高真空的获得与测量
- 格式:pdf
- 大小:418.26 KB
- 文档页数:11
真空获得与测量实验报告真空获得与测量实验报告引言:真空技术在科学研究、工业生产和医学诊断等领域具有重要的应用价值。
为了获得高质量的真空环境,科学家们进行了一系列的实验研究。
本实验旨在探究真空获得的方法和真空度的测量。
一、真空获得的方法1.机械泵机械泵是最常用的真空获得装置之一。
它通过机械运动将气体从容器中抽出,从而降低压力。
机械泵适用于中低真空范围,操作简便,但不能获得高真空。
2.扩散泵扩散泵是一种能够获得高真空的装置。
它通过将气体分子扩散到高速运动的喷嘴上,再通过冷凝或吸附的方式将气体排出。
扩散泵在高真空实验中具有广泛应用,但需要较长的预抽时间。
3.离心泵离心泵是一种利用离心力将气体从容器中排出的装置。
它适用于高真空获得,具有较高的抽速和较短的预抽时间。
离心泵广泛应用于科学研究和工业生产领域。
二、真空度的测量1.毛细流量法毛细流量法是一种常用的真空度测量方法。
它利用毛细管中气体流动的特性来测量真空度。
通过测量气体经过毛细管的流量和压差,可以计算出真空度的大小。
2.热导法热导法是一种基于热传导原理的真空度测量方法。
它利用热传导的速率与气体压力之间的关系来测量真空度。
通过在真空容器中加热一个导热体,测量导热体的温升和导热速率,可以计算出真空度的数值。
3.离子化法离子化法是一种基于气体分子电离的真空度测量方法。
它利用电离电流与气体压力之间的关系来测量真空度。
通过在真空容器中加入一个电离器,测量电离电流的大小,可以计算出真空度的大小。
结论:通过本次实验,我们了解了真空获得的方法和真空度的测量方法。
机械泵、扩散泵和离心泵是常用的真空获得装置,分别适用于不同的真空范围。
毛细流量法、热导法和离子化法是常用的真空度测量方法,各有优缺点。
在实际应用中,需要根据具体情况选择合适的真空获得装置和真空度测量方法,以获得高质量的真空环境。
参考文献:[1] 朱玉涛, 梁军. 真空技术与应用[M]. 北京: 科学出版社, 2011.[2] 陈伟, 张磊. 真空技术实验指导[M]. 北京: 高等教育出版社, 2019.[3] 李明, 王丽. 真空度测量方法的比较与分析[J]. 仪器仪表学报, 2018, 39(4): 1-8.。
真空获得与测量一、实验目的1.掌握高真空的获得和测量的基本原理及方法;2.了解真空玻璃系统的结构;熟悉真空泵、真空计的原理二、实验仪器DH2010型多功能真空实验仪三、实验原理一、真空的获得真空的获得是由真空泵来完成的。
一般真空实验室经常使用的是机械泵和扩散泵,用于超高真空的是钛升华泵和低温泵。
真空泵的基本原理:当泵工作后,形成压差,p1 > p2,实现了抽气。
真空泵按其工作机理可分为排气型和吸气型两大类.排气型真空泵是利用内部的各种压缩机构,将被抽容器中的气体压缩到排气口,而将气体排出泵体之外,如机械泵、扩散泵和分子泵等.吸气型真空泵则是在封闭的真空系统中,利用各种表面(吸气剂)吸气的办法将被抽空间的气体分子长期吸着在吸气剂表面上,使被抽容器保持真空,如吸附泵、离子泵和低温泵等.真空泵的主要性能可有下列指标衡量:(1)极限真空度:无负载(无被抽容器)时泵入口处可达到的最低压强(最高真空度)(2)抽气速率:在一定的温度与压力下,单位时间内泵从被抽容器抽出气体的体积,单位(升/秒)(3)启动压强:泵能够开始正常工作的最高压强.1、机械泵机械泵是运用机械方法不断地改变泵内吸气空腔的容积,使被抽容器内气体的体积不断膨胀从而获得真空的泵。
机械泵的种类很多,目前常用的是旋片式机械泵。
旋片式机械泵的结构如右图,它由一个定子、一个偏心转子、旋片、弹簧组成。
定子为一圆柱形空腔,空腔上装着进气管和出气阀门,转子顶端保持与空腔壁相接触,转子上开有槽,槽内安放了由弹簧连接的两个刮板.当转子旋转时,两刮板的顶端始终沿着空腔的内壁滑动.为了保证机械泵的良好密封和润滑,排气阀浸在密封油里以防止大气流入泵中。
油通过泵体上的缝隙、油孔及排气阀进入泵腔,使泵腔内所有的运动表面被油覆盖,形成了吸气腔与排气腔之间的密封。
同时,油还充满了泵腔内的一切有害空间,以消除它们对极限真空的影响。
工作时,转子沿着箭头所示方向旋转时,进气口方面容积逐渐扩大而吸入气体,同时逐渐缩小排气口方面容积将已吸入气体压缩从排气口排出。
真空获得与测量实验一、实验目的本实验的目的是利用真空获得与测量系统研究高真空的获得过程及该系统真空度随时间的变化率。
二、 实验仪器真空室、机械泵、分子泵、分子泵控制电源、热偶规、电离规、冷水机。
三、实验原理3.1 真空的基本知识1)真空及其单位所谓真空是指低于一个大气压的气体空间。
同正常的大气相比,是比较稀薄的气体状态。
当气体处于平衡时,可得到描述气体性质的气体状态方程,即 nkT p = (3-1) 或RT Mm pV =(3-2) 式中,p 为压强(Pa);n 是气体分子密度(个/m 3),V 为体积(m 3);M 为气体分子量(kg/mol);m 是气体质量(kg);T 是绝对温度(K);k 是玻尔兹曼常数(1.38×10-23J/K);R 为气体普适常数(8.314J /mol .K),也可用R =N A .k 来表示,N A 是阿伏伽德罗常数(6.023×1023个/mol)。
于是,由式(3—1)可得Tp n 22102.7⨯= (3-3) 由式(3—3)可知,在标准状态下.任何气体分子的密度约为3×1019个/cm 3。
即使在p=1.3×10-11Pa 这样很高的真空度时,T=293K ,则n =4×103个/cm 3。
因此,所谓真空是相对的,绝对的真空是不存在的。
通常所说的真空是—种“相对真空”。
在真空技术中对于真空度的高低,可以用多个参量来度量,最常用的有“真空度”和“压强”。
此外,也可用气体分子密度、气体分子的平均自由程、形成一个分子层所需的时间等来表示。
“真空度”和“压强”是两个概念,不能混淆.压强越低意味着单位体积中气体分子数愈少,真空度愈高,反之真空度越低则压强就越高。
由于真空度与压强有关,所以真空的度量单位是用压强来表示。
在真空技术中,压强所采用的法定计量单位是帕斯卡(Pascal),系千克米秒制单位,简称帕(Pa),是目前国际上推荐使用的国际单位制( SI)。
近代物理实验期末考试试题及答题要点1.(实验名称:核衰变的统计规律)(1)测量G-M 计数管的坪曲线目的是什么?(2)某学生用G-M 计数管探测到某一放射源放射的粒子,每次测量的时间为30秒,共测量100次,测量数据如下表所示;用χ2检验方法判断测量结果是否服从泊松分布(219.49αχ-=)。
已知泊松分布的概率函数式为: ()P n =!nm m e n - 。
【答题要点】(1) 检验G-M 管是否正常和确定工作电压。
(2) m=2.51,选用皮尔逊统计量作X 2检验,考虑到计算X 2值时每个区间的频数不能太少,于是把5i k >以上的数据合为一个区间,其余数据均可单独作为一个区间。
因,100i i E NP N ==则 02.511 2.51(0)1008.1!0!m k m E k N e e k --===⨯= 12.512 2.51(1)10020.41!E k e -==⨯= 同理可得3(2)25.5E k ==;4(3)21.3E k ==;5(4)13.4E k ==;6(5)11.3E k >=可求得:2621() 2.12i i i i N E E χ=-==∑ 选定显著水平 a=0.05,查X 2分布表得219.49αχ-=。
由于221αχχ-<,故可判断观测结果与泊松分布无显著差异。
2.(实验名称:高真空的获得与测量)(1)真空的基本特点:1) 2) 3) 。
(2)衡量真空泵的两个重要指标是: 和 。
(3)某一真空系统当用机械泵抽到1.2×10-1Pa 后打开扩散泵,几分钟后真空度开始下降,直到几十Pa ,后又开始上升直到小于1×10-2Pa 。
请解释这一现象。
【答题要点】(1)真空空间气体分子密度极小,仅为大气压下分子密度的万亿分之一;气体分子或带电粒子的平均自由程极长;气体分子与固体表面碰撞的频率极低。
(2)极限压强; 抽气速率(3)首先是油受热体积膨胀致使压强增大,真空度下降;当油蒸气遇到冷却水冷凝后,压强变小,真空度变大,随着油不断的蒸发和冷凝,上下形成一定的压强差,直到真空度小于1×10-2Pa 。
真空的获得与测量实验报告摘要本实验利用机械泵和扩散泵来获得高真空状态,由复合真空计测量被抽容器所能达到的真空度。
通过本实验我们了解了真空的获得与测量以及相关仪器的工作原理,掌握了初级真空、高真空的获得与测量的基本方法。
本实验重点就是注意事项,通过本次实验不仅仅掌握了本实验仪器的注意事项,并且了解了对于实验仪器的注意事项分析方法。
关键词机械泵,扩散泵,真空计,高真空正文1643年,意大利物理学家托里拆利(E.Torricelli)首创著名的大气压实验,获得真空。
1654年,德国物理学家葛利克发明了抽气泵,做了著名的马德堡半球试验。
真空技术在工业生产和科学研究中广泛的应用。
真空技术主要包括真空的获得、测量和检查漏气等方面的内容。
目前,真空技术在近代尖端科学技术,如高能粒子加速器、大规模集成电路、表面科学、薄膜技术、材料工艺和空间技术等工作中都占有关键的地位,在一般工业生产中的应用则种类繁多,包括化学工业、医学工业、制盐制糖工业、食品工业、电子工业等。
一、原理简析及仪器设备简介真空状态下气体的稀薄程度称为真空度,通常用压力值表示。
真空度越高,气体压强越低,气体分子越稀少。
根据压强值的不同,大致可分为五个区域:粗真空760~10托,低真空10~10-3托,高真空10-3~10-8托,超高真空10-8~10-12托,极高真空小于10-12托。
(一)真空的获得实验中利用机械泵和扩散泵来获得高真空状态。
下面对它们进行一下简单的介绍。
1.机械泵机械泵是运用机械方法不断地改变泵内吸气空腔的容积,使被抽容器内气体的体积不断膨胀从而获得真空的泵。
机械泵目前常用的是旋片式机械泵。
使用机械泵时应注意:①应经常保持油位在油标线附近,以保持其良好的密封性。
②开启机械泵时,应保证电源之三相均有良好的电接触,应使转子转动方向与箭头方向一致(顺时针),不得反转。
③保持泵内清洁,防止异物落入。
④泵运转过程中,操作者不得离开,一旦电源发生故障应及时处理。
高真空的获得与测量一、引言随着各门科学技术的迅速发展和相互渗透,真空作为一门单独的学科已显得尤为重要,它与电真空工业、原子能、宇宙航行及空间科学研究、表面物理研究、微电子学及真空冶金等有着紧密的联系并有着广泛的应用。
真空技术的主要环节和基础是真空的获得、真空的测量及真空检漏等,我们将通过本实验对这些手段进行初步的认识和了解。
二、实验目的1.熟悉简单的高真空系统。
2.掌握获得高真空的手段及测量方法。
3.学习真空系统的基本抽气方程。
三、实验原理一个真空系统,工作时除了真空泵的抽气因素外,还存在着相反因素,如器壁本体材料及内部零件表面的气体脱附(出气),外界向系统的漏气及反扩散等。
在任何瞬间,容器中的压强实际上是由这两种相反因素间的动态平衡所决定的。
真空系统简化抽气示意图如图8.1-1。
设被抽容器体积为V,经管道与真空泵相连,由式(8.0-1)知泵的抽速为。
由于管道对气流的阻碍,容器出口处的有效抽速降为S e(S e<S p)。
气体在流动中,其流量定义为单位时间内流过的气体量,而气体量由气体压强与体积的乘积PV所决定,则对于上述系统,每秒从容器抽掉的气体量为PS e。
被抽容器除了原有大气之外,还存在器壁本体材料及内部零件表面的气体出气量(脱附率)QD和漏气率QL。
这样每秒从容器掉的气体量应等于容器空间中气体量的减少率及由各种气源向容器注入气体量增加率之差,即LD L D e Q Q dt dPV Q Q dt PV d PS ++-=++-=)( (8.1-1)此即真空系统的基本抽气方程。
若求出压强P作为时间的函数,便掌握了抽气过程的基本情况。
1.当抽气进行了足够长时间后,容器压强不再变化,此时即为极限压强Pu。
上式中0=dtdP 就得极限压强eLD u S Q Q P +=(8.1-2)故要想得到低的极限压强,应尽量提高有效抽速,并降低漏气量与出气量。
2.在忽略容器漏气量QL及气体出气量QD时,上式变为:dt P d V Pdt dP V S e )(ln ⋅-=⋅-= (8.1-3)利用此式可近似计算有效抽速。
云南大学物理实验教学中心实验报告课程名称:近代物理实验实验项目:真空的获得与测量学生姓名:朱江醒学号: 20051050148 物理科学技术学院物理系2005级数理基础科学专业指导教师:葛茂茂实验时间: 2007年 12月 23 日 8 时 30 分至12时 30 分实验地点:物理馆实验类型:教学(演示□验证□综合□设计□) 学生科研□课外开放□测试□其它□一.实验目的1.学习高真空的获得与测量方法。
2.熟悉有关设备和仪器的使用方法。
二.实验原理真空技术在工业生产和科学研究中广泛的应用。
真空技术主要包括真空的获得、测量和检查漏气等方面的内容。
1.高真空的获得获得真空用真空泵。
真空泵按工作条件的不同分为两类:能够在大气压下工作的真空泵称为初级泵(如机器泵),用来产生预备真空,需要在预备条件下才能工作的真空泵称为次级泵(如扩散泵),次级泵用来进一步提高真空度,获得高真空。
(1)机器泵一般采用油封转片式机器泵,在圆柱形气缸(定子)内有偏心圆柱作为转子,当转子绕轴转动时,其最上部与气缸内表面紧密接触,沿转子的直径装有两个滑动片(简称滑片),其间装有弹簧,使滑动片在转子转动时与气缸内表面紧密接触,当转子沿箭头所指方向转动时,就可以把被抽容器内的气体由进气管吸入而经过排气孔,排气阀排出机械泵。
为了减少转动摩擦和防止漏气,排气阀及其下部的机械泵内部的空腔部分用密封油密封。
机械泵用的密封油是一种矿物油,要求在机械泵的工作温度下有小的饱和蒸汽压和适当的粘度,机器泵的极限真空度一般在10-2~10-4mmHg,抽气速率一般为每分钟数十升到数百升。
(2)扩散泵一般多采用油扩散泵,扩散泵是高真空泵,当机器泵的极限真空度不能满足要求时,通常加扩散泵来获得高真空。
这种泵不能从通常气压下开始工作,只能在低于1Pa气压下才能工作。
因此,必须与初级泵串联使用。
油扩散泵使用的工作液体有许多种,目前广泛使用的是274号硅油(20℃时饱和汽压为1.3×10-7Pa)和275号硅油(20℃时饱和汽压为1.3×10-8Pa)。
7-1 真空的获得与测量实验引言真空技术已成为先进的科学技术之一,被广泛应用于工业生产、科学研究的各个领域。
它与电子管真空工业、原子能、宇宙航行及空间科学研究、表面物理研究、微电子学等有着紧密地联系。
真空技术的主要环节和基础是真空的获得,真空的测量及真空检漏等,通过本实验我们将对这些实验的方法和手段进行初步的学习和了解。
实验预习1.学习旋片式机械真空泵、油扩散泵的工作原理;2.了解真空的获得与测量实验系统及实验注意事项。
实验目的1.通过低真空的获得,学习使用旋片式机械真空泵和测量低真空的热偶计。
掌握测量容器的体积比。
2.通过高真空的获得,学习使用油扩散真空泵和测量高真空的电离真空计。
3.了解玻璃管和金属在高真空中的放气现象和去气方法。
4.通过制作放电管,掌握对放电管充气方法,观察放电管放电现象,并计算最佳放电时放电管内的气压差。
4.测量氦(或氖)放电管光谱,并进行光谱分析(选做)。
实验原理一、真空的获得1.真空泵真空的获得主要是利用气体分子的运动特性,借助真空泵把封闭在真空系统中运动的气体分子排出泵外或者吸收(气体分子永远或暂时留在泵内),同时,阻止外部的气体分子通过真空泵进入真空系统。
真空系统内部由于泵口分子被排出导致系统内部的气体浓度不均匀,气体分子会持续不断的向泵口运动,从而形成了“抽”气过程,使得真空系统内部压强低于外部空间,即获得了真空。
对于前一种将气体分子排出泵外的系统,称为开放式抽真空系统,利用真空泵吸收气体分子的系统称为封闭式抽真空系统。
真空系统所能达到的真空程度与真空系统的封闭性,真空泵的工作机理和结构,被抽气体的种类以及真空泵与被抽系统的连接方式有很大的关系。
不同的真空泵适用于不同的真空范围,在实验中开放式系统常用的真空泵有:旋片式机械泵、油扩散泵、罗茨泵、涡轮分子泵等。
封闭式系统常用的真空有:吸附泵、锆铝(钛)泵、离子泵和钛升华泵等。
开放式系统常用的真空泵的工作原理和使用方法可参见“真空技术基本知识部分”。