎝⎛--212044010; 3)⎪⎪⎪⎭⎫ ⎝⎛---544446235; 4)⎪⎪⎪⎭⎫ ⎝⎛-----8411362331; 5)⎪⎪⎪⎭⎫ ⎝⎛---568236013 ; 6)⎪⎪⎪⎭⎫ ⎝⎛--011231221 ; 7)⎪⎪⎪⎭⎫ ⎝⎛---496375254 ;8)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---01121413;9)⎪⎪⎪⎪⎪⎭⎫⎝⎛1000210032104321.解 1) 先求A E -λ的初等因子,使用初等变换得⎪⎪⎪⎭⎫ ⎝⎛++→⎪⎪⎪⎭⎫ ⎝⎛-+--+---→⎪⎪⎪⎭⎫ ⎝⎛+-+---=-2)1(00010001111613803502613803λλλλλλλλλλA E , 所以初等因子是2)1(),1(++λλ,因而A 的Jordan 标准形为⎪⎪⎪⎭⎫ ⎝⎛---=1111J 或⎪⎪⎪⎭⎫⎝⎛---11112)1010440440212122E A λλλλλλλ--⎛⎫⎛⎫⎪ ⎪-=-→-→ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭221001004(2)00(2)0122002λλλλλλ-⎛⎫⎛⎫⎪⎪--→- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭所以行列式因子3321)2()(,2)(,1)(-=-==λλλλλD D D ;不变因子2321)2()(,2)(,1)(-=-==λλλλλd d d ;初等因子组2)2(,2--λλ;Jordan 标准形为⎪⎪⎪⎭⎫ ⎝⎛2122或⎪⎪⎪⎭⎫ ⎝⎛2212.3) ⎪⎪⎪⎭⎫ ⎝⎛321[若当块次序可有不同];4) ⎪⎪⎪⎭⎫ ⎝⎛11111; 5)⎪⎪⎪⎭⎫ ⎝⎛-+i i 221;6) ⎪⎪⎪⎭⎫ ⎝⎛1112;7) ⎪⎪⎪⎭⎫ ⎝⎛0101; 8) 将A 写成分块形式⎪⎪⎭⎫ ⎝⎛=21A A A , 其中⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--=0112,141321A A .先分别求出21,A A 的初等因子 ⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛+--=-21)1(11413λλλλA E ,初等因子为2)1(-λ. ⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎭⎫ ⎝⎛--=-22)1(1112λλλλA E ,初等因子为2)1(-λ. 所以A 的初等因子为2)1(-λ,2)1(-λ.故Jordan 标准形为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛111111 9) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1111111. 4、求矩阵⎪⎪⎪⎭⎫ ⎝⎛--=130901025017A 的Jordan 标准形,并求变换矩阵P . 解 ⎪⎪⎪⎭⎫ ⎝⎛--→-2)2)(3(11λλλA E ,因此A ~⎪⎪⎪⎭⎫ ⎝⎛2123,即⎪⎪⎪⎭⎫ ⎝⎛==-21231J AP P ,PJ AP =,令),,(321x x x P =,可得 32322112,2,3x x Ax x Ax x Ax +===2321)2(,0)2(,0)3(x x A E x A E x A E -=-=-=- 由齐次线性方程组0)3(=-x A E ,可求得T x )0,1,0(1=; 由齐次线性方程组0)2(=-x A E ,可求得T x )3,0,5(2=; 把2x 代入2)2(x x A E -=-,可求得T x )1,0,2(3=.所以⎪⎪⎪⎭⎫ ⎝⎛=130001250P .5、已知3阶矩阵A 具有3重特征根1,是否可以说A 的若当标准形一定为⎪⎪⎪⎭⎫ ⎝⎛=11111J ,如果不一定,请说出此时A 的若当形有几种可能?都是什么样子?解 不一定;题设条件确定了A 的特征多项式为3)1()(-=λλψ.也就是说,A 的初等因子之积应为3)1(-λ.此时,初等因子组尚有如下一些可能:ⅰ)3)1(-λ;ⅱ)2)1(),1(--λλ;ⅲ))1(),1(),1(---λλλ.因此,相应的若当形也有三种可能,即ⅰ)⎪⎪⎪⎭⎫ ⎝⎛11111;ⅱ)⎪⎪⎪⎭⎫ ⎝⎛1111;ⅲ)⎪⎪⎪⎭⎫ ⎝⎛111. 6、求下列矩阵1)⎪⎪⎪⎭⎫ ⎝⎛----=221041040A ;2)⎪⎪⎪⎭⎫ ⎝⎛-311111002;3)⎪⎪⎪⎭⎫ ⎝⎛-----211212112; 4)⎪⎪⎪⎭⎫ ⎝⎛--011212213;5)⎪⎪⎪⎭⎫ ⎝⎛----444174147的最小多项式.解 1) ⎪⎪⎪⎭⎫ ⎝⎛++→-2)2(21λλλA E ,故最小多项式为23)2()(+=λλd . 2),311111002⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=-λλλλA E 其行列式因子为 ,1)(1=λD ),2()(2-=λλD .)2(3111)2()(33-=----=λλλλλD 不变因子为.)2()(,2)(,1)(2321-=-==λλλλλd d d 故Jordan 标准形为 ⎪⎪⎪⎭⎫ ⎝⎛2122,最小多项式2)2()(-=λλϕ. 3) ,211212112⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+--=-λλλλA E 因),1()(,1)(21-==λλλD D A E D -=λλ)(3,)1(3-=λ故()22211)(,1)(,1)(-=-==λλλλλd d d ,故⎪⎪⎪⎭⎫ ⎝⎛=1211J ,最小多项式2)1()(-=λλϕ. 4) )2()1(2--λλ;5) )12)(3(--λλ.7、方阵A 满足0=k A (k 为正整数),试说明A 的最小多项式取何种形式? 解 )0()(k l l ≤≤=λλϕ.8、设方阵A 满足E A =2,能否说)1)(1()(-+=λλλϕ一定是A 的最小多项式?如果已知1和-1都是A 的特征根,情况又怎样呢?解 提示:12-λ是A 的致零多项式,故最小多项式有三种可能:)1)(1(,1,1-+-+λλλλ.当1与-1均为A 的特征根时,最小多项式就是12-λ.9、已知方阵A 的特征多项式为)1()1()(2-+=λλλϕ,A 的最小多项式为1)(23+--=λλλλϕ.请给出A 的一个若当形,并简要说明原因.解 特征多项式为4次多项式,故知A 为4阶矩阵,A 的特征根为11-=λ(二重),12=λ(二重).由最小多项式)1()1()(2-+=λλλϕ可知A 的若当形J 中有两个若当小块为)1(,11121-=⎪⎪⎭⎫ ⎝⎛=J J . 因为J 的主对角线上应是A 的全部特征根,所以J 中还有另一个若当小块)1(3-=J .于是,A 的一个若当形为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=11111J .。
题型1:求V ∩M 的一个基 方法:课本习题一第9题1.求R 4的子空间V = {( a1 , a2 , a3 , a4 ) |a1 - a2 + a3 - a4 = 0} , W = {( a1 , a2 , a3 , a4 ) |a1 + a2 + a3 + a4 = 0} 的交V ∩ W 的一个基.(课本习题一第9题)2. 求3R 的子空间}02|),,{(}032,0|),,{(32132131321321=++==+=+-=a a a a a a W a a a a a a a a V的交W V⋂的一组基。
题型2:求V1+V2的维数及一个基 方法:课本习题一第10题1.)0,2,4(),0,1,2(),4,0,2(),2,0,1(2121====ββαα.若),(),,(212211ββααL V L V ==,求21V V +的维数及一组基。
初等行变换可参考/lesson_crs78/self/j_0022/soft/ch0603.html方法:课本习题二第3题方法:课本习题二第6题1.设321,,e e e 是三维欧氏空间的一组标准正交基,证明:)22(31),22(31),22(31321332123211e e e e e e e e e -+=++=+-=ααα也是一组标准正交基。
题型5:求方程组的标准正交基 方法:课本习题二第7题1.求齐次线性方程组022043214321=---=+-+x x x x x x x x 的解空间(作为的子空间)的一组标准正交基。
正交化标准化可参考https:///article/5bbb5a1be10d4813eba179ce.html方法:课本习题二第11题1.证明:如果一个上三角矩阵是正交矩阵, 则A 必为对角形矩阵, 且主对角线上的元素a ii = ±1 ( i = 1 , 2 , ⋯, n ) . (习题二第11题)方法:如下例题1.如果矩阵是正交矩阵, 求a ij ( i = 1,2 ,3,4;i<=j) .题型8:求最小二乘解方法:课本P32例2-9方法:课本习题二13题1.设Q P ,各为m 阶及n 阶方阵,证明:若n m +阶方阵⎥⎦⎤⎢⎣⎡=Q B P A 0是酉矩阵,则Q P ,也是酉矩阵,且B 是零矩阵。
矩阵分析复习第一章线性空间与线性变换一、线性空间1.线性空间:设V 是一个非空集合。
如果V 满足:(I)在V 中定义一个“加法”运算,即当V y x ,时,有唯一的和V y x (封闭性),且加法运算满足下列性质: (1)结合律z y x z y x )()(; (2)交换律x y y x ;(3)零元律O V ,称为零元, x V 有x O x ; (4)负元律x V , y V 称为x 的负元,使O y x 。
(II)在V 中定义一个“数乘”运算,即当K k V x ,时,有唯一的V kx (封闭性),且数乘运算满足下列性质: (5)数因子分配律ky kx y x k )(; (6)分配律lx kx x l k )(; (7)结合律x kl lx k )()( ;(8)恒等律x x 1;[数域中一定有1]2.线性空间的基与维数基:设V 是数域K 上的线性空间,)1(,,21 r x x x r 是属于V 的r 个任意元素,如果它满足(1)r x x x ,,21 线性无关;(2)V 中任一向量x 均可由r x x x ,,21 线性表示。
则称r x x x ,,21 为V 的一个基。
维数:基中的元素个数称为V 的维数,记为V dim 。
3.坐标:称线性空间n V 的一个基n x x x ,,21 为nV 的一个坐标系,nV x ,它在该基下的线性表示为:),2,1,,(1n i V x K x ni i ni ii则称n ,,21 为x 在该坐标系中的坐标或分量,记为Tn ),,(214.基变换与坐标变换:设n x x x ,,21 及n y y y ,,21 是nV 的两组基,),2,1(1n i x cy ni iij j即C x x x c c c c c c c c c x x x y y y n nn n n n n n n ,,,,,,212122221112112121其中C 称为过渡矩阵。
矩阵分析复习题矩阵分析复习题矩阵分析是线性代数中的一个重要分支,它研究的是矩阵的性质和运算。
在实际应用中,矩阵分析被广泛应用于各个领域,如物理学、工程学和计算机科学等。
为了更好地掌握矩阵分析的知识,我们需要进行一些复习题的训练。
下面,我将给大家提供一些矩阵分析的复习题,希望能够帮助大家巩固知识。
1. 矩阵的转置运算是指将矩阵的行和列互换。
请问,对于一个m×n的矩阵A,它的转置矩阵AT是多少?答案:AT是一个n×m的矩阵,它的第i行第j列的元素等于原矩阵A的第j行第i列的元素。
2. 矩阵的加法运算是指将两个矩阵的对应元素相加得到一个新的矩阵。
请问,对于两个m×n的矩阵A和B,它们的和矩阵C是多少?答案:C是一个m×n的矩阵,它的第i行第j列的元素等于矩阵A的第i行第j列的元素加上矩阵B的第i行第j列的元素。
3. 矩阵的乘法运算是指将两个矩阵按照一定规则相乘得到一个新的矩阵。
请问,对于一个m×n的矩阵A和一个n×p的矩阵B,它们的乘积矩阵C是多少?答案:C是一个m×p的矩阵,它的第i行第j列的元素等于矩阵A的第i行的元素与矩阵B的第j列的元素的乘积之和。
4. 矩阵的逆运算是指对于一个可逆矩阵A,存在一个矩阵B,使得AB=BA=I,其中I是单位矩阵。
请问,对于一个2×2的可逆矩阵A,它的逆矩阵A-1是多少?答案:设A=[a b; c d],其中a、b、c、d是矩阵A的元素。
如果ad-bc≠0,则A的逆矩阵A-1=[d/|A| -b/|A|; -c/|A| a/|A|],其中|A|=ad-bc。
5. 矩阵的特征值和特征向量是矩阵分析中的重要概念。
请问,对于一个n×n的矩阵A,它的特征值和特征向量的定义是什么?答案:设矩阵A的特征值为λ,特征向量为x,则有Ax=λx。
特征值λ是一个标量,特征向量x是一个非零向量。
通过以上的复习题,我们可以巩固矩阵分析的基本知识。
矩阵知识点总结大纲一、矩阵的基本概念1.1 矩阵的定义1.2 矩阵的元素1.3 矩阵的维数1.4 矩阵的转置1.5 矩阵的特殊矩阵二、矩阵运算2.1 矩阵的加法2.2 矩阵的数乘2.3 矩阵的乘法2.4 矩阵的转置2.5 矩阵的幂2.6 矩阵的逆2.7 矩阵的行列式2.8 矩阵的秩三、线性方程组与矩阵3.1 矩阵的行简化阶梯形式3.2 矩阵的列简化阶梯形式3.3 矩阵的增广矩阵3.4 矩阵的系数矩阵3.5 矩阵的齐次线性方程组3.6 矩阵的非齐次线性方程组四、矩阵的应用4.1 线性代数4.2 计算机图形学4.3 信号处理4.4 优化问题4.5 统计学4.6 量子力学五、矩阵分析5.1 矩阵的迹5.2 矩阵的本征值与本征向量5.3 矩阵的相似矩阵5.4 矩阵的对角化5.5 矩阵的奇异值分解5.6 矩阵的正交矩阵六、矩阵的特征6.1 矩阵的周期性6.2 矩阵的稀疏性6.3 矩阵的对称性6.4 矩阵的正定性6.5 矩阵的随机性七、矩阵的发展历程7.1 矩阵的起源7.2 矩阵的发展7.3 矩阵的应用八、矩阵的未来发展8.1 矩阵的应用领域拓展8.2 矩阵的理论深化8.3 矩阵的计算方法改进九、矩阵的教学与研究9.1 矩阵的教学模式9.2 矩阵的教学资源9.3 矩阵的研究方向十、矩阵的未来前景10.1 矩阵的应用前景10.2 矩阵的教学前景10.3 矩阵的研究前景十一、矩阵的总结与展望11.1 矩阵的总结11.2 矩阵的展望结语矩阵知识点总结一、矩阵的基本概念1.1 矩阵的定义矩阵是一个按照长方形排列的数表。
其中的元素可以是数字、符号或数学式。
矩阵是线性代数的基本概念,应用非常广泛,涉及几何学、概率论、微分方程以及物理学和工程学等各个学科。
1.2 矩阵的元素矩阵的元素是矩阵中的一个具体数值或符号。
1.3 矩阵的维数一个矩阵的维数是指矩阵的行数与列数。
如果一个矩阵有m行n列,则称其为m×n阶矩阵。
考研数学有哪些线性代数复习重点考研数学有哪些线性代数复习重点考生们在进入考研数学的感想阶段时,有哪些线性代数是需要复我们去。
店铺为大家精心准备了考研数学线性代数复习难点,欢迎大家前来阅读。
考研数学线性代数复习要点第一章行列式考试内容:行列式的概念和基本性质,行列式按行(列)展开定理。
考试要求:1、了解行列式的概念,掌握行列式的性质。
2、会应用行列式的性质和行列式按行(列)展开定理计算行列式。
第二章矩阵考试内容:矩阵的概念,矩阵的线性运算,矩阵的乘法,方阵的幂,方阵乘积的行列式,矩阵的转置,逆矩阵的概念和性质,矩阵可逆的充分必要条件,伴随矩阵,矩阵的初等变换,初等矩阵,矩阵的秩,矩阵的等价分块矩阵及其运算。
考试要求:1、理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质。
2、掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质。
3、理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。
4、了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法。
5、了解分块矩阵及其运算。
新大纲变化:矩阵一章增加了一个知识点“分块矩阵及其运算”。
解析及应对策略:08年大纲增加了“分块矩阵及其运算”,从而达到了与数学一、数学三和数学四对矩阵要求相统一。
从考试内容和考试要求上看,该知识点的增加其实是对矩阵内容考察的更加完善,充分体现了研究生入学考试的严谨性及对学生的综合能力的考察。
这部分内容的增加,加大了对数学二同学矩阵方面的要求。
同学们在复习这部分内容的时候,结合分块矩阵的定义及分块矩阵的运算性质。
还要对矩阵的几种运算要熟练,比如:对分块矩阵求逆矩阵,分块矩阵的四则运算法则等,做到全面不遗漏。
第三章向量考试内容:向量的概念,向量的线性组合和线性表示,向量组的线性相关和线性无关,向量组的极大线性无关组,等价的向量组,向量组的秩,向量组的秩与矩阵的秩之间的关系,向量的内积,线性无关向量组的的正交规范化方法。
自动化学院工程硕士《矩阵分析》复习
1 矩阵的基本概念:
秩,迹,特征根,特征向量,逆,广义逆,转置,谱半径
2 矩阵的标准形
相似(对角形,Jordan标准形),正交相似,酉相似(正规矩阵,上三角阵),合同相似(对称矩阵),奇异值分解
3 矩阵运算
加,减,乘,除,矩阵的幂,矩阵多项式
3 矩阵的特征多项式,最小特征多项式
4 矩阵的各种范数及其计算
5 特征根上解的估计,盖氏圆盘定理
5 线性空间的概念,基底,维数,子空间,维数定理,直和
6 线性变换,核,象,维数公式
7 欧氏空间,正交,正交变换,正交基
8 二次型,正定性
9 求对角形,Jordan标准形
10 向量序列,矩阵序列,求导,积分, 矩阵函数
附:
自动化学院工程硕士《矩阵分析》考试样题
1 判断正误(对正确的打“√”,对错误的打“×”)(20分)
(1) 同构的两个线性空间的维数可以不同。
( )
(2) 按通常矩阵加法及数与矩阵乘法,全体阶上三角矩阵的集合构成线性空间。
( )
n (3) 平移变换能够保持任意两个向量之间的距离不变,所以平移变换为正交变换。
( )
(4) 正规矩阵均可酉相似于对角阵。
( )
(5) 在线性变换下,线性相关的元素对应的象线性相关。
( )
(6) 如果存在正整数,使得m 0m A =,则矩阵A 的所有特征值均为零。
( )
(7) lim m m A O →+∞
=(零矩阵)的充要条件是,有一矩阵范数⋅,使得1A <。
( ) (8) 任何一个阶矩阵均可与一个上三角矩阵酉相似。
( )
n n ×(9) 根据矩阵的盖尔圆可对矩阵的特征值的分布作出估计。
( )
(10) 矩阵A 的每一个特征值都不大于该矩阵的任何一种范数。
( )
2 填空(30分)
(1) 线性空间n n R ×的维数为___________.
(2) 若矩阵,则其特征值为___________ a b A b a −⎛⎞=⎜⎝⎠
⎟⎟(3) 若矩阵, 则316212A ⎛⎞=⎜⎝⎠
A 的秩为___________ (4) 若矩阵A 为实的反对称矩阵,其特征值实部为_____________.
(5) 在3R 中,线性变换T 对任意的,,x y z ,满足(,,)(,,)T x y z y z z x x y =+++,则T 对应的矩阵为__________.
(6) 若矩阵1
3112A −⎡⎤⎢=⎢⎥−⎣⎦
⎥,则矩阵A 的盖尔圆为_______________ (7) 若非奇异,则0a c A a ⎛⎞=⎜⎝⎠
⎟1A −=_______________.
(8) 设11sin ,121T
m m x m ⎛⎞⎟=−⎜+⎝⎠lim m m ,则=______________ x →+∞(9) 已知,则2sin 2cos ()2t t t t A t e e −⎡⎤=⎢⎥⎣⎦
()d A t dt =_____________ (10) 若,则矩阵123312231A ⎛⎞⎜⎟=−⎜⎟⎜⎟⎝⎠
A 的迹等于_______________.
(11)若矩阵A 的初级因子为,则2(1),(2)λλ−−A 的约当标准形为________
(12) 设是3维欧氏空间,为中的一个取定的非零向量,子空间,则V a V 1{|(,)0,}V x x a x V ==∈1dim V =___________
(13) 设,则011001000N ⎡⎤⎢
⎥=⎢⎥⎢⎥⎣⎦
N =_________ (14) 设,则的特征值为_____________ 110021003A ⎡⎤⎢⎥⎥=⎢⎢⎥⎣⎦
3A (15) 设,则111311231A −⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦
det At e =_________. 3 (15分)在欧氏空间4R 中,求一单位向量与下列三个向量正交: (, (, (。
1,1,1,1)−1,1,1,1)−−2,1,1,3)4 (15分)已知矩阵563101121A −⎡⎤⎢⎥⎥=−⎢⎢⎥−⎣⎦
,求A 的特征值和特征向量,并求矩阵和,使得为对角形。
P 1P −1P AP −5 (20分)设,求 (1) 0102A −⎡=⎢⎣⎦
⎤⎥A 的特征方程和特征值;(2) ;(3) 。
cos A sin At e At。