离心泵管路特性曲线
- 格式:xls
- 大小:27.50 KB
- 文档页数:1
实验四 离心泵特性曲线的测定一. 实验目的1.熟悉离心泵的构造和操作;2.掌握离心泵在一定转速下特性曲线的测定方法。
二. 基本原理离心泵的主要性能参数有流量Q 、压头H 、效率η和轴功率N 。
在一定转速下,离心泵的输液能力(流量)可以通过调节出口阀门使之从零至最大值间变化。
而且,当其流量变化时,泵的压头、功率及效率也随之变化。
因此,要正确选择和使用离心泵,就必须掌握流量变化时,其压头、效率和功率的变化规律,即查明离心泵的特性曲线。
用实验方法测出某离心泵在一定转速下的Q 、H 、N 、η,并做出H-Q 、N-Q 、η-Q 曲线,称为该离心泵的特性曲线。
1. 流量Q 的测定泵的流量可以用容积法或标准流量计测量。
本实验采用涡轮流量计测量离心泵的流量。
涡轮流量计显示表显示的是瞬时流量值,单位是升/秒。
2. 泵的压头H 的测定离心泵的压头是指泵对单位重量流体所提供的有效能量,单位为m 。
在进口真空表和出口压力表两测压点截面间列伯努利方程,忽略阻力损失,两测压点处管径一致时,有:)(H 1212Z Z gp g p -+-=ρρ m若两侧压表头在同一水平处,上式变为:gp p H ρ12-=m (4—1)式中:p2---离心泵的出口压力表示值,Pa ; -p1--离心泵的入口真空表示值,Pa ; ρ---离心泵输送液体的密度,kg/m3。
3. 轴功率N 的测定离心泵的轴功率是泵轴所需的功率,也是电机传给泵轴的功率。
本实验装置采用马达-天平测功器测定此轴功率。
马达-天平测功器是水泵实验常用的测功方法之一,其有准确和使用可靠的优点。
它是在拖动泵的交流电动机外壳(定子)两端加装轴承,使外壳能自由转动。
外壳连有测功臂和平衡锤,后者用以调整零位。
当电动机带动水泵运转时,由于反作用力的作用会使外壳反方向旋转;此反向力矩相同。
如果在测功臂上加上适当的砝码,即可保持外壳不转动。
此时所加砝码重量乘以测功臂长度,就是电动机输出的转矩,即电动机输出的功率为:7.97310006081.92N PLn PLn =⨯⨯=π kW (4-2)式中:P---测功臂上所加砝码的数量,kg ; L---测功臂长度,m ;本装置L=0.4869m; n---转速,转/分。
离心泵的工作点及管路的特性曲线【备课时间】2010年9月25日15:29:16第一课时【学习目标】1、掌握离心泵的工作点及管路的特性曲线2、掌握离心泵的操作及注意事项 【自学指导】七、离心泵的工作点及管路的特性曲线1、管路特性曲线:表示管路所需外加压头与流量的函数关系的曲线。
2、管路特性曲线的推导:qVB A H 2+=3、图像表示:4、结论:①管路所需要的外加压头随q v 2而变化 ②管路阻力越大,曲线越陡,5、泵的工作点:管路特性曲线qVB A H 2+=与泵的H —q v 曲线的交点①泵的工作点坐标既是泵实际工作时的流量及杨程,也是管路的流量和所需的外加压头。
6、泵的工作点的意义: ②表明当泵配在这条管路使用时,只有这一点能完全供应管路需要的流量和外加压头。
③一定的管路和一定的泵能够配合时,一定有而且只有一个工作点。
7、泵的工作点与离心泵的设计点区别于联系:例题:下列说法正确的是( )A.一台离心泵只有一个工作点B.一台离心泵只有一个设计点C.离心泵只能在工作点工作D.离心泵只能在设计点工作解析:设计点是离心泵的最高效率点,它随离心泵的转速和叶轮的直径不同而不同,一台泵可以有多个设计点,在转速和叶轮直径不变的情况下,泵的效率随流量的变化而变化,泵在不同管路中运行时,其流量和杨程是不同的,所以虽然泵在设计点下运行最为经济,但在实际工作中不大可能在设计点工作。
工作点为管路特性曲线qVBAH2+=与泵的H—q v曲线的交点。
当泵在管路中工作时,流量和杨程之间的关系既要满足泵的特性又要满足管路的特性,即只能在工作点工作,但同样一台泵在不同的管路和原管路的特性曲线改变后,工作点也随之改变,只有在泵和管路都确定后,工作点才只能有一个。
第二课时八、离心泵的调节1、什么是离心泵的调节?调整泵的流量,改变泵的工作点。
(实质)2、为什么要对离心泵进行调节?(或离心泵调节的意义?)3、离心泵的调节途径有哪些?方法:调节离心泵出口阀的开度原因:关小阀门——管路阻力上升——管路特性曲线变陡工作点左上移——q v下降开大阀门——管路阻力下降——管路特性曲线变坡①调节管路(改变管路特性)工作点左下移——q v上升——He下降——Pa增加曲线表示:注意事项:不能用关小泵入口阀门的方式来减少流量,因为这样易导致汽蚀现象的发生。
实验四 离心泵及管路特性曲线测定一. 实验目的1. 熟悉离心泵的操作方法及实验中开闭阀门顺序;2. 掌握实验原理;3. 掌握离心泵特性曲线和管路特性曲线的测定方法,表示方法,加深对离心泵性能的了解;4. 熟悉各种仪表的使用;5. 掌握如何处理实验数据。
二. 实验仪器和药品天津市鹏翔科技有限公司离心泵及管路特性实验装置 1台 实验介质 自来水 三. 实验原理(一)离心泵特性曲线离心泵是最常见的液体输送设备。
在一定的型号和转速下,离心泵的扬程H 、轴功率N 及效率η均随流量Q 而改变。
通常通过实验测定出H —Q 、N —Q 及η—Q 关系,并用曲线表示之,成为离心泵特性曲线。
离心泵特定曲线是确定泵的适宜操作条件和选用泵的重要依据。
泵的特性曲线的具体测定方法如下: 1. H 的测定在离心泵进出口管装设真空表和压力表,在相应的两截面列出机械能恒算方程式(以单位重量液体为横算计准)。
出入出出出入入入-+++=+++f H gu g P Z H g u g P Z 2222ρρ 出入入出入出入出-+-+-+-=f H gu u gP P Z Z H 222ρ上式中H f 入-出是泵的吸入口和压出口之间管路内的流体流动阻力(不包括泵体内部的流动阻力所引起的压头损失),当所选的两截面很接近泵体时,与柏努利方程中其它项比较,H f 入-出值很小,故可忽略。
于是上式变为:gu u gP P Z Z H 222入出入出入出-+-+-=ρ将测的(Z 出-Z 入)和(P 出-P 入)的值以及计算所得的μ入,μ出代入上式可求得H 的值。
2. N 的测定功率表测得的功率为电动机的输入功率。
由于泵由电动机直接带动,传动效率可视为1.0,所以电动机的输出功率等于泵的轴功率。
即:泵的轴功率N=电动机的输出功率,KW电动机的输出功率=电动机的输入功率×电动机的效率 泵的轴功率=功率表的读数×电动机效率,KW 3. η的测定N Ne=η 其中1021000ρρHQ g HQ Ne == KW 式中:η---泵的效率; N---泵的轴功率,KW Ne---泵的有效功率,KW H---泵的压头,m Q---泵的流量,m 3/s ρ---水的密度,Kg/m 3 (二)管路特性曲线当离心泵安装在特定的管路系统中工作时,实际的工作压头和流量不仅与离心泵本身的性能有关,还与管路特性有关,也就是说,在液体输送过程中,泵和管路二者是相互制约的。
离心泵及管路特性曲线测定
离心泵是一种常用的流体机械,用于输送液体和气体。
离心泵的特性曲线测定是为了了解泵的性能和工作条件,以便在实际应用中选择和调整泵的工作状态。
离心泵的特性曲线主要包括流量-扬程特性曲线和效率-流量特
性曲线。
流量-扬程特性曲线测定:测定离心泵在不同转速下的流量和
扬程之间的关系。
实验中,通过改变泵的转速和出口阀门的开度,测量不同工况下的流量和扬程。
根据实验数据,可以绘制出泵的流量-扬程特性曲线,描述泵在不同工况下的工作状态。
效率-流量特性曲线测定:测定离心泵在不同流量下的效率。
实验中,通过改变泵的转速和出口阀门的开度,测量不同工况下的效率。
根据实验数据,可以绘制出泵的效率-流量特性曲线,描述泵在不同流量下的能量转换效率。
离心泵和管路特性曲线测定还可以包括压力-流量特性曲线和
功率-流量特性曲线的测定。
这些特性曲线给出了泵和管路在
不同工况下的工作状态和性能指标,可以作为选择和调整泵的参考依据。
离心泵选型时如何看它特性曲线图
离心泵的特性曲线图
离心泵的特性曲线是将由实验测定的Q、H、N、η等数据标绘而成的一组曲线。
此图由泵的制造厂家提供,供使用部门选泵和操作时参考:
不同型号泵的特性曲线不同,但均有以下三条曲线:
(1)H-Q线表示压头和流量的关系;
(2)N-Q线表示泵轴功率和流量的关系;
(3)η-Q线表示泵的效率和流量的关系;
(4)泵的特性曲线均在一定转速下测定,故特性曲线图上注出转速n值。
离心泵特性曲线上的效率最高点称为设计点,泵在该点对应的压头和流量下工作最为经济。
离心泵铭牌上标出的性能参数即为最高效率点上的工况参数。
离心泵的性能曲线可作为选择泵的依据。
确定泵的类型后,再依流量和压头选泵。
下面我们专门搜集了一些离心泵的类型和选用的规律,希望对您的实际选用有所帮助
一、离心泵的类型
按被输送液体的性质可分为:
(1)水泵(B型、D型、sh型)用于输送清水及物理、化学性质类似于水的清洁液体。
(2)耐腐蚀泵(F型)用于输送酸、碱等腐蚀性液体。
(3)油泵(Y型)用于输送石油产品。
二、离心泵的选用
(1)根据被输送液体的性质及操作条件确定类型;
(2)根据流量(一般由生产任务定)及计算管路中所需压头,确定泵的型号(从样本或产品目录中选取);
(3)若被输送液体的粘度和密度与水相差较大时,应核算泵的特性参数:流量、压头和轴功率。
选择离心泵时,可能有几种型号的泵同时满足在最佳范围内操作这一要求,此时,可分别确定各泵的工作点,比较工作点上的效率,择优选取。
离心泵的特点是,送液能力大,流量均匀,但产生的压头不高,且压头随着流量的改变而变化。
图文解析离心泵的特性曲线一、离心泵的特性曲线定义当转速n为常量时,列出扬程(H)、轴功率(N)、效率(η)以及允许吸上真空高度(Hs)等随流量(Q)变化的函数关系,即:H = f(Q);N = F(Q);Hs = Ψ(Q);η= φ(Q),我们把这些方程关系用曲线来表示,就称这些曲线为离心泵的特性曲线。
离心泵的特性曲线是液体在泵内运动规律的外在表现形式,这三条曲线需要根据试验的方法(采用离心泵特性曲线的测定装置,逐渐开启水泵出口阀门改变其流量,测得一系列的流量及相应的扬程和轴功率,然后将H一Q、N —Q、η一Q曲线绘制在同一张坐标纸上,即为一定型式离心泵在一定转速下的特性曲线),不同的水泵特性曲线不同,水泵的特性曲线由设备生产厂家提供。
严格意义上讲,每一台水泵都有特定的特性曲线。
在水泵特性曲线上,对应任意流量点都可以找到一组与其相对应的扬程、轴功率和效率值,通常把这一组相对应的参数称为工况,其对应最高效率点的一组工况称为最佳工况。
在生产实践中,水泵的运行工况点是通过管路的特性曲线与水泵的特性曲线确定的(M工况点,见下图)。
在选择和使用泵时,使水泵在高效区运行,以保证运转的经济和安全。
二、影响离心泵特性曲线的因素离心泵的特性曲线与很多因素有关,如液体的粘度与密度、叶轮出口宽度、叶片的出口安放角与叶片数及离心泵的压出室形状等均会对离心泵的特性曲线产生影响。
1、叶轮出口直径对性能曲线的影响在叶轮其它几何形状相同的情况下,如果改变叶轮的出口直径,则离心泵的特性曲线平行移动,见下图。
根据这一特性,水泵制造厂和使用单位可以采用车削离心泵叶轮外径的方法改变一台泵的性能范围,以使泵的性能更适合实际运行需要。
例如,某厂的一台离心式循环泵,其运行压力偏高,为降低压力,将叶轮外径由270mm车削到250mm后,在流量相同的情况下,压力下降,给水泵的电机电流减小,满足了运行的要求。
2、转速与性能曲线的关系同一台离心泵输送同一种液体,泵的各项性能参数与转速之间的关系式为:Q1/Q2 = n1/n2H1/H2 = (n1/n2)2Nl/N2 = (n1/n2)2三、理论特性曲线的定性分析1、理论扬程特性曲线的定性分析由HT =中,将C2u = u2 - C2rctgβ2 代入,可得:HT =(u2 - C2rctgβ2)叶轮中通过的水量可用此式表示:QT = F2C2r,也即:C2r =式中QT:泵理论流量(m3/s);F2:叶轮的出口面积(m2);C2r:叶轮出口处水流绝对速度的径向(m/s)。
实验二 离心泵特性曲线的测定一、实验目的1.了解离心泵结构与特性,熟悉离心泵的使用;2.掌握离心泵特性曲线测定方法;3.掌握电动调节阀的工作原理和使用方法;4. 学习泵串联与串并联的操作方法。
二、基本原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。
由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。
1.扬程H 的测定与计算取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程:f h gu g p z H g u g p z ∑+++=+++2222222111ρρ (1-1) 由于两截面间的管长较短,通常可忽略阻力项f h ∑,速度平方差也很小故可忽略,则有 (=H gp p z z ρ1212)-+- 210(H H H ++=表值)(1-2) 式中: 120z z H -=,表示泵出口和进口间的位差,m ;ρ——流体密度,kg/m 3 ;g ——重力加速度 m/s 2;p 1、p 2——分别为泵进、出口的真空度和表压,Pa ;H 1、H 2——分别为泵进、出口的真空度和表压对应的压头,m ;u 1、u 2——分别为泵进、出口的流速,m/s ;z 1、z 2——分别为真空表、压力表的安装高度,m 。
由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。
2.轴功率N 的测量与计算k N N ⨯=电 (W ) (1-3)其中,N 电为电功率表显示值,k 代表电机传动效率,可取95.0=k 。
3.效率η的计算泵的效率η是泵的有效功率Ne 与轴功率N 的比值。
有效功率Ne 是单位时间内流体经过泵时所获得的实际功,轴功率N 是单位时间内泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。
实验二离心泵特性曲线的测定实验一实验内容测定一定转速下离心泵特性曲线二实验目的1 了解离心泵的结构特点, 熟悉并掌握离心泵的工作原理和操作方法。
2 掌握离心泵特性曲线的测定方法三基本原理离心泵特性, 通常与泵的结构、泵的转数以及所输送的液体有关, 影响因素很多, 只能采用实验的方法实际测定。
根据伯努利方程得到扬程的计算公式He=P2gρ−P1gρ+h0+u22−u122g式中,h-二测压点截面之间的垂直距离, m 此次实验中h=0P1-真空表处截面的绝对压力, Mpa;P2-压力表处截面的绝对压力, Mpa U1-泵进口管流速, m/s;U2-出口管流速, m/s;He-泵的实际扬程离心泵的效率为泵的有效功率与轴功率之比值: ŋ=NeN轴式中ŋ-离心泵的效率;Ne-离心泵的有效功率, kw;N轴-离心泵的轴功率, kw。
有效功率可按下式计算:Ne= HeQρg[W]输入电机的电能在转变为机械能时存在一定的损失, 因此工程上有意义的是测定离心泵的总效率:ŋ总=ŋ轴ŋ电在此次实验中ŋ总≈1实验时, 使泵在一定转速下运转, 测出对应于不同流量的扬程、电机输入功率、效率等参数值, 将所得数据整理后用曲线表示, 即得到泵的特性曲线。
四实验设计流量用涡轮流量计测定, 计算式为: Q=f/ξ其中- Q流量, L/s;f-流量计的转子频率;ξ-涡轮流量计的仪表系数电机功率采用数字仪表测量:N电=15*显示读数(kw)水的温度由温度计测定, 温度及安装在泵出口管路的上方五实验装置及流程主要设备: 离心泵, 循环水箱, 涡轮流量计, 流量调节阀, 压力表, 真空表, 温度计1-水槽 2-真空表 3-压力表 4-离心泵 5-功率表 6-温度计 7-涡轮流量计 8-控制阀设备及流程说明实验装置及流程如上图所示, 由离心泵和进出口管路、压力表、真空表、涡轮流量计、和调节控制阀组成测试系统。
试验物料为自来水, 为节约起见, 配置水箱循环使用, 由这次试验的装置可以看到实验开始时不需要灌泵, 流量通过控制阀调节, 通过涡轮流量计测量其大小。
·1·第一节 离心泵2-1-1 离心泵的工作原理离心泵的种类很多,但工作原理相同,构造大同小异。
其主要工作部件是旋转叶轮和固定的泵壳(图2-1)。
叶轮是离心泵直接对液体做功的部件,其上有若干后弯叶片,一般为4~8片。
离心泵工作时,叶轮由电机驱动作高速旋转运动(1000~3000r/min ),迫使叶片间的液体也随之作旋转运动。
同时因离心力的作用,使液体由叶轮中心向外缘作径向运动。
液体在流经叶轮的运动过程获得能量,并以高速离开叶轮外缘进入蜗形泵壳。
在蜗壳内,由于流道的逐渐扩大而减速,又将部分动能转化为静压能,达到较高的压强,最后沿切向流入压出管道。
在液体受迫由叶轮中心流向外缘的同时,在叶轮中心处形成真空。
泵的吸入管路一端与叶轮中心处相通,另一端则浸没在输送的液体内,在液面压力(常为大气压)与泵内压力(负压)的压差作用下,液体经吸入管路进入泵内,只要叶轮的转动不停,离心泵便不断地吸入和排出液体。
由此可见离心泵主要是依靠高速旋转的叶轮所产生的离心力来输送液体,故名离心泵。
离心泵若在启动前未充满液体,则泵内存在空气,由于空气密度很小,所产生的离心力也很小。
吸入口处所形成的真空不足以将液体吸入泵内,虽启动离心泵,但不能输送液体,此现象称为“气缚”。
所以离心泵启动前必须向壳体内灌满液体,在吸入管底部安装带滤网的底阀。
底阀为止逆阀,防止启动前灌入的液体从泵内漏失。
滤网防止固体物质进入泵内。
靠近泵出口处的压出管道上装有调节阀,供调节流量时使用。
2-1-2 离心泵的理论压头一、离心泵的理论压头从离心泵工作原理知液体从离心泵叶轮获得能量而提高了压强。
单位质量液体从旋转的叶轮获得多少能量以及影响获得能量的因素,可以从理论上来分析。
由于液体在叶轮内的运动比较复杂,故作如下假设:(1)叶轮内叶片的数目无限多,叶片的厚度为无限薄,液体完全沿着叶片的弯曲表面而流动。
无任何倒流现象;(2)液体为粘度等于零的理想液体,没有流动阻力。
实验五 离心泵特性曲线及管路特性曲线测定一、实验目的:1.熟悉离心泵的操作方法。
2.掌握离心泵特性曲线和管路特性曲线的测定方法、表示方法,加深对离心泵性能的了解。
二、实验内容:1.熟悉离心泵的结构与操作方法。
2.测定某型号离心泵在一定转速下的特性曲线。
3.测定流量调节阀某一开度下管路特性曲线。
三、实验原理:1.离心泵特性曲线的测定:离心泵是最常见的液体输送设备。
在一定的型号和转速下,离心泵的扬程H 、轴功率N 及效率η均随流量Q 而改变。
通常通过实验测出H —Q 、N —Q 及η—Q 关系,并用曲线表示之,称为特性曲线。
特性曲线是确定泵的适宜操作条件和选用泵的重要依据。
泵特性曲线的具体测定方法如下: (1) H 的测定:在泵的吸入口和排出口之间列柏努利方程出入入出出入入入-+++=+++f H g u g P Z H g u g P Z 2222ρρ (7)()出入入出入出入出-+-+-+-=f H gu u g P P Z Z H 222ρ (8)上式中出入-f H 是泵的吸入口和压出口之间管路内的流体流动阻力,与柏努力方程中其它项比较,出入-f H 值很小,故可忽略。
于是上式变为:()gu u g P P Z Z H 222入出入出入出-+-+-=ρ (9)将测得的()入出Z Z -和入出P P -值以及计算所得的出入u u ,代入上式,即可求得H 。
(2) N 测定:功率表测得的功率为电动机的输入功率。
由于泵由电动机直接带动,传动效率可视为1,所以电动机的输出功率等于泵的轴功率。
即:泵的轴功率 N=电动机的输出功率,kW ;电动机输出功率=电动机输入功率×电动机效率; 泵的轴功率=功率表读数×电动机效率,kW 。
(3) η 测定 NNe=η (10) )(1021000Kw HQ g HQ Ne ρρ== (11)式中:η—泵的效率; N —泵的轴功率,kW ;Ne-泵的有效功率,kW ; H —泵的扬程,m ; Q —泵的流量,m 3/s ; ρ-水的密度,kg/m 3。
管道水头损失特性曲线是管道的水头损失随管道流量的变化曲线,可表示成
hf=SQ^2
泵水装置的管道系统特性曲线是提升高度与管道水水头损失总和随流量的变化曲线,即H=Ho+hf=Ho+SQ^2
水泵扬程和流量的关系曲线H=Hs+SpQ^2 是一条凹向下的曲线,而管道系统特性曲线是一条凹向上的曲线,对应的坐标与扬程和流量一样地看H跟Q。
扩展资料
什么叫管路特性,由于离心设备(包括压缩气体的离心机和压缩液体的离心泵)总是通过管路系统与外界相连,广其管路系统可能或长或短,或简单,或复杂,因此它表现出来一个特征,流体在管网中的流动阻力与流量的平方成正比。
这个比例系数就叫阻力系数。
同样的机泵,在不同的状况,在不同的单位、地点、系统中表现不完全一样,就是因为各系统的阻力系数不一样,这种特性就叫管路特性。
离心泵的特性曲线知识介绍一、离心泵的特性曲线定义离心泵的扬程(H)、功率(P)、效率(η)与流量(qv)之间的关系曲线称为特性曲线。
其数值通常是指额定转数和标准状况(大气压101.325kPa,20℃清水)下的数值,可用实验测得。
二、下图为某型号离心水泵在转速n=2900r/min下用20℃清水测得的特性曲线,效率某型号离心水泵在转速n=2900r/min下用20℃清水测得的特性曲线,离心泵的特性曲线有3条,分别表示如下:(1)H-qv曲线表示H与qv的关系,通常H随qv的增大而减小。
不同型号的离心泵,H-qv曲线的形状有所不同。
有的离心泵)H-qv曲线较平坦,其特点是流量变化较大而压头变化不大;而有的泵H-qv 曲线陡降,当流量变动很小时扬程变化很大,适用于扬程变化大而流量变化小的情况。
(2)P-qv曲线表示P与qv 的关系,P随qv的增大而增大。
显然,当qv=0 时,P最小。
因此,启动离心泵时,应关闭出口阀,使电动机的启动电流减至最小,以保护电动机。
待转动正常后再开启出口阀,调节到所需的流量。
(3)η-qv曲线表示与qv的关系,开始η随qv的增大而增大,达到最大值后,又随qv的增大而下降。
曲线上最高效率点即为泵的设计工况点,在该点所对应的扬程和流量下操作最为经济。
实际生产中,泵不可能正好在设计工况点下运转,所以各种离心泵都规定一个高效区,一般取最高效率以下7%范围内为高效区。
工程上也将离心泵最高效率点定为额定点,与该点对应的流量称为额定流量。
三、离心泵的转速对特性曲线的影响离心泵的特性曲线是在一定转速n下测定的,当n改变时,泵的流量qv、扬程H及功率P也相应改变。
对同一型号泵、同一种液体,在效率η不变的条件下,扬程(H)、功率(P)、流量(qv)随n的变化关系如下式所示:qv2/qv1=n2/n1H2/H1=(n1/n2)2P2/P1=(n1/n2)3上式称为比例定律表达式。
当泵的转速变化小于20%时,效率基本不变。