九年级数学上册考试题及答案
- 格式:docx
- 大小:172.35 KB
- 文档页数:6
九年级上册数学测试题(考试时间: 120 分钟分数: 120 )一、选择题(本大题共10 小题,共 30 分)1.某钢铁厂一月份生产钢铁 560 吨,从二月份起 ,由于改进操作技术 ,使得第一季度共生产钢铁1850 吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为 x,则可得方程A. B.C. D.2.若一元二次方程的常数项是 0,则 m 等于 ( )A. B. 3 C. D. 93.如图 ,AB 是的一条弦 ,于点 C,交于点 D,连接若,,则的半径为 ()A. 5B.C. 3D.4.若抛物线与 x 轴有交点 ,则 m 的取值X围是( )A. B. C. D.5.如图 ,A,B,C 是上三个点 ,,则下列说法中正确的是()A. B. 四边形 OABC 内接于C. D.6.中,于 C,AE 过点 O,连接 EC,若,,则 EC长度为( )A. B. 8 C. D.7.下列判断中正确的是 ( )A.长度相等的弧是等弧B.平分弦的直线也必平分弦所对的两条弧C.弦的垂直平分线必平分弦所对的两条弧D.平分一条弧的直线必平分这条弧所对的弦8. 如图 ,已知与坐标轴交于点A,O,B,点C在上,且,若点 B 的坐标为,则弧 OA 的长为 ( )A.B.C.D.9.将含有角的直角三角板 OAB 如图放置在平面直角坐标中 ,OB 在 x 轴上 ,若,将三角板绕原点 O 顺时针旋转,则点 A 的对应点的坐标为( )A.B.C.D.10.如图 ,在中 ,,,以点 C 为圆心 ,CB 的长为半径画弧 ,与 AB 边交于点 D,将绕点 D旋转后点 B 与点 A 恰好重合 ,则图中阴影部分的面积为 ()A. B.C. D.二、填空题(本大题共8 小题,共 24分)11.m 是方程的一个根 ,则代数式的值是______.12.已知,,是二次函数上的点 ,则, , 从小到大用“”排列是 ______.13.如图 ,在中 ,直径,弦于 E,若,则______.14.如图是一座抛物形拱桥 ,当水面的宽为 12m时,拱顶离水面 4m,当水面下降3m 时 ,水面的宽为 ______15.如图 ,正的边长为 4,将正绕点 B顺时针旋转得到,若点 D 为直线上的一动点 ,则的最小值是 ______.16.如图 ,在平面内将绕着直角顶点 C 逆时针旋转,得到,若,,则阴影部分的面积为 ______.17.如图,A、B、C、D 均在上 ,E 为 BC 延长线上的一点 ,若,则______.18.如图 ,内接于,于点 D,若的半径,则 AC 的长为 ______.三、解答题(本大题共7 小题,共66分)19. 已知关于 x 的一元二次方程有实数根.求 m 的取值X围;( 3+3=6分)若方程有一个根为,求 m 的值及另一个根.20. 如图 ,E 与 F 分别在正方形 ABCD 边 BC 与 CD 上,.以A 为旋转中心 ,将按顺时针方向旋转 ,画出旋转后得到的图形.( 4+4=8分)已知,,求 EF 的长.21. 平面上有 3 个点的坐标:,,.在 A,B,C 三个点中任取一个点 ,这个点既在直线上又在抛物线上的概率是多少?从A,B,C 三个点中任取两个点 ,求两点都落在抛物线上的概率.( 4+4=8分)22. 如图 ,抛物线与x轴交于A、B两点点A在点B的左侧,点 A 的坐标为,与 y 轴交于点,作直线动点P在x轴上运动,过点 P 作轴,交抛物线于点M,交直线BC于点N,设点P的横坐标为m.( 4+4+4=12)Ⅰ求抛物线的解析式和直线 BC 的解析式;Ⅱ当点 P 在线段 OB 上运动时 ,求线段 MN 的最大值;Ⅲ当以 C、O、M、N 为顶点的四边形是平行四边形时,直接写出 m 的值.23. 如图,内接于,,CD 是的直径 ,点 P 是 CD 延长线上的一点 ,且.( 5+5=10分)求证: PA 是的切线;若,,求的半径.24. 如图 ,AB 是的直径,四边形ABCD内接于,延长 AD,BC 交于点 E,且.求证:;若,,求的长.25. 如图 ,A、B、C 是圆 O 上三点 ,,点 D 是圆上一动点且,过点 D 作 BC 的平行线 DE,过点 A 作 AB 的垂线 AE,两线交于点 E.(1)求证: AB 是圆 O 的直径。
2024年最新人教版九年级数学(上册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4y = 7B. 2x 3y = 5C. 4x + 5y = 9D. 5x 6y = 84. 下列各式中,正确的是()A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + b^2 = c^2D. a^2 b^2 = c^25. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a b)^2 = a^2 2ab +b^2 C. (a + b)^2 = a^2 2ab + b^2 D. (a b)^2 = a^2 + 2ab +b^26. 下列各式中,正确的是()A. (a + b)(c + d) = ac + ad + bc + bdB. (a b)(c d) =ac ad bc + bd C. (a + b)(c d) = ac + ad bc bd D. (ab)(c + d) = ac ad + bc bd7. 下列各式中,正确的是()A. a^3 + b^3 = (a + b)(a^2 ab + b^2)B. a^3 b^3 = (a b)(a^2 + ab + b^2)C. a^3 + b^3 = (a b)(a^2 ab + b^2)D.a^3 b^3 = (a + b)(a^2 + ab + b^2)8. 下列各式中,正确的是()A. a^4 b^4 = (a + b)(a^2 ab + b^2)B. a^4 b^4 = (a b)(a^2 + ab + b^2)C. a^4 b^4 = (a + b)(a^2 + ab + b^2)D. a^4 b^4 = (a b)(a^2 ab + b^2)9. 下列各式中,正确的是()A. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3B. (a b)^3 =a^3 3a^2b + 3ab^2 b^3 C. (a + b)^3 = a^3 3a^2b + 3ab^2 + b^3 D. (a b)^3 = a^3 + 3a^2b 3ab^2 b^310. 下列各式中,正确的是()A. (a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4B. (a b)^4 = a^4 4a^3b + 6a^2b^2 4ab^3 + b^4C. (a + b)^4 = a^4 4a^3b + 6a^2b^2 + 4ab^3 + b^4D. (a b)^4 = a^4 + 4a^3b6a^2b^2 4ab^3 + b^4二、填空题(每题4分,共40分)11. 若一个数的平方根是±3,则这个数是_________。
人教版九年级上册《数学》期中考试卷及答案一、选择题:每题1分,共5分1. 若 a > b,则 a c 与 b c的大小关系是()A. a c > b cB. a c < b cC. a c = b cD. 无法确定2. 下列函数中,奇函数是()A. y = x^2B. y = x^3C. y = |x|D. y = sin(x)3. 已知三角形ABC中,sinA = 1/2,cosB = √3/2,则∠C的度数是()A. 30°B. 45°C. 60°D. 90°4. 一辆汽车以每小时60公里的速度行驶,行驶了2小时后,汽车行驶的路程是()A. 120公里B. 120千米C. 120米D. 无法确定5. 下列数列中,等差数列是()A. 1, 3, 5, 7, 9B. 1, 3, 6, 10, 15C. 1, 2, 4, 8, 16D. 1, 2, 4, 7, 11二、判断题:每题1分,共5分1. 任何两个奇数的和都是偶数。
()2. 两条平行线的斜率相等。
()3. 任何数乘以0都等于0。
()4. 三角形的内角和等于180°。
()5. 两个负数相乘的结果是正数。
()三、填空题:每题1分,共5分1. 一个正方形的边长是4,它的面积是______。
2. 若 a = 3,b = 2,则 a b = ______。
3. 2的平方根是______。
4. 已知sinθ = 1/2,则θ的度数是______。
5. 下列数列的通项公式是 an = ______。
四、简答题:每题2分,共10分1. 简述等差数列和等比数列的定义。
2. 解释正弦函数和余弦函数的定义。
3. 解释勾股定理,并给出一个应用勾股定理的例子。
4. 简述平行线的性质。
5. 解释二次函数的图像特征。
五、应用题:每题2分,共10分1. 一辆汽车以每小时60公里的速度行驶,行驶了3小时后,汽车行驶的路程是多少?2. 一个等差数列的首项是1,公差是2,求第10项的值。
九年级数学上册期中考试卷(附带有答案)(满分:120分考试时间:120分钟)一.选择题(每题3分,共10小题)1.下列四个几何体中,主视图与左视图相同的几何体有()A.1个B.2个C.3个D.4个2.已知反比例函数的图象经过点(﹣3,2),那么这个反比例函数的解析式是()A.y=B.y=﹣C.y=D.y=﹣3.某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为2米,则这个坡面的坡度为()A.1:2 B.1:3 C.1:D.:14.下列说法中,正确的个数为()(1)在同圆或等圆中,弦相等则所对的弧相等(2)优弧一定比劣弧长(3)弧相等则所对的圆心角相等(4)在同圆或等圆中,圆心角相等则所对的弦相等.A.1个B.2个C.3个D.4个5.在⊙O中,弦AB等于圆的半径,则它所对应的圆心角的度数为()A.120°B.75°C.60°D.30°6.将二次函数y=﹣3x2的图象平移后,得到二次函数y=﹣3(x﹣1)2的图象,平移的方法可以是()A.向左平移1个单位长度B.向右平移1个单位长度C.向上平移1个单位长度D.向下平移1个单位长度7.在同一平面直角坐标系中,函数y=kx﹣k与y=(k<0)的图象大致是()A. B C.D.8.如图,客轮在海上以30km/h的速度由B向C航行,在B处测得灯塔A的方向角为北偏东80°,测得C处的方向角为南偏东25°,航行1小时后到达C处,在C处测得A的方向角为北偏东20°,则C到A 的距离是()A.15km B.15km C.15(+)km D.5(+3)km9.如图①,在Rt△ABC中,∠ACB=90°,∠A=30°,动点D从点A出发,沿A→C→B以1cm/s的速度匀速运动到点B,过点D作DE⊥AB于点E,图②是点D运动时,△ADE的面积y(cm2)随时间x(s)变化的关系图象,则AB的长为()A.4cm B.6cm C.8cm D.10cm10.如图,矩形ABCD中,E是BC的中点,连接AE,过点E作EF⊥AE交DC于点F,连接AF.设,下列结论:(1)△ABE∽△ECF(2)AE平分∠BAF(3)当k=1时,△ABE∽△ADF(4)tan∠EAF=k.其中结论正确的是()A.(1)(2)(3)(4) B.(1)(3)(4) C.(1)(2) D.(2)(3)二.填空题(共8小题,11--14每题3分,15--18每题4分)11.在△ABC中,(tan A﹣)2+|﹣cos B|=0,则∠C的度数为.12.若y关于x的函数y=(m﹣1)x|m+1|﹣4是二次函数,则m的值是.13.如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为.(结果保留π)14.如图,平行四边形OABC的边OA在x轴上,顶点C在反比例函数y=﹣(x<0)的图象上,BC与y 轴相交于点D,且D为BC的中点,则平行四边形OABC的面积为.15.如图,由边长为1的小正方形构成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C,D,则tan∠ADC的值为.16.如图,抛物线y=ax2+bx+c分别交坐标轴于A(﹣2,0),B(6,0),C(0,﹣3),则﹣3<ax2+bx+c≤0的解是.17.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t﹣t2.在飞机着陆滑行中,滑行最后的150m所用的时间是s.18.如图,A1,A2,A3,A4,…,A n在y轴上,纵坐标分别是1,2,3,4,…,n,分别过A1,A2,A3,A4,…,A n作x轴的平行线,交函数y=﹣的图象于B1B2,B3,B4,…,B n,以A1B1,A2B2,A3B3,A4B4,…,A n B n为边向下作平行四边形,其中C1,D1在x轴上,C2,D2在直线A1B1上,C3,D3在直线A2B2上,C4,D4在直线A3B3上,…,∁n,D n,在直线A n﹣1B n﹣1上,每个平行四边形的锐角都是60°,则A n B n∁n D n的面积是(用n表示)三.解答题(共7小题,共62分)19.计算:⑴﹣2cos30°+6sin245°.⑵(π﹣1)0+4sin45°﹣+|﹣3|.20.如图,已知一次函数y1=kx+b的图象与函数y2=(x>0)的图象交于A(6,﹣),B(,n)两点,与y轴交于点C.将直线AB沿y轴向上平移t个单位长度得到直线DE,DE与y轴交于点F.(1)求y1与y2的解析式(2)观察图象,直接写出y1<y2时x的取值范围(3)连接AD,CD,若△ACD的面积为6,求t的值21.无人机在实际生活中应用广泛.如图所示,小明利用无人机测量大楼的高度,无人机在空中P处,测得楼CD楼顶D处的俯角为45°,测得楼AB楼顶A处的俯角为60°.已知楼AB和楼CD之间的距离BC为100米,楼AB的高度为10米,从楼AB的A处测得楼CD的D处的仰角为30°(点A、B、C、D、P在同一平面内).(1)填空:∠APD=度,∠ADC=度(2)求楼CD的高度(结果保留根号)(3)求此时无人机距离地面BC的高度.22.如图,△ABC中,AB=AC,以AB为直径的⊙O交AC,BC分别于点E,D两点,连接ED,BE.(1)求证:DE=BD.(2)若BC=12,AB=10,求BE的长..23.某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量y(桶)与每桶降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式(2)这次助力疫情防控中,该药店仅获利1760.这种消毒液每桶实际售价多少元?(3)这种消毒液每桶售价多少元时,获利最大,最大利润是多少元?24.如图,抛物线y=ax2+bx+3(a≠0)与x轴交于A,B两点(点B在点A的右侧),与y轴交于点C,OB =OC,抛物线的对称轴为直线x=1.(1)求抛物线的解析式(2)点P为抛物线的对称轴上一点,连接AC,CP,AP,当△ACP的周长最小时,求点P的坐标(3)在(2)的情况下,在y轴上是否存在点Q,使以A,P,Q为顶点的三角形为直角三角形,若存在,直接写出点Q的坐标若不存在,请说明理由.25.【基础巩固】(1)如图1,在四边形ABCD中,对角线BD平分∠ABC,∠ADB=∠DCB,求证:BD2=BA•BC【尝试应用】(2)如图2,四边形ABCD为平行四边形,F在AD边上,AB=AF,点E在BA延长线上,连结EF,BF,CF,若∠EFB=∠DFC,BE=4,BF=5,求AD的长【拓展提高】(3)如图3,在△ABC中,D是BC上一点,连结AD,点E,F分别在AD,AC上,连结BE,CE,EF,若DE=DC,∠BEC=∠AEF,BE=12,EF=5,,求的值.参考答案一.选择题(共10小题)1.D.2.D.3.A.4.B.5.C.6.B.7.D.8.D.9.C.10.C.二.填空题(共8小题)11.75°12.﹣3.13.24π.14.8.15..16.﹣2≤x<0或4<x≤6.17.10.18.三.解答题(共11小题)19.原式=﹣2×+6×()2=﹣+6×=﹣1﹣+3=2.原式=1+4×﹣2+3=1+2﹣2+3=4.20.【解答】解:(1)将点A(6,﹣)代入y2=中∴m=﹣3∴y2=∵B(,n)在y2=中,可得n=﹣6∴B(,﹣6)将点A、B代入y1=kx+b∴解得∴y1=x﹣(2)∵一次函数与反比例函数交点为A(6,﹣),B(,﹣6)∴<x<6时,y1<y2(3)在y1=x﹣中,令x=0,则y=﹣∴C(0,﹣)∵直线AB沿y轴向上平移t个单位长度∴直线DE的解析式为y=x﹣+t∴F点坐标为(0,﹣+t)过点F作GF⊥AB于点G,连接AF直线AB与x轴交点为(,0),与y轴交点C(0,﹣)∴∠OCA=45°∵FC=t∴FG=t∵A(6,﹣),C(0,﹣)∴AC=6∵AB∥DF∴S△ACD=S△ACF∴×6×t=6∴t=2故答案为:2.21.【解答】解:(1)∵∠MP A=60°,∠NPD=45°∴∠APD=180°﹣∠MP A﹣∠NPD=75°.过点A作AE⊥CD于点E.则∠DAE=30°∴∠ADC=180°﹣90°﹣30°=60°.故答案为:75 60.(2)由题意可得AE=BC=100米,EC=AB=10米在Rt△AED中,∠DAE=30°tan30°=解得DE=∴CD=DE+EC=(+10)米.∴楼CD的高度为(+10)米.(3)过点P作PG⊥BC于点G,交AE于点F则∠PF A=∠AED=90°,FG=AB=10米∴∠P AF=∠MP A=60°∵∠ADE=60°∴∠P AF=∠ADE∵∠DAE=∠30°∴∠P AD=30°∵∠APD=75°∴∠ADP=75°∴∠ADP=∠APD则AP=AD∴△APF≌△DAE(AAS)∴PF=AE=100米∴PG=PF+FG=100+10=110(米).∴此时无人机距离地面BC的高度为110米.22.【解答】(1)证明:解法一:连接AD∵AB为⊙O的直径∴AD⊥BC∵AB=AC∴∠CAD=∠BAD∴弧DE=弧BD∴DE=BD(2)解:连接AD∵BC=12∴BD=BC=6∵AB=10∴AD===8∵S△ABC=BC•AD=AC•BE∴BE===.23.【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0)将(1,110),(3,130)代入y=kx+b得:解得:∴y与x之间的函数关系式为y=10x+100(0<x<20).(2)依题意得:(55﹣x﹣35)(10x+100)=1760整理得:x2﹣10x﹣24=0解得:x1=﹣2(不符合题意,舍去),x2=12∴55﹣x=55﹣12=43.答:这种消毒液每桶实际售价为43元.(3)售价为50元时,最大利润为2250元24.【解答】解:(1)令x=0,则y=3∴C(0,3)∴OC=3∵OB=OC∴B(3,0)∵抛物线的对称轴为直线x=1∴﹣=1∴b=﹣2a∴y=ax2﹣2ax+3将B(3,0)代入y=ax2﹣2ax+3∴9a﹣6a+3=0解得a=﹣1∴b=2∴抛物线的解析式为:y=﹣x2+2x+3.(2)∵A、B关于对称轴x=1对称∴AP=BP∴AP+CP=BP+CP≥BC∴当B、C、P三点共线时,AP+CP的值最小,此时△ACP的周长最小连接BC交对称轴x=1于点P设直线BC的解析式为y=kx+b∴解得∴y=﹣x+3∴P(1,2)(3)存在点Q,使得以A,P,Q为顶点的三角形为直角三角形,理由如下:在y=﹣x2+2x+3中,令y=0,则﹣x2+2x+3=0解得x=﹣1或x=3∴A(﹣1,0)设Q(0,t)∴AP2=8,AQ2=1+t2,PQ2=1+(t﹣2)2当∠P AQ=90°时,1+(t﹣2)2=8+1+t2解得t=﹣1∴Q(0,﹣1)当∠APQ=90°时,1+t2=8+1+(t﹣2)2解得t=3∴Q(0,3)当∠AQP=90°时,8=1+t2+1+(t﹣2)2解得t=1+或t=1﹣∴Q(0,1+)或(0,1﹣)综上所述:Q点坐标为(0,﹣1)或(0,3)或(0,1+)或(0,1﹣).25.【解答】(1)证明:∵BD平分∠ABC∴∠ABD=∠DBC∵∠ADB=∠DCB∴△ABD∽△DBC∴=∴BD2=BA•BC(2)∵四边形ABCD为平行四边形∴AD∥BC,AD=BC∴∠AFB=∠FBC,∠DFC=∠FCB∵AB=AF∴∠AFB=∠ABF∴∠ABF=∠FBC∵∠DFC=∠FCB,∠EFB=∠DFC∴∠EFB=∠FCB∴△EBF∽△FBC∴=,即=解得:BC=∴AD=(3)过点C作CM∥AD交EF的延长线于点M∵∠AEF+∠CEF+∠DEC=180°,∠BEC+∠CBE+∠BCE=180°∴∠CEF=180°﹣∠AEF﹣∠DEC,∠CBE=180°﹣∠BEC﹣∠BCE ∵DE=DC∴∠DEC=∠DCE∴∠CEF=∠CBE∵CM∥AD∴∠DEC=∠ECM∵∠DEC=∠DCE∴∠ECM=∠DCE∴△ECM∽△BCE∴==∵BE=12∴EM=8∵EF=5∴FM=8﹣5=3∵CM∥AD∴==.。
人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列图形是中心对称图形的是()A.B.C.D.2.⊙O的半径为8,圆心O到直线l的距离为4,则直线l与⊙O的位置关系是A.相切B.相交C.相离D.不能确定3.下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0B.x2=x C.x2+3=2x D.(x﹣1)2+1=0 4.S型电视机经过连续两次降价,每台售价由原来的1500元降到了980元.设平均每次降价的百分率为x,则下列方程中正确的是A.1500(1+x)2=980B.980(1+x)2=1500C.1500(1-x)2=980D.980(1-x)2="1500"5.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是()A.40°B.50°C.70°D.80°6.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°7.如图,在△ABC中,AB=AC=2,以AB为直径的⊙O与BC交于点D,点E在 ⊙O上,且∠DEA=30°,则CD的长为()A 3B .3C .3D .28.二次函数=B 2+B 的图象如图,若一元二次方程B 2+B +=0有实数根,则m 的最大值为()A .-3B .3C .5D .99.如图,已知矩形ABCD 中,AB =4cm ,BC =8cm .动点P 在边BC 上从点B 向C 运动,速度为1cm /s ;同时动点Q 从点C 出发,沿折线C →D →A 运动,速度为2cm /s .当一个点到达终点时,另一个点随之停止运动。
设点P 运动的时间为t (s ),△BPQ 的面积为S (cm 2),则描述S (cm 2)与时间t (s )的函数关系的图象大致是()A .B .C .D .10.已知二次函数2y ax c =+,当1x =时,42y -≤≤-,当2x =时,12y -≤≤,则当3x=时,y的取值范围为()A.2123y≤≤B.2103y≤≤C.293y≤≤D.19y≤≤二、填空题11.如果点P(4,﹣5)和点Q关于原点对称,则点Q的坐标为_____.12.将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线的函数关系式为_____________.13.已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.14.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加______m.15.如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD绕点C 旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为_____.三、解答题16.解方程:(1)3x2+6x﹣5=0(2)x2+2x﹣24=017.如图,图中每个小方格都是边长为1个单位长度的正方形,△ABC在方格纸中的位置如图所示.(1)请在图中建立平面直角坐标系,使得A,B两点的坐标分别为A(2,﹣1),B(1,﹣4),并写出C点坐标;(2)在图中作出△ABC绕坐标原点旋转180°后的△A1B1C1,并写出A1,B1,C1的坐标;(3)在图中作出△ABC绕坐标原点顺时针旋转90°后的△A2B2C2,并写出A2,B2,C2的坐标.18.已知二次函数y=﹣12x2+3x﹣52(1)用配方法求出函数图象的顶点坐标和对称轴方程;(2)用描点法在如图所示的平面直角坐标系中画出该函数的图象;(3)根据图象,直接写出y的值小于0时,x的取值范围.19.如图,在△ABC中,AB=AC,以AB为直径的 ⊙O分别交AC于点D,交BC于点E,连接ED.(1)求证:ED=EC;(2)填空:①设CD的中点为P,连接EP,则EP与⊙O的位置关系是;②连接OD,当∠B的度数为时,四边OBED是菱形.20.如图,E点是正方形ABCD的边BC上一点,AB=12,BE=5,△ABE逆时针旋转后能够与△ADF重合.(1)旋转中心是,旋转角为度;(2)△AEF是三角形;(3)求EF的长.21.河北内丘柿饼加工精细,色泽洁白,肉质柔韧,品位甘甜,在国际市场上颇具竞争力.上市时,外商王经理按市场价格10元/千克在内丘收购了2000千克柿饼存放入冷库中.据预测,柿饼的市场价格每天每千克将上涨0.5元,但冷库存放这批柿饼时每天需要支出各种费用合计320元,而且柿饼在冷库中最多保存80天,同时,平均每天有8千克的柿饼损坏不能出售.(1)若存放x天后,将这批柿饼一次性出售,设这批柿饼的销售总金额为y元,试写出y与x之间的函数关系式;(2)王经理想获得利润20000元,需将这批柿饼存放多少天后出售?(利润=销售总金额﹣收购成本﹣各种费用)(3)王经理将这批柿饼存放多少天后出售可获得最大利润?最大利润是多少?22.在平面直角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)直接用含t的代数式表达线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值.23.已知:如图,在⊙O中,弦AB与半径OE、OF交于点C、D,AC=BD,求证:(1)OC=OD:(2)A EB F.24.问题情境:如图①,P是⊙O外的一点,直线PO分别交⊙O于点A、B,可以发现P A 是点P到⊙O上的点的最短距离.(1)直接运用:如图②,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是弧CD上的一个动点,连接AP,则AP的最小值是.(2)构造运用:如图③,在边长为8的菱形ABCD中,∠A=60°,M是AD边的中点,N 是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,请求出A′C 长度的最小值.(3)综合运用:如图④,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,分别以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于.参考答案1.B【分析】由中心对称图形的定义判断即可.【详解】A、C、D中图形都不是中心对称图形,是轴对称图形,B中图形是中心对称图形,故选:B.【点睛】本题考查了中心对称图形的概念,理解中心对称图形的概念,能找到对称中心是解答的关键.2.B【分析】根据圆O的半径和圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.【详解】∵⊙O的半径为8,圆心O到直线L的距离为4,∵8>4,即:d<r,∴直线L与⊙O的位置关系是相交.故选B.3.B【详解】分析:根据一元二次方程根的判别式判断即可.详解:A、x2+6x+9=0.△=62-4×9=36-36=0,方程有两个相等实数根;B、x2=x.x2-x=0.△=(-1)2-4×1×0=1>0.方程有两个不相等实数根;C、x2+3=2x.x2-2x+3=0.△=(-2)2-4×1×3=-8<0,方程无实根;D、(x-1)2+1=0.(x-1)2=-1,则方程无实根;故选B.点睛:本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.4.C【解析】解:依题意得:第一次降价的售价为:1500(1-x),则第二次降价后的售价为:1500(1-x)(1-x)=1500(1-x)2,∴1500(1-x)2=980.故选C.5.D【解析】【分析】根据圆周角定理得出∠AOC=40°,进而利用垂径定理得出∠AOB=80°即可.【详解】∵∠ABC=20°,∴∠AOC=40°,∵AB是⊙O的弦,OC⊥AB,∴∠AOC=∠BOC=40°,∴∠AOB=80°,故选:D.【点睛】此题考查圆周角定理,关键是根据圆周角定理得出∠AOC=40°.6.C【分析】根据旋转的性质和三角形内角和解答即可.【详解】∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选C.【点睛】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.7.A【分析】连接AD,根据圆周角定理和含30°的直角三角形的性质解答即可.【详解】连接AD,∵∠DEA=30°,∴∠B=30°,∵AB是直径,∴∠ADB=90°,∵AB=2,∴BD ,∵AC =BA ,∠ADB =90°,∴CD =DB 故选:A .【点睛】考核知识点:圆周角定理.作好辅助线,利用圆周角定理和直角三角形性质解决问题是关键.8.B【解析】∵抛物线的开口向上,顶点纵坐标为-3,∴a >0,−24=-3,即b 2=12a ,∵一元二次方程ax 2+bx+m=0有实数根,∴△=b 2-4am≥0,即12a-4am≥0,即12-4m≥0,解得m≤3,∴m 的最大值为3.故选B.9.A【分析】先求出点P 在BC 边运动的时间,再求出Q 点在CD 边和AD 边运动的时间,然后分Q 点在CD 边运动和在AD 边运动两种情况分别计算出△BPQ 的面积即可得出图象.【详解】点P 在BC 边运动的时间为818()s ÷=Q 点在CD 边运动的时间为422()s ÷=,在AD 边运动的时间824()s ÷=当Q 点在CD 边运动时,即02t <≤时,211222BPQ S BP CQ t t t === 当Q 点在AD 边运动时,即26t <≤时,114222BPQ S BP CD t t === 则根据S (cm 2)与时间t (s )的函数关系式可知图象为A故选A【点睛】本题主要考查矩形中的动点问题,能够找到面积与时间之间的函数关系式是解题的关键.10.A【分析】由当x =1时,-4≤y ≤-2,当x =2时,-1≤y ≤2,将y =ax 2+c 代入得到关于a 、c 的两个不等式组,再设x =3时y =9a +c =m (a +c )+n (4a +c ),求出m 、n 的值,代入计算即可.【详解】解:由x =1时,-4≤y ≤-2得,-4≤a +c ≤-2…①,由x =2时,-1≤y ≤2得,-1≤4a +c ≤2…②,当x =3时,y =9a +c =m (a +c )+n (4a +c ),得491m n m n +=⎧⎨+=⎩,解得5383m n ⎧=-⎪⎪⎨⎪=⎪⎩,故10520()333a c ≤-+≤,8816(4)333a c -≤+≤,∴2123y ≤≤,故选:A .【点睛】本题考查了二元一次方程组的应用,以及二次函数性质的运用,熟练解不等式组是解答本题的关键.11.(﹣4,5)【分析】根据关于原点对称的点的坐标的性质即可作答.即:坐标符号都变.【详解】∵点P (4,﹣5)和点Q 关于原点对称,∴点Q 的坐标为(﹣4,5).故答案为:(﹣4,5).【点睛】考核知识点:关于原点对称的点的坐标.理解关于原点对称的点的坐标的特点是关键.12.25(1)1y x =-+-【分析】先确定出原抛物线的顶点坐标为(0,0),然后根据向左平移横坐标加,向下平移纵坐标减,求出新抛物线的顶点坐标,然后写出即可.【详解】抛物线251y x =-+的顶点坐标为(0,0),∵向左平移1个单位长度后,向下平移2个单位长度,∴新抛物线的顶点坐标为(-1,-2),∴所得抛物线的解析式是()2511y x =-+-.故答案为()2511y x =-+-.【点睛】本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键.13.2【解析】分析:设方程的另一个根为m ,根据两根之和等于-b a ,即可得出关于m 的一元一次方程,解之即可得出结论.详解:设方程的另一个根为m ,根据题意得:1+m=3,解得:m=2.故答案为2.点睛:本题考查了根与系数的关系,牢记两根之和等于-b a是解题的关键.14.-4【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把2y =-代入抛物线解析式得出水面宽度,即可得出答案.【详解】建立平面直角坐标系,设横轴x 通过AB ,纵轴y 通过AB 中点O 且通过C 点,则通过画图可得知O 为原点,抛物线以y 轴为对称轴,且经过A ,B 两点,OA 和OB 可求出为AB 的一半2米,抛物线顶点C 坐标为()0,2.通过以上条件可设顶点式22y ax =+,其中a 可通过代入A 点坐标()2,0.-代入到抛物线解析式得出:0.5a =-,所以抛物线解析式为20.52y x =-+,当水面下降2米,通过抛物线在图上的观察可转化为:当2y =-时,对应的抛物线上两点之间的距离,也就是直线2y =-与抛物线相交的两点之间的距离,可以通过把2y =-代入抛物线解析式得出:220.52x -=-+,解得:22x =±,所以水面宽度增加到42米,比原先的宽度当然是增加了42 4.故答案是:42 4.-【点睛】考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.15.4【分析】连接OE ,延长EO 交CD 于点G ,作OH ⊥B ′C ,由旋转性质知∠B ′=∠B ′CD ′=90°、AB =CD =5、BC =B ′C =4,从而得出四边形OEB ′H 和四边形EB ′CG 都是矩形且OE =OD =OC =2.5,继而求得CG =B ′E =OH 22222.5 1.5OC CH -=-=2,根据垂径定理可得CF的长.【详解】连接OE ,延长EO 交CD 于点G ,作OH ⊥B ′C 于点H ,A ′B ′与⊙O 相切,则∠OEB ′=∠OHB ′=90°,∵矩形ABCD 绕点C 旋转所得矩形为A ′B ′C ′D ′,∴∠B ′=∠B ′CD ′=90°,AB =CD =5、BC =B ′C =4,∴四边形OEB ′H 和四边形EB ′CG 都是矩形,OE =OD =OC =2.5,∴B ′H =OE =2.5,∴CH =B ′C ﹣B ′H =1.5,∴CG =B ′E =OH ===2,∵四边形EB ′CG 是矩形,∴∠OGC =90°,即OG ⊥CD ′,∴CF =2CG =4,故答案为:4.【点睛】考核知识点:旋转、切线性质、垂径定理.作好辅助线,利用垂径定理和勾股定理解决问题是关键.16.(1)x 1=﹣1+3,x 2=﹣1﹣3;(2)x 1=﹣6,x 2=4【分析】(1)用一元二次方程的求根公式求出方程的根.(2)用十字相乘法因式分解求出方程的根.【详解】(1)3x 2+6x ﹣5=0∵a =3,b =6,c =﹣5.△=36+60=96∴x =6966-∴x 1=﹣1+3,x 2=﹣1﹣3.(2)(x +6)(x ﹣4)=0∴x +6=0或x ﹣4=0∴x 1=﹣6,x 2=4.【点睛】考核知识点:解一元二次方程.掌握公式法和提公因式法是关键.17.(1)图形见解析,C (3,﹣3);(2)图形见解析,A 1(﹣2,1),B 1(﹣1,4),C 1(﹣3,3);(3)图形见解析,A 2(﹣1,﹣2),B 2(﹣4,﹣1),C 2(﹣3,﹣3)【分析】(1)根据已知点的坐标,画出坐标系,由坐标系确定C 点坐标;(2)由关于原点中心对称性画△A 1B 1C 1,可确定写出A 1,B 1,C 1的坐标;(3)根据网格结构找出点A 、B 、C 绕点O 顺时针旋转90°的对应点A 2,B 2,C 2的位置,画△A 2B 2C 2,可确定写出A 2,B 2,C 2的坐标.【详解】解:(1)坐标系如图所示,C (3,﹣3);(2)△A 1B 1C 1如图所示,A 1(﹣2,1),B 1(﹣1,4),C 1(﹣3,3);(3)△A 2B 2C 2如图所示,A 2(﹣1,﹣2),B 2(﹣4,﹣1),C 2(﹣3,﹣3).【点睛】考核知识点:画中心对称图形.理解中心对称图形的定义,利用中心对称性质进行画图是关键.18.(1)函数图象的顶点坐标是(3,2),对称轴是直线x=3;(2)见解析;(3)x<1或x >5【分析】(1)根据配方法可以将题目中的函数解析式化为顶点式,从而可以写出顶点坐标和对称轴方程;(2)根据题目中函数解析式可以画出相应的函数图象;(3)根据(2)中的函数图象可以写出y的值小于0时,x的取值范围.【详解】(1)∵二次函数y=﹣12x2+3x﹣52=21(3)22x--+,∴该函数图象的顶点坐标是(3,2),对称轴是直线x=3;(2)当y=0时,得x1=1,x2=5,当x=0和x=6时,y=5 2 -,函数图象如图所示;(3)由图象可知,y的值小于0时,x的取值范围是x<1或x>5.【点睛】考核知识点:求二次函数的顶点坐标.理解二次函数的性质,画出二次函数图象是关键. 19.(1)见解析;(2)①相切;②60°【分析】(1)根据等腰三角形的性质和圆内接四边形的性质解答即可;(2)①如图,连接AE,OE,根据圆周角定理得到AE⊥BC,根据三角形的中位线定理得到OE∥AC,根据平行线的性质得到OE⊥PE,于是得到结论;②根据已知条件得到△OBE是等边三角形,求得OB=BE,同理OD=DE,根据菱形的判定定理即可得到结论.【详解】解:(1)∵AB=AC,∴∠B=∠C,∵∠CDE=∠B,∴∠CDE=∠C,∴CE=DE;(2)①相切;理由:如图,连接AE,OE,∵AB是⊙O的直径,∴AE⊥BC,∵AB=AC,∴BE=CE,∵BO=OA,∴OE∥AC,∵DE=CE,PD=CP,∴PE⊥AC,∴OE⊥PE,∴EP与⊙O的位置关系是相切;②当∠B的度数为60°时,四边OBED是菱形,∵OB=OE,∠B=60°,∴△OBE是等边三角形,∴OB=BE,同理OD=DE,∴OD=DE=BE=OB,∴四边OBED是菱形.故答案为:相切;60°.【点睛】考核知识点:切线的判定和性质.作好辅助线,充分利用圆的性质和菱形性质解决问题是关键.20.(1)点A ,90°;(2)等腰直角;(3)132【分析】(1)根据图形和已知即可得出答案.(2)根据旋转得出全等,根据全等三角形的性质得出∠BAE=∠DAF ,AE=AF ,求出∠EAF=∠BAD ,即可得出答案.(3)求出AE ,求出AF ,根据勾股定理求出EF 即可.【详解】解:(1)从图形和已知可知:旋转中心是点A ,旋转角的度数等于∠BAD 的度数,是90°,故答案为:点A ,90;(2)等腰直角三角形,理由是:∵四边形ABCD 是正方形,∴∠BAD=90°,∵△ABE 逆时针旋转后能够与△ADF 重合,∴△ABE ≌△ADF ,∴∠BAE=∠DAF ,AE=AF ,∴∠FAE=∠FAD+∠DAE=∠BAE+∠DAE=∠BAD=90°,∴△AEF 是等腰直角三角形,故答案为:等腰直角.(3)由旋转可知∠EAF=90°,△ABE ≌△ADF ,∴AE=AF ,△EAF 是等腰直角三角形在Rt △ABE 中,∵AB=12,BE=5∴222212513AE AB BE =+=+∴222213132EF AE AF =+=+【点睛】本题考查了旋转的性质,勾股定理,全等三角形的性质的应用,注意:旋转后得出的图形和原图形全等.21.(1)y==﹣4x2+920x+20000(1≤x≤80,且x为整数);(2)王经理想获得利润20000元,需将这批柿饼存放50天后出售;(3)存放75天后出售这批柿饼可获得最大利润22500元【分析】(1)根据等量关系“销售总金额=(市场价格+0.5×存放天数)×(原购入量﹣8×存放天数)”列出函数关系式;(2)根据等量关系“利润=销售总金额﹣收购成本﹣各种费用”列出方程求出即可;(3)根据等量关系“利润=销售总金额﹣收购成本﹣各种费用”列出函数关系式并求最大值.【详解】(1)由题意y与x之间的函数关系式为:y=(10+0.5x)(2000﹣8x)=﹣4x2+920x+20000(1≤x≤80,且x为整数);(2)根据题意可得:20000=﹣4x2+920x+20000﹣10×2000﹣320x,解得:x1=100(不合题意舍去),x2=50,答:王经理想获得利润20000元,需将这批柿饼存放50天后出售.(3)设利润为w,由题意得w=﹣4x2+920x+20000﹣10×2000﹣320x=﹣4(x﹣75)2+22500,∵a=﹣4<0,∴抛物线开口方向向下,∵柿饼在冷库中最多保存75天,=22500元.∴x=75时,w最大答:存放75天后出售这批柿饼可获得最大利润22500元.【点睛】考核知识点:二次函数的应用.理解利润关系,列出二次函数,求函数最值是关键. 22.(1)y=x2+x﹣1;(2)MN=t2+2;(3)t=0或1【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;(2)点M、N的坐标分别为:(t,2t2+t+1)、(t,t2+t-1),即可求解;(3)分∠ANM=90°、∠AMN=90°两种情况,分别求解即可.【详解】解:(1)将点A、B的坐标代入抛物线表达式得:421111a ba b--=⎧⎨--=-⎩,解得:11ab=⎧⎨=⎩,故抛物线C1的表达式为:y=x2+x﹣1;(2)点M、N的坐标分别为:(t,2t2+t+1)、(t,t2+t﹣1),则MN=(2t2+t+1)﹣(t2+t﹣1)=t2+2;(3)①当∠ANM=90°时,AN=MN,AN=t﹣(﹣2)=t+2,MN=t2+2,t=t2+2,解得:t=0或1(舍去0),故t=1;②当∠AMN=90°时,AM=MN,AM=t+2=MN=t2+2,解得:t=0或1(舍去1),故t=1;综上,t=0或1.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、等腰三角形的性质等,其中(3),要注意分类求解,避免遗漏.23.(1)见解析;(2)见解析【分析】(1)证明:连接OA,OB,证明△OAC≌△OBD(SAS)即可得到结论;(2)根据△OAC≌△OBD,得到∠AOC=∠BOD,即可得到结论.【详解】(1)证明:连接OA,OB,∵OA=OB,∴∠OAC=∠OBD.在△OAC与△OBD中,∵OA OBOAC OBD AC BD=⎧⎪∠=∠⎨⎪=⎩,∴△OAC≌△OBD(SAS).∴OC=OD.(2)∵△OAC≌△OBD,∴∠AOC=∠BOD,∴A EB F..【点睛】此题考查同圆的半径相等的性质,全等三角形的判定及性质,等腰三角形等边对等角的性质,相等的圆心角所对的弧相等的性质,正确引出辅助线证明△OAC≌△OBD是解题的关键.24.(11;(2)﹣4;(3﹣3【分析】(1)先确定出AP最小时点P的位置,如图1中的P'的位置,即可得出结论;(2)先判断出A'M=AM=MD,再构造出直角三角形,利用锐角三角函数求出DH,MH,进而用用勾股定理求出CM,即可得出结论;(3)利用对称性确定出点B关于x轴的对称点B',即可求出结论.【详解】(1)如图1,取BC的中点E,连接AE,交半圆于P',在半圆上取一点P,连接AP,EP,在△AEP中,AP+EP>AE,即:AP'是AP的最小值,∵AE P'E=1,∴AP'1;1;(2)如图2,由折叠知,A'M=AM,∵M是AD的中点,∴A'M=AM=MD,∴以点A'在以AD为直径的圆上,∴当点A'在CM上时,A'C的长度取得最小值,过点M作MH⊥CD于H,在Rt△MDH中,DH=DM•cos∠HDM=2,MH=DM•sin∠HDM=在Rt△CHM中,CM,∴A'C=CM﹣A'M=﹣4;(3)如图3,作⊙B关于x轴的对称圆⊙B',连接AB'交x轴于P,∵B(3,4),∴B'(3,﹣4),∵A(﹣2,3),∴AB'=∴PM+PN的最小值=AB'﹣AM﹣B'N'=AB'﹣AM﹣BN﹣3.﹣3.【点睛】考核知识点:圆,三角函数.根据题意画出图形,构造直角三角形,运用三角函数定义解决问题是关键.。
人教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.下列图形中,是中心对称图形的是()A.B.C.D.2.如图,抛物线y=﹣2x2+4x与x轴交于点O、A,把抛物线在x轴及其上方的部分记为C1,将C1以y铀为对称轴作轴对称得到C2,C2与x轴交于点B,若直线y=x+m与C1,C2共有3个不同的交点,则m的取值范围是()A.0<m<98B.98<m<258C.0<m<258D.m<98或m<2583.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac③a+b+c<0;④2a+b+c=0,其中正确的是()A.①④B.②④C.①②③D.①②③④4.关于x的一元二次方程(k-1)x2+4x+1=0有实数根,则k的取值范围是()A.k5<B.k5<且k1≠C.k5≤D.k5≤且k1≠5.四边形ABCD内接于圆,∠A、∠B、∠C、∠D的度数比可能是()A.1:3:2:4B.7:5:10:8C.13:1:5:17D.1:2:3:4 6.若⊙O的半径为6cm,PO=8cm,则点P的位置是()A.在⊙O外B.在⊙O上C.在⊙O内D.不能确定7.已知反比例函数y=﹣6x,下列结论中不正确的是()A.函数图象经过点(﹣3,2)B.函数图象分别位于第二、四象限C.若x<﹣2,则0<y<3D.y随x的增大而增大8.某商店现在的售价为每件60元,每星期可卖出300件,市场调查反映:每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元利润,应将销售单价定为()A.56元B.57元C.59元D.57元或59元9.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC 向右平移4个单位长度得到△A1B1C1,再把△A1B1C1绕点C1顺时针旋转90°得到△A2B2C1,则点A的对应点A2的坐标是()A.(5,2)B.(1,0)C.(3,﹣1)D.(5,﹣2)10.均匀的四面体的各面上依次标有1,2,3,4四个数字,同时抛掷两个这样的正四面体,着地的一面数字之和为5的概率是()A.316B.14C.168D.116二、填空题11.设α,β是方程x2﹣x﹣2019=0的两个实数根,则α3﹣2021α﹣β的值为_____;12.抛物线y=x2﹣6x+5向上平移3个单位长度,再向左平移2个单位长度后,得到的抛物线解析式是_____.13.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为_______.14.某鱼塘养了200条鲤鱼、若干条草鱼和150条鲢鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右.若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率为__.15..如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC 的长度是_______.16.如图,PA PB 、切O 于点AB 、,10PA cm ,CD 切O 于点E ,交PA PB 、于点CD 、,则PCD 的周长是________.三、解答题17.解一元二次方程:3x 2﹣1=2x+5.18.一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;(Ⅱ)求两次取出的小球标号相同的概率;(Ⅲ)求两次取出的小球标号的和大于6的概率.19.如图,AB是⊙O的直径,AB=12,弦CD⊥AB于点E,∠DAB=30°.(1)求扇形OAC的面积;(2)求弦CD的长.20.已知关于x的一元二次方程x2+3x﹣m=0有实数根.(1)求m的取值范围(2)若两实数根分别为x1和x2,且x12+x22=11,求m的值.21.如图,在平面直角坐标系xOy中,函数y=(x>0)的图象经过点A,作AC⊥x轴于点C.(1)求k的值;(2)直线y=ax+b(a≠0)图象经过点A交x轴于点B,且OB=2AC.求a的值.22.某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.(1)求A市投资“改水工程”的年平均增长率;(2)从2008年到2010年,A市三年共投资“改水工程”多少万元?23.如图,已知抛物线与y轴相交于点A(0,3),与x正半轴相交于点B,对称轴是直线x=1.(1)求此抛物线的解析式以及点B的坐标.(2)动点M从点O出发,以每秒2个单位长度的速度沿x轴正方向运动,同时动点N从点O出发,以每秒3个单位长度的速度沿y轴正方向运动,当N点到达A点时,M、N同时停止运动.过动点M作x轴的垂线交线段AB于点Q,交抛物线于点P,设运动的时间为t秒.①当t为何值时,四边形OMPN为矩形.②当t>0时,△BOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.24.如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.(1)求证:OD∥BC;(2)若AC=2BC,求证:DA与⊙O相切.25.如图,已知抛物线y=ax2+bx+c过点A(﹣3,0),B(﹣2,3),C(0,3),顶点为D.(1)求抛物线的解析式;(2)设点M(1,m),当MB+MD的值最小时,求m的值;(3)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.参考答案1.D【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心可得答案.【详解】A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选D.【点睛】本题考查了中心对称图形,解题的关键是掌握中心对称图形的定义.2.A首先求出点A 和点B 的坐标,然后求出C 2解析式,分别求出直线y=x+m 与抛物线C 1相切时m 的值以及直线y=x+m 过原点时m 的值,结合图形即可得到答案.【详解】令2240y x x =-+=,解得:x =0或x =2,则点A (2,0),B (−2,0),∵C 1与C 2关于y 铀对称,C 1:22242(1)2,y x x x =-+=--+∴C 2解析式为222(1)224(20)y x x x x =-++=---≤≤,当y =x +m 与C 1相切时,如图所示:令224y x m y x x=+==-+,即2230x x m -+=,890m =-+= ,解得98m =,当y =x +m 过原点时,m =0,∴当908m <<时直线y =x +m 与C 1、C 2共有3个不同的交点,故选:A.【点睛】考查抛物线与x 轴的交点,二次函数的性质,二次函数与一次函数的综合,数形结合是解题的关键.3.C根据二次函数的图象与性质即可求出答案.【详解】①由图象可知:2ba->0,∴ab <0,故①正确;②由抛物线与x 轴的图象可知:△>0,∴b 2>4ac ,故②正确;③由图象可知:x =1,y <0,∴a+b+c <0,故③正确;④∵2ba-=1,∴b =﹣2a ,令x =﹣1,y >0,∴2a+b+c =c <0,故④错误.故选C .【点睛】本题考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想,本题属于中等题型.4.D 【分析】根据一元二次方程的根的判别式及一元二次方程的定义,建立关于k 的不等式租,解不等式组,求出k 的取值范围即可.【详解】∵关于x 的一元二次方程(k-1)x 2+4x+1=0有实数根,∴244(1)010k k ⎧--≥⎨-≠⎩,解得:k≤5,且k≠1,故选D.【点睛】本题考查了一元二次方程的定义及一元二次方程根的判别式的应用,根据题意列出不等式并注意一元二次方程的二次项系数不为0的隐含条件是解题关键.5.C【解析】【分析】根据圆内接四边形的对角互补得到∠A和∠C的份数和等于∠B和∠D的份数的和,由此分别进行判断即可.【详解】解:A、1+2≠3+4,所以A选项不正确;B、7+10≠5+8,所以B选项不正确;C、13+5=1+17,所以C选项正确;D、1+3≠2+4,所以D选项不正确.故选C.【点睛】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.6.A【解析】【分析】根据点到圆心的距离和圆的半径之间的数量关系,即可判断点和圆的位置关系.点到圆心的距离小于圆的半径,则点在圆内;点到圆心的距离等于圆的半径,则点在圆上;点到圆心的距离大于圆的半径,则点在圆外.【详解】解:根据点到圆心的距离8cm大于圆的半径6cm,则该点在圆外.故选A.【点睛】本题考查了点和圆的位置关系与数量之间的联系:当点到圆心的距离大于圆的半径时,则点在圆外.7.D【分析】根据反比例函数的性质及图象上点的坐标特点对各选项进行逐一分析即可.【详解】A 、∵当x =﹣3时,y =2,∴此函数图象过点(﹣3,2),故本选项正确;B 、∵k =﹣6<0,∴此函数图象的两个分支位于第二、四象限,故本选项正确;C 、∵当x =﹣2时,y =3,∴当x <﹣2时,0<y <3,故本选项正确;D 、∵k =﹣6<0,∴在每个象限内,y 随着x 的增大而增大,故本选项错误;故选:D .【点睛】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.8.A 【分析】设降价元,根据商家获利金额列出一元二次方程并求解,因为要顾客得实惠,所以要保留较大的值并求出售价.【详解】设降价元,则售价为()60x -元,销量为()30020+x 件.由题意得:()()6040300206080x x --+=,展开得220100800x x -+-=,因式分解得()()20140x x ---=,所以121,4x x ==.因为要顾客得实惠,所以取4x =,此时60456-=(元),即应将售价定为56元.故答案选:A.【点睛】本题主要考查了一元二次方程.9.A 【解析】【分析】根据平移变换,旋转变换的性质画出图象即可解决问题;【详解】解:如图,△A 2B 2C 1即为所求.观察图象可知:A2(5,2)故选A.【点睛】本题考查旋转变换,平移变换等知识,解题的关键是熟练掌握基本知识,正确作出图形是解决问题的关键.10.B【分析】列举出所有情况,看着地的一面数字之和为5的情况占总情况的多少即可.【详解】同时抛掷两个这样的正四面体,可能出现的结果有16种,数字之和为5的有4种,所以着地的一面数字之和为5的概率是41 164故选:B.【点睛】本题考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.11.2018【分析】根据一元二次方程根与系数的关系,结合“α,β是方程x2-x-2019=0的两个实数根”,得到α+β的值,再把α代入方程x2-x-2019=0,经过整理变化,即可得到答案.【详解】解:∵α,β是方程x2﹣x﹣2019=0的两个实数根,∴α+β=1,∵α3-2021α-β=α(α2-2020)-(α+β)=α(α2-2020)-1,∵α2-α-2019=0,∴α2-2020=α-1,把α2-2020=α-1代入原式得:原式=α(α-1)-1=α2-α-1=2019-1=2018.故答案为2018.【点睛】本题考查了根与系数的关系以及一元二次方程的解,正确掌握一元二次方程根与系数的关系是解题的关键.12.y=(x﹣1)2﹣1.【分析】先将所给的抛物线解析式写成顶点式,然后再根据“左加右减、上加下减”的原则进行解答即可.【详解】y=x2﹣6x+5=(x-3)2-4,向上平移3个单位长度,再向左平移2个单位长度后,得到的抛物线解析式是y=(x-3+2)2-4+3,即:y=(x﹣1)2﹣1,故答案为:y=(x﹣1)2﹣1.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.13.90°.【分析】由△COD是由△AOB绕点O按逆时针方向旋转而得,可知旋转的角度是∠BOD的大小,然后由图形即可求得答案.【详解】如图:∵△COD 是由△AOB 绕点O 按逆时针方向旋转而得,∴OB=OD ,∴旋转的角度是∠BOD 的大小,∵∠BOD=90°,∴旋转的角度为90°.故答案为:90°.【点睛】此题考查旋转的性质.解题关键是理解△COD 是由△AOB 绕点O 按逆时针方向旋转而得的含义,找到旋转角.14.27【解析】【分析】根据捕捞到草鱼的频率可以估计出放入鱼塘中鱼的总数量,从而可以得到捞到鲤鱼的概率.【详解】设草鱼有x 条,捕捞到草鱼的频率稳定在0.5左右,则0.5,200150x x =++解得:350.x =捞到鲤鱼的概率为20022003501507=++,故答案为27.【点睛】考查样本估计总体,解题的关键是根据草鱼出现的频率计算出鱼的数量.15.【分析】先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出OA ,最后用勾股定理即可得出结论.【详解】设圆锥底面圆的半径为r ,∵AC=6,∠ACB=120°,∴1206180l π⨯⨯==2πr ,∴r=2,即:OA=2,在Rt △AOC 中,OA=2,AC=6,根据勾股定理得,故答案为.【点睛】本题考查了扇形的弧长公式,圆锥的侧面展开图,勾股定理,求出OA 的长是解本题的关键.16.20【分析】由切线长定理可求得PA =PB ,AC =CE ,BD =ED ,则可求得答案.【详解】由切线长定理得:10,,PA PB CA CE DB DE====所以PCD ∆的周长为101020PC PD CD PC AC DB PD PA PB ++=+++=+=+=【点睛】本题主要考查切线的性质,利用切线长定理求得PA =PB 、AC =CE 和BD =ED 是解题的关键.17.x 1=13+,x 2=13.【解析】【分析】先把方程化为一般式,然后利用求根公式法解方程.【详解】3x 2﹣1=2x +5,3x 2﹣2x ﹣6=0∵a =3,b =﹣2,c =﹣6,△=(﹣2)2﹣4×3×(﹣6)=76,∴x =,∴x 1,x 2.【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法18.(Ⅰ)画树状图见解析;(Ⅱ)两次取出的小球标号相同的概率为14;(Ⅲ)两次取出的小球标号的和大于6的概率为3 16.【分析】(Ⅰ)根据题意可画出树状图,由树状图即可求得所有可能的结果.(Ⅱ)根据树状图,即可求得两次取出的小球标号相同的情况,然后利用概率公式求解即可求得答案.(Ⅲ)根据树状图,即可求得两次取出的小球标号的和大于6的情况,然后利用概率公式求解即可求得答案.【详解】解:(Ⅰ)画树状图得:(Ⅱ)∵共有16种等可能的结果,两次取出的小球的标号相同的有4种情况,∴两次取出的小球标号相同的概率为416=14;(Ⅲ)∵共有16种等可能的结果,两次取出的小球标号的和大于6的有3种结果,∴两次取出的小球标号的和大于6的概率为3 16.【点睛】此题考查列表法与树状图法求概率的知识.此题难度不大,解题的关键是注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.19.(1)12π;(2)【分析】(1)根据垂径定理得到,根据圆周角定理求出∠CAB,根据三角形内角和定理求出∠AOC,根据扇形面积公式计算;(2)根据正弦的定义求出CE,根据垂径定理计算即可.【详解】(1)∵弦CD⊥AB,∴,∴∠CAB=∠DAB=30°,∵OA=OC,∴∠OCA=∠OAC=30°,∴∠AOC=120°,∴扇形OAC的面积==12π;(2)由圆周角定理得,∠COE=2∠CAB=60°,∴CE=OC×sin∠COE=3,∵弦CD⊥AB,∴CD=2CE=6.【点睛】本题考查了扇形面积计算,圆周角定理,垂径定理的应用,掌握扇形面积公式是解题的关键.20.(1)94m≥-;(2)1m=【分析】(1)因为方程有实数根,所以根的判别式要大于等于0,即△≥0,据此即可求出m的取值范围;(2)根据一元二次方程根与系数的关系,将x1+x2=-3、x1x2=﹣m代入x12+x22=(x1+x2)2﹣2x1•x2=11,解关于m的方程即可.【详解】(1)∵关于x的一元二次方程x2+3x﹣m=0有实数根,∴△=b2﹣4ac=32+4m≥0,解得:m≥﹣;(2)∵x1+x2=﹣3、x1x2=﹣m,∴x12+x22=(x1+x2)2﹣2x1•x2=11,∴(﹣3)2+2m=11,解得:m=1.【点睛】本题考查了一元二次方程根的判别式及根与系数的关系,解题的关键是熟练掌握根与系数的关系.21.(1)k=4;(2)a的值为13或﹣1.【解析】【分析】(1)∵图形过A点,∴A点坐标符合函数关系式,代入求解即可.(2)B点可以在C点左边,也可以在C点右边,并通过待定系数法即可求解.【详解】解:(1)∵函数y=(x>0)的图象经过点A(2,2),∴k=2×2=4;(2)∵OB=2AC,AC=2,∴OB=4.分两种情况:①如果B(﹣4,0).∵直线y=ax+b(a≠0)图象经过点A交x轴于点B,∴2a+b=2,-4a+b=0,求得a=13,b=43.②如果B(4,0).∵直线y=ax+b(a≠0)图象经过点A交x轴于点B,∴2a+b=2,4a+b=0,求得a=-1,b=4.综上,所求a的值为13或﹣1.【点睛】需要注意的是线段长度与点的坐标的关系,注意进行分情况讨论,考虑问题要全面. 22.(1)40%;(2)2616.【分析】(1)设A市投资“改水工程”的年平均增长率是x.根据:2008年,A市投入600万元用于“改水工程”,2010年该市计划投资“改水工程”1176万元,列方程求解;(2)根据(1)中求得的增长率,分别求得2009年和2010年的投资,最后求和即可.【详解】解:(1)设A 市投资“改水工程”年平均增长率是x ,则2600(1)1176x +=.解之,得0.4x =或 2.4x =-(不合题意,舍去).所以,A 市投资“改水工程”年平均增长率为40%.(2)600+600×1.4+1176=2616(万元).A 市三年共投资“改水工程”2616万元.23.(1),B 点坐标为(3,0);(2)①;②.【分析】(1)由对称轴公式可求得b ,由A 点坐标可求得c ,则可求得抛物线解析式;再令y=0可求得B 点坐标;(2)①用t 可表示出ON 和OM ,则可表示出P 点坐标,即可表示出PM 的长,由矩形的性质可得ON=PM ,可得到关于t 的方程,可求得t 的值;②由题意可知OB=OA ,故当△BOQ 为等腰三角形时,只能有OB=BQ 或OQ=BQ ,用t 可表示出Q 点的坐标,则可表示出OQ 和BQ 的长,分别得到关于t 的方程,可求得t 的值.【详解】(1)∵抛物线2y x bx c =-++对称轴是直线x=1,∴﹣2(1)b ⨯-=1,解得b=2,∵抛物线过A (0,3),∴c=3,∴抛物线解析式为2y x 2x 3=-++,令y=0可得2230x x -++=,解得x=﹣1或x=3,∴B 点坐标为(3,0);(2)①由题意可知ON=3t ,OM=2t ,∵P 在抛物线上,∴P (2t ,2443t t -++),∵四边形OMPN 为矩形,∴ON=PM ,∴3t=2443t t -++,解得t=1或t=﹣34(舍去),∴当t 的值为1时,四边形OMPN 为矩形;②∵A(0,3),B(3,0),∴OA=OB=3,且可求得直线AB解析式为y=﹣x+3,∴当t>0时,OQ≠OB,∴当△BOQ为等腰三角形时,有OB=QB或OQ=BQ两种情况,由题意可知OM=2t,∴Q(2t,﹣2t+3),∴﹣3|,又由题意可知0<t<1,当OB=QB|2t﹣3|=3,解得t=64+(舍去)或t=64-;当OQ=BQ=|2t﹣3|,解得t=34;综上可知当t34时,△BOQ为等腰三角形.24.(1)证明见解析;(2)证明见解析.【分析】(1)利用SSS可证明△OAD≌△OCD,可得∠ADO=∠CDO,根据等腰三角形“三线合一”的性质可得DE⊥AC,由AB是直径可得∠ACB=90°,即可证明OD//BC;(2)设BC=a,则AC=2a,利用勾股定理可得,根据中位线的性质可用a表示出OE、AE的长,即可表示出OD的长,根据勾股定理逆定理可得∠OAD=90°,即可证明DA与⊙O相切.【详解】(1)连接OC,在△OAD和△OCD中,OA OC AD CD OD OD=⎧⎪=⎨⎪=⎩,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,∵AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,即BC⊥AC,∴OD ∥BC ;(2)设BC =a ,∵AC =2BC ,∴AC =2a ,∴AD =AB ,∵OE ∥BC ,且AO =BO ,∴OE 为△ABC 的中位线,∴OE =12BC =12a ,AE =CE =12AC =a ,在△AED 中,DE 2a ,∴OD=OE+DE=52a ,在△AOD 中,AO 2+AD 2)2+)2=254a 2,OD 2=(52a )2=254a 2,∴AO 2+AD 2=OD 2,∴∠OAD =90°,∵AB 是直径,∴DA 与⊙O 相切.【点睛】本题考查圆周角定理、切线的判定、三角形中位线的性质勾股定理,三角形的中位线平行于第三边,且等于第三边的一半;直径所对的圆周角是直角;经过半径的外端点,且垂直于这条半径的直线是圆的切线;熟练掌握相关性质及定理是解题关键.25.(1)223y x x =--+;(2)185;(3)278.【分析】()1将A ,B ,C 点的坐标代入解析式,用待定系数法可得函数解析式;(2)求出顶点D 的坐标为()1,4-,作B 点关于直线1x =的对称点'B ,可求出直线'DB 的函数关系式为11955y x =-+,当()1,M m 在直线'DN 上时,MN MD +的值最小;(3)作PE x ⊥轴交AC 于E 点,求得AC 的解析式为3y x =+,设()2,23P m m m --+,(),3E m m +,得23PE m m =--,所以,()2113322APC A S PE x m m =⋅=--⨯ ,求函数的最大值即可.【详解】()1将A ,B ,C 点的坐标代入解析式,得方程组:9304233a b c a b c c -+=⎧⎪-+=⎨⎪=⎩解得123a b c =-⎧⎪=-⎨⎪=⎩抛物线的解析式为223y x x =--+()2配方,得2(1)4y x =-++,顶点D 的坐标为()1,4-作B 点关于直线1x =的对称点'B ,如图1,则()'4,3B ,由()1得()1,4D -,可求出直线'DB 的函数关系式为11955y x =-+,当()1,M m 在直线'DN 上时,MN MD +的值最小,则119181555m =-⨯+=.()3作PE x ⊥轴交AC 于E 点,如图2,AC 的解析式为3y x =+,设()2,23P m m m --+,(),3E m m +,()222333PE m m m m m =--+-+=--()2211332733()22228APC A S PE x m m m =⋅=--⨯=-++ ,当32m =-时,APC 的面积的最大值是278;【点睛】本题考核知识点:二次函数综合运用.解题关键点:画出图形,数形结合分析问题,把问题转化为相应函数问题解决.。
人教版九年级上册数学期中考试试卷一、单选题1.一元二次方程22x x =的根是()A .0x =B .122,2x x ==-C .120,2x x ==D .120,2x x ==-2.用配方法解方程2210x x --=时,配方后所得的方程为()A .210x +=()B .210x -=()C .212x +=()D .212x -=()3.已知抛物线21219y ax x =+-的对称轴是直线3x =,则实数a 的值是()A .2B .2-C .4D .4-4.抛物线222,31,23y x y x y x =-=-+=-共有的性质是()A .开口向上B .都有最高点C .对称轴是y 轴D .y 随x 的增大而减小5.对于二次函数2(3)1y x =--+,下列结论正确的是()A .图象的开口向上B .当3x <时,y 随x 的增大而减小C .函数有最小值1D .图象的顶点坐标是(3,1)6.已知()10y ,,()21,y ,()34,y 都是抛物线223y x x m =-+上的点,则()A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >>7.等腰△ABC 的一边长为4,另外两边的长是关于x 的方程x 2−10x+m=0的两个实数根,则m 的值是()A .24B .25C .26D .24或258.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)-,对称轴为直线1x =,则下列结论中正确的是()A .0abc >B .当0x >时,y 随x 的增大而增大C .21a b +=D .3x =是一元二次方程ax 2+bx +c =0的一个根9.如图,二次函数22y x x =--的图象与x 轴交于点A O 、,点P 是抛物线上的一个动点,且满足3AOP S = ,则点P 的坐标是()A .()3,3--B .()1,3-C .()3,3--或()1,3-D .()3,3--或()3,1-10.如图,在同一平面直角坐标系中,函数2(0)y ax a =+≠与22(0)y ax x a =--≠的图象可能是()A .B .C .D .二、填空题11.一元二次方程2218x =的根为______________________.12.将抛物线22y x =-先向右平移2个单位,再向下平移3个单位得到新的抛物线____.13.用配方法将抛物线261y x x =++化成顶点式()2y a x h k =-+得_____________.14.若关于x 的一元二次方程220210ax bx --=有一个根为2x =,则代数式842021a b --的值是_________.15.如图,已知抛物线2y ax c =+与直线y kx m =+交于()123,,1,)(A y B y -两点,则关于x 的不等式2ax c kx m +>-+的解集是__________________.16.如图,已知等腰直角三角形ABC 的直角边长与正方形MNPQ 的边长均为10cm ,AC 与MN 在同一直线上.点A 从点N 出发,以2cm/s 的速度向左运动,运动到点M 时停止运动,则重叠部分(阴影)的面积()2cm y 与时间x 之间的函数关系式为___________________.17.如图,抛物线21:0()L y ax bx c a =++≠与x 轴只有一个公共点()1,0A ,与y 轴交于点()0,2B ,虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线2L ,则图中两个阴影部分的面积和为______________.三、解答题18.用适当的方法解一元二次方程:22410x x --=19.在国家政策的调控下,某市的商品房成交均价由今年5月份的每平方米10000元下降到7月份的每平方米8100元.()1求6、7两月平均每月降价的百分率;()2如果房价继续回落,按此降价的百分率,请你预测到9月份该市的商品房成交均价是否会跌破每平方米6500元?请说明理由.20.设一元二次方程260x x k -+=的两根分别为12,x x .(1)若方程有两个相等的实数根,求k 的值;(2)若5k =,且12,x x 分别是Rt ABC 的两条直角边的长,试求Rt ABC 的面积.21.如图,在一次足球训练中,球员小王从球门前方10m 起脚射门,球的运行路线恰是一条抛物线,当球飞行的水平距离是6m 时,球到达最高点,此时球高约3m .(1)求此抛物线的解析式;(2)已知球门高2.44m ,问此球能否射进球门?22.关于x 的一元二次方程22(21)10x k x k ++++=有两个不相等的实数根1x ,2x .(1)求实数k 的取值范围;(2)若方程两个实数根1x ,2x 满足12120x x x x ++⋅=,求k 值.23.如图,有长为24m 的篱笆,一面利用墙(墙长a 无限制)围成中间隔有一道篱笆的长方形花圃.设花圃宽AB 为()m x ,面积为()2m S .(1)求S 与x 之间的函数关系式;(2)求花圃面积的最大值;(3)请说明能否围成面积是260m 的花圃?24.某景区商店销售一种纪念品,这种商品的成本价10元/件,市场调查发现,该商品每天的销售量y (件)与销售价x (元/件)之间满足一次函数的关系(如图所示).(1)求y 与x 之间的函数关系式;(2)若该商店每天可获利225元,求该商品的售价x ;(3)已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,求每天的销售利润W (元)与销售价x (元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?25.如图,二次函数2y x bx c =++的图象与x 轴分别交于点(),4,0A B (点A 在点B 的左侧),且经过点()3,7-,与y 轴交于点C .(1)求,b c 的值.(2)将线段OB 平移,平移后对应点O '和B '都落在拋物线上,求点B '的坐标.参考答案1.C 【分析】根据方程特点,利用因式分解法,即可求出方程的解.【详解】解:移项得220x x -=,因式分解,得()20x x -=,∴020x x =-=,则1202x x ==,.故选:C .【点睛】此题主要考查了因式分解法解一元二次方程,解题的关键是掌握因式分解法解方程的基本步骤及方法.2.D 【解析】【分析】先把常数项移项,然后在等式的两边同时加上一次项系数的一半的平方.【详解】根据配方的正确结果作出判断:()222221021211112x x x x x x x --=⇒-=⇒-+=+⇒-=.故选D .【点睛】本题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方。
九年级上册数学试卷附答案题目一:选择题1. 设集合A={x | 5 ≤ x ≤ 10},则A中元素的个数等于()A. 4B. 5C. 6D. 7答案:C. 62. 下列等价变形是()A. 1.6千克=1600克B. 5千米=500米C. 9百=900D. 1/2小时=30分钟答案:D. 1/2小时=30分钟3. 平方根的定义域一定是()A. 自然数B. 整数C. 有理数D. 实数答案:D. 实数4. 设AB的长度为15厘米,AC的长度是AB长度的3倍,BD的长度是AB长度的2倍,则BD的长度是()厘米。
A. 15B. 30C. 45D. 60答案:B. 305. 已知a,b,c都是非零实数,且abc=1,则下列说法正确的是()A. a+b+c>0B. a+b+c<0C. a+b+c=1D. a+b+c=-1答案:B. a+b+c<0题目二:填空题1. 在 x + 3=7 的两边同时减去3,可得x=______。
答案:42. 如果直线l垂直于直线m,则直线m与直线l相交时的夹角为______度。
答案:903. 下列各数中,是整数,但不是自然数的是______。
答案:04. 如果二次方程 x^2+bx+12=0 的根为2和-3,则b的值为______。
答案:15. 设集合A={x | x为偶数},则A的元素个数是______。
答案:无穷多个题目三:计算题1. 计算:2.3 * (4.5 + 6.7)答案:33.042. 计算:(7 - 4) *3.8答案:11.43. 计算:(2^3 ÷ 4) + (√16 - 2)答案:54. 计算:18 ÷ (9 - 3) + 4 × 2答案:125. 计算:(2^3 + 4 × 5) ÷ 3答案:10题目四:解答题1. 某商品原价为150元,现进行8折优惠,请计算打完折后的价格是多少元?答案:120元2. 在一组数据中,平均数为45,如果将其中一个数减少10,则平均数变为43,请计算原来的那个数是多少?答案:553. 如图所示,矩形ABCD中,AB=15cm,BC=3cm,通过顶点C和边AB做垂线CE,垂足为E。
人教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.下列方程是一元二次方程的是( )A .ax 2+bx+c=0B .3x 2﹣2x=3(x 2﹣2)C .x 3﹣2x ﹣4=0D .(x ﹣1)2﹣1=0 2.已知⊙O 的直径为5,若PO =5,则点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .无法判断 3.二次函数y=x 2+2的顶点坐标是( )A .(1,﹣2)B .(1,2)C .(0,﹣2)D .(0,2) 4.如图,BD 是⊙O 的直径,点A 、C 在⊙O 上,AB BC =,∠AOB =60°,则∠BDC 的度数是( )A .60°B .45°C .35°D .30° 5.若,则23(2)6(1)(1)x x x --+-的值为( ) A .﹣6 B .6 C .18 D .30 6.正十二边形的每一个内角的度数为( )A .120°B .135°C .150°D .108° 7.已知点A (1,a )、点B (b ,2)关于原点对称,则a+b 的值为( ) A .3 B .-3 C .-1 D .18.在直径为200cm 的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm ,则油的最大深度为( )A .40cmB .60cmC .80cmD .100cm 9.如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C顺时针旋转60°,则顶点A所经过的路径长为()A.10πB C D.π10.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是()A.B.B.C.D.二、填空题11.一元二次方程x ( x +3)=0的根是__________________.12.将二次函数的图象沿x轴向左平移2个单位,则平移后的抛物线对应的二次函数的表达式为_________.13.如图,已知等边ABC的边长为6,以AB为直径的⊙O与边AC,BC分别交于D,E 两点,则劣弧DE的长为_________ .14.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是___________.15.如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=_________°.三、解答题16.用公式法解方程:x2﹣x﹣2=0.17.如图为桥洞的形状,其正视图是由CD和矩形ABCD构成.O点为CD所在⊙O的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F)EF为2米.求CD所在⊙O的半径DO.18.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2),B(0,4),C (0,2),将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1,并写出A1,B1的坐标.19.某校九年级举行毕业典礼,需要从九年级(1)班的2名男生、1名女生(男生用A,B 表示,女生用a表示)和九年级(2)班的1名男生、1名女生(男生用C表示,女生用b 表示)共5人中随机选出2名主持人,用树状图或列表法求出2名主持人来自不同班级的概率.20.已知抛物线y=ax2+bx﹣8(a≠0)的对称轴是直线x=1,(1)求证:2a+b=0;(2)若关于x的方程ax2+bx﹣8=0,有一个根为4,求方程的另一个根.21.如图1,若△ABC和△ADE为等边三角形,M,N分别是BE,CD的中点,(1)求证:△AMN是等边三角形.(2)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由.22.用长度一定的不锈钢材料设计成外观为矩形的框架(如图①②中的一种).设竖档AB=x米,请根据以上图案回答下列问题:(题中的不锈钢材料总长均指各图中所有黑线的长度和,所有横档和竖档分别与AD、AB平行)(1)在图①中,如果不锈钢材料总长度为12米,当x为多少时,矩形框架ABCD的面积为3平方米?(2)在图②中,如果不锈钢材料总长度为12米,当x为多少时,矩形框架ABCD的面积S 最大?最大面积是多少?23.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD 的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.24.若两条抛物线的顶点相同,则称它们为“友好抛物线”,抛物线C1:y1=﹣2x2+4x+2与C2:y2=﹣x2+mx+n为“友好抛物线”.(1)求抛物线C2的解析式.(2)点A是抛物线C2上在第一象限的动点,过A作AQ⊥x轴,Q为垂足,求AQ+OQ的最大值.(3)设抛物线C2的顶点为C,点B的坐标为(﹣1,4),问在C2的对称轴上是否存在点M,使线段MB绕点M逆时针旋转90°得到线段MB′,且点B′恰好落在抛物线C2上?若存在求出点M的坐标,不存在说明理由.参考答案1.D【详解】试题分析:根据一元二次方程的定义对各选项进行逐一分析即可.解:A、当a=0时,方程ax2+bx+c=0是一元一次方程,故本选项错误;B、方程3x2﹣2x=3(x2﹣2)是一元一次方程,故本选项错误;C、方程x3﹣2x﹣4=0是一元三次方程,故本选项错误;D、符合一元二次方程的定义,故本选项正确.故选D.考点:一元二次方程的定义.2.C【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【详解】解: 2.52d r ==, ∵d =5>2.5,点P 在⊙O 外,故选C .【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r ,点到圆心的距离为d ,则有:当d >r 时,点在圆外;当d =r 时,点在圆上,当d <r 时,点在圆内.3.D【分析】已知二次函数y=x 2+2为抛物线的顶点式,根据顶点式的坐标特点直接写出顶点坐标.【详解】试题分析::∵y=x 2+2=(x-0)2+2,∴顶点坐标为(0,2).故选D .4.D【解析】试题分析:直接根据圆周角定理求解.连结OC ,如图,∵AB =BC ,∴∠BDC=12∠BOC=12∠AOB=12×60°=30°. 故选D .考点:圆周角定理.5.B【详解】试题分析:∵,即244x x +=,∴原式=223(44)6(1)x x x -+--=223121266x x x -+-+=231218x x --+=23(4)18x x -++=﹣12+18=6.故选B .考点:整式的混合运算—化简求值;整体思想;条件求值.6.C【分析】首先求得每个外角的度数,然后根据外角与相邻的内角互为邻补角得出每个内角的度数.【详解】正十二边形的每个外角的度数是:36012︒=30°, 则每一个内角的度数是:180°−30°=150°. 故选项为:C .【点睛】本题考查了正多边形的性质,掌握多边形的外角和等于360度,正确理解内角与外角的关系是关键.7.B【分析】由关于原点对称的两个点的坐标之间的关系直接得出a 、b 的值即可.【详解】∵点A (1,a )、点B (b ,2)关于原点对称,∴a =﹣2,b =﹣1,∴a +b =﹣3.故选B.【点睛】关于原点对称的两个点,它们的横坐标互为相反数,纵坐标也互为相反数.8.A【分析】连接OA ,过点O 作OE ⊥AB ,交AB 于点M ,由垂径定理求出AM 的长,再根据勾股定理求出OM 的长,进而可得出ME 的长.【详解】解:连接OA ,过点O 作OE ⊥AB ,交AB 于点M ,交圆O 于点E ,∵直径为200cm,AB=160cm,∴OA=OE=100cm,AM=80cm,60cmOM∴=,∴ME=OE-OM=100-60=40cm.故选:A.考点:(1)、垂径定理的应用;(2)、勾股定理.9.C【详解】如图所示:在Rt△ACD中,AD=3,DC=1,根据勾股定理得:又将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为=.故选C.10.C【详解】试题分析:由题意可得BQ=x.①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=12BP•BQ,解y=12•3x•x=232x;故A选项错误;②1<x≤2时,P点在CD边上,则△BPQ的面积=12BQ•BC,解y=12•x•3=32x;故B选项错误;③2<x≤3时,P 点在AD 边上,AP=9﹣3x ,则△BPQ 的面积=12AP•BQ ,解y=12•(9﹣3x )•x=29322x x -;故D 选项错误. 故选C .考点:动点问题的函数图象.11.12x 0x -3==,【分析】用因式分解法解方程即可.【详解】解:x ( x +3)=0,x =0或 x +3=0,12x 0x -3==,;故答案为:12x 0x -3==,.【点睛】本题考查了一元二次方程的解法,掌握两个数的积为0,这两个数至少有一个为0是解题关键.12.244y x x =++.【详解】试题分析:平移后二次函数解析式为:22(2)44y x x x =+=++,故答案为244y x x =++. 考点:二次函数图象与几何变换.13.【详解】试题分析:考点: 圆周角与圆心角的关系,弧长公式.14.(2,10)或(﹣2,0)【详解】∵点D (5,3)在边AB 上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x 轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x 轴的距离为10,到y 轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).15.215.【详解】解:连接CE∵五边形ABCDE 为内接五边形∴四边形ABCE 为内接四边形∴∠B+∠AEC=180°又∵∠CAD =35∴∠CED =35°(同弧所对的圆周角相等)∴∠B+∠E=∠B+∠AEC+∠CED=180°+35°=215°故答案为:215.【点睛】本题考查正多边形和圆.16.122,1x x ==-【解析】试题分析:先求出b 2﹣4ac 的值,再代入公式求出即可.试题解析:解:∵a =1,b =-1,c =-2, ∴△=b 2-4ac =(-1)2-4×1×(-2)=9 >0,∴x =132±,解得:12x =,21x =-. 17.5米【详解】试题分析:设半径OD=r ,则由题意易得OF=OE-EF=r-2;由OE ⊥CD ,根据“垂径定理”可得DF=12CD=4,这样在Rt △ODF 中由勾股定理建立方程就可解得r.试题解析:设⊙O 的半径为r 米,则OF=(r-2)米,∵OE ⊥CD∴ DF=12CD=4在Rt △OFD 中,由勾股定理可得:(r-2)2+42=r 2,解得:r=5,∴ CD 所在⊙O 的半径DO 为5米.18.见解析,11(3,2),(0,0)A B【解析】试题分析:根据旋转的性质作出A 、B 、C 绕点C 旋转180°后对应的点,连接即可. 试题解析:解:如图:由图可得:A1 (3,2),B1 (0,0).19.见解析,3 5【解析】试题分析:首先根据题意列表,由表格求得所有等可能的结果,由选出的是2名主持人来自不同班级的情况,然后由概率公式即可求得.试题解析:解:列表可得:共有20种等可能的结果.∵2名主持人来自不同班级的情况有12种,∴2名主持人来自不同班级的概率为:1220=35.点睛:此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.20.(1)见解析;(2)-2【解析】试题分析:(1)根据抛物线的对称轴方程进行证明即可;(2)根据抛物线与x 轴的交点问题可判断抛物线y =ax 2+bx ﹣8(a ≠0)与x 轴的一个交点坐标为(4,0),然后利用抛物线的对称性可得到抛物线y =ax 2+bx ﹣8(a ≠0)与x 轴的另一个交点坐标为(﹣2,0),从而得到方程ax 2+bx ﹣8=0另一个根.试题解析:解:(1)∵抛物线的对称轴是x =1,∴ 2b a=1,∴2a +b =0; (2)∵关于x 的方程ax 2+bx ﹣8=0有一个根为4,∴抛物线y =ax 2+bx ﹣8(a ≠0)与x 轴的一个交点坐标为(4,0),∵抛物线的对称轴是x =1,∴抛物线y =ax 2+bx ﹣8(a ≠0)与x 轴的另一个交点坐标为(﹣2,0),∴关于x 的方程ax 2+bx ﹣8=0,有一个根为﹣2.点睛:本题考查了抛物线与x 轴的交点.把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标转化为解关于x 的一元二次方程;通过二次函数的交点式:y =a (x ﹣x 1)(x ﹣x 2)(a ,b ,c 是常数,a ≠0)可直接得到抛物线与x 轴的交点坐标(x 1,0),(x 2,0).21.(1)证明见解析;(2)CD=BE.理由见解析【解析】试题分析:(1)由等边三角形的性质得到AB =AC ,AE =AD , ∠BAC =∠EAD =60°,从而得到BE =CD , 再由中点的定义得到EN =DN , 即有AN =AM , 从而可以得到结论; (2)可以利用SAS 判定△ABE ≌△ACD ,全等三角形的对应边相等,所以CD =BE .试题解析:解:(1)∵△ABC 和△ADE 是等边三角形,∴AB =AC ,AE =AD , ∠BAC =∠EAD =60°,∴AB -AE =AC -AD ,即BE =CD , ∴M ,N 分别是BE ,CD 的中点,∴EM =12BE ,DN =12CD , ∴EN =DN , ∴EM +AE =DN +AD ,即AN =AM , ∵∠BAC =60°, ∴△AMN 是等边三角形; (2)CD =BE .理由如下:∵△ABC 和△ADE 为等边三角形,∴AB =AC ,AE =AD ,∠BAC =∠EAD =60°.∵∠BAE =∠BAC −∠EAC =60°−∠EAC ,∠DAC =∠DAE −∠EAC =60°−∠EAC ,∠BAE =∠DAC ,∴△ABE ≌△ACD ,∴CD =BE .22.(1)1米或3米;(2)32,3平方米. 【解析】试题分析:(1)先用含x 的代数式(12﹣3x )÷3=4﹣x 表示横档AD 的长,然后根据矩形的面积公式列方程,求出x 的值.(2)用含x 的代数式(12﹣4x )÷3=4﹣43x 表示横档AD 的长,然后根据矩形面积公式得到二次函数,利用二次函数的性质,求出矩形的最大面积以及对应的x 的值.解:(1)由题意,BC 的长为(4−x )米,依题意,得:x (4−x )=3,即x ²−4x +3=0,解得 x 1=1,x 2=3.答:当AB 的长度为1米或3米时,矩形框架ABCD 的面积为3平方米.(2)根据题意,由图2得,AD =(12−4x )÷3=4−43x ,∴S =AB•AD =x (4−43x )=−43x ²+4x 配方得S =243()332x --+,∴当x =32时,S 取最大值3. 答:当x =32时,矩形框架ABCD 的面积最大,最大面积是3平方米. 点睛:本题考查的是二次函数的应用.(1)根据面积公式列方程,求出x 的值.(2)根据面积公式得二次函数,利用二次函数的性质求最值.23.(1)直线DE 与⊙O 相切;(2)4.75.【分析】(1)连接OD ,通过线段垂直平分线的性质和等腰三角形的性质证明∠EDB +∠ODA =90°,进而得出OD ⊥DE ,根据切线的判定即可得出结论;(2)连接OE ,作OH ⊥AD 于H .则AH =DH ,由△AOH ∽△ABC ,可得AH OA AC AB=,推出AH =65,AD =125,设DE =BE =x ,CE =8-x ,根据OE 2=DE 2+OD 2=EC 2+OC 2,列出方程即可解决问题;【详解】(1)连接OD ,∵EF 垂直平分BD ,∴EB =ED ,∴∠B =∠EDB ,∵OA=OD,∴∠ODA=∠A,∵∠C=90°,∴∠A+∠B=90°,∴∠EDB+∠ODA=90°,∴∠ODE=90°,∴OD⊥DE,∴DE是⊙O的切线.(2)连接OE,作OH⊥AD于H.则AH=DH,∵△AOH∽△ABC,∴AH OA AC AB=,∴2 610 AH=,∴AH=65,AD=125,设DE=BE=x,CE=8﹣x,∵OE2=DE2+OD2=EC2+OC2,∴42+(8﹣x)2=22+x2,解得x=4.75,∴DE=4.75.【点睛】本题考查切线的判定和性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考常考题型.24.(1)y2=﹣x2+2x+3.(2)214;(3)(1,2)或(1,5)【解析】试题分析:(1)先求得y1顶点坐标,然后依据两个抛物线的顶点坐标相同可求得m、n的值;(2)设A(a,-a2+2a+3).则OQ=x,AQ=-a2+2a+3,然后得到OQ+AQ与a的函数关系式,最后依据配方法可求得OQ+AQ的最值;(3)连接BC,过点B′作B′D⊥CM,垂足为D.接下来证明△BCM≌△MDB′,由全等三角形的性质得到BC=MD,CM=B′D,设点M的坐标为(1,a).则用含a的式子可表示出点B′的坐标,将点B′的坐标代入抛物线的解析式可求得a的值,从而得到点M的坐标.试题解析:(1)∵y 1=﹣2x 2+4x+2=﹣﹣2(x ﹣1)2+4,∴抛物线C 1的顶点坐标为(1,4).∵抛物线C 1:与C 2顶点相同, ∴12m--⨯ =1,﹣1+m+n=4.解得:m=2,n=3.∴抛物线C 2的解析式为u 2=﹣x 2+2x+3.(2)如图1所示:设点A 的坐标为(a ,﹣a 2+2a+3).∵AQ=﹣a 2+2a+3,OQ=a ,∴AQ+OQ=﹣a 2+2a+3+a=﹣a 2+3a+3=﹣(a ﹣32)2+214 .∴当a=32时,AQ+OQ 有最大值,最大值为214.(3)如图2所示;连接BC ,过点B′作B′D ⊥CM ,垂足为D .∵B (﹣1,4),C (1,4),抛物线的对称轴为x=1,∴BC ⊥CM ,BC=2.∵∠BMB′=90°,∴∠BMC+∠B′MD=90°.∵B′D ⊥MC ,∴∠MB′D+∠B′MD=90°.∴∠MB′D=∠BMC .在△BCM 和△MDB′中,MB D BMC BCM MDB BM MB ∠'∠⎧⎪∠∠'⎨⎪'⎩=== , ∴△BCM ≌△MDB′∴BC=MD ,CM=B′D .设点M 的坐标为(1,a ).则B′D=CM=4﹣a ,MD=CB=2.∴点B′的坐标为(a ﹣3,a ﹣2).∴﹣(a ﹣3)2+2(a ﹣3)+3=a ﹣2.整理得:a 2﹣7a ﹣10=0.解得a=2,或a=5.当a=2时,M 的坐标为(1,2),当a=5时,M 的坐标为(1,5).综上所述当点M 的坐标为(1,2)或(1,5)时,B′恰好落在抛物线C 2上.【点睛】解答本题主要应用了二次函数的顶点坐标公式、二次函数的图象和性质、全等三角形的性质和判定、函数图象上点的坐标与函数解析式的关系,用含a 的式子表示点B′的坐标是解题的关键.。
人教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下列事件中,必然发生的是()A.某射击运动射击一次,命中靶心B.通常情况下,水加热到100℃时沸腾C.掷一次骰子,向上的一面是6点D.抛一枚硬币,落地后正面朝上3.若反比例函数y=﹣1x的图象经过点A(3,m),则m的值是()A.﹣3B.3C.﹣13D.134.如图,直线y=kx与双曲线y=﹣2x交于A(x1,y1),B(x2,y2)两点,则2x1y2﹣8x2y1的值为()A.﹣6B.﹣12C.6D.125.如图,经过原点O的⊙P与、轴分别交于A、B两点,点C是劣弧上一点,则∠ACB=()A.80°B.90°C.100°D.无法确定6.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm7.如图,在平面直角坐标系中,点B、C、E在y轴上,Rt△ABC经过变换得到Rt△ODE,若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移38.抛物线y=(m﹣1)x2﹣mx﹣m2+1的图象过原点,则m的值为()A.±1B.0C.1D.-19.圆的面积公式S=πR2中,S与R之间的关系是()A.S是R的正比例函数B.S是R的一次函数C.S是R的二次函数D.以上答案都不对10.如图,P是⊙O直径AB延长线上的一点,PC与⊙O相切于点C,若∠P=20°,则∠A 的度数为()A.40°B.35°C.30°D.25°11.如图,一个大正方形中有2个小正方形,如果它们的面积分别是S1,S2,则()A.S2>S1B.S1=S2C.S1>S2D.S1≥S212.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个B.3个C.2个D.1个二、填空题13.把方程3x(x﹣2)=4(x+1)化为一元二次方程的一般形式是_______;14.小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖的除颜色外完全相同,它最终停留在黑色方砖上的概率是.15.一个侧面积为162πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为_cm.16.关于x的一元二次方程2210ax x++=有实数解,那么实数a的取值范围是__________. 17.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF 的面积之比为____________.18.如图,在Rt△ABC中,∠C=90°,AC=6,∠A=60°,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是_________.三、解答题19.解方程:x2+3x﹣2=0.20.如图为桥洞的形状,其正视图是由 CD和矩形ABCD构成.O点为 CD所在⊙O的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F)EF为2米.求 CD所在⊙O的半径DO.21.如图所示的网格图中,每小格都是边长为1的正方形,△ABC的三个顶点都在格点上,在建立直角坐标系后,点C的坐标(-1,2)(1)画出△ABC绕点D(0,5)逆时针旋转90°后的△A1B1C1,(2)写出A1,C1的坐标.(3)求点A旋转到A1所经过的路线长.22.如图,抛物线2=-++与x轴交于A、B两点(点A在点B的左侧),点A的y x bx c坐标为()-,,与y轴交于点()10C,,作直线BC.动点P在x轴上运动,过点P作03PM x⊥轴,交抛物线于点M,交直线BC于点N,设点P的横坐标为m.(Ⅰ)求抛物线的解析式和直线BC的解析式;(Ⅱ)当点P在线段OB上运动时,求线段MN的最大值;(Ⅲ)当以C、O、M、N为顶点的四边形是平行四边形时,直接写出m的值.23.有红、黄两个盒子,红盒子中装有编号分别为1、2、3、4的四个红球,黄盒子中装有编号为1、2、3的三个黄球.甲、乙两人玩摸球游戏,游戏规则为:甲从红盒子中每次摸出一个小球,乙从黄盒子中每次摸出一个小球,若两球编号之和为奇数,则甲胜,否则乙胜.(1)试用列表或画树形图的方法,求甲获胜的概率;(2)请问这个游戏规则对甲、乙双方公平吗?请说明理由.24.如图,在平面直角坐标系xOy中,双曲线y=与直线y=﹣2x+2交于点A(﹣1,a).(1)求a,m的值;(2)求该双曲线与直线y=﹣2x+2另一个交点B的坐标.25.如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接ED,BE.(1)求证:△ABD∽△AEB;(2)当ABBC=43时,求tanE;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.26.如图1,若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN是等边三角形:(1)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?若相等请证明,若不等于请说明理由;(2)当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形吗?若是请证明,若不是,请说明理由(可用第一问结论).27.已知,如图①,在▱ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图②,设移动时间为t(s)(0<t<4),连接PQ,MQ,MC,解答下列问题:(1)当t为何值时,PQ∥MN;(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;:S四边形ABQP=1:4.若存在,求出t的值;若不存在,(3)是否存在某一时刻t,使S△QMC请说明理由;(4)是否存在某一时刻t,使PQ⊥MQ.若存在,求出t的值;若不存在,请说明理由.参考答案1.D【详解】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,但不是中心对称图形,故本选项错误;C、是轴对称图形,但不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选D.2.B【解析】A、某射击运动射击一次,命中靶心,随机事件;B、通常加热到100℃时,水沸腾,是必然事件.C、掷一次骰子,向上的一面是6点,随机事件;D抛一枚硬币,落地后正面朝上,随机事件;故选B.3.C【解析】试题分析:把点A代入解析式可知:m=﹣1 3.故选C.考点:反比例函数图象上点的坐标特征.4.B【解析】【分析】(解法一)将一次函数解析式代入反比例函数解析式中得出关于x的一元二次方程,解方程即可得出A、B点的横坐标,再结合一次函数的解析式即可求出点A、B的坐标,将其代入2x1y2-8x2y1中即可得出结论.(解法二)根据正、反比例函数的对称性,找出x1=-x2、y1=-y2,将其代入2x1y2-8x2y1中利用反比例函数图象上点的坐标特征,即可求出结论.【详解】(解法一)将y=kx代入到y=-2x中得:kx=-2x,即kx2=-2,解得:x1,x2∴y1=kx1y2=kx2,∴2x1y2-8x2y1=2×(×()=-12.(解法二)由正、反比例函数的对称性,可知:x1=-x2,y1=-y2,∴2x1y2-8x2y1=-2x1y1+8x1y1=6x1y1.∵x1y1=-2,∴2x1y2-8x2y1=6x1y1=-12.故选:B.【点睛】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征以及一元二次方程的解,解题的关键是:(解法一)求出点A、B的坐标;(解法二)根据对称性结合反比例函数图象上点的坐标特征求值.5.B【详解】试题分析:根据圆周角定理的推论可得:∠ACB=∠AOB=90°,故选B.考点:圆周角定理的推论6.A【分析】连接OA,过点O作OE⊥AB,交AB于点M,由垂径定理求出AM的长,再根据勾股定理求出OM的长,进而可得出ME的长.【详解】解:连接OA,过点O作OE⊥AB,交AB于点M,交圆O于点E,∵直径为200cm,AB=160cm,∴OA=OE=100cm,AM=80cm,∴===,60cmOM∴ME=OE-OM=100-60=40cm.故选:A.考点:(1)、垂径定理的应用;(2)、勾股定理.7.A【解析】试题解析:根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.故选A.考点:1.坐标与图形变化-旋转;2.坐标与图形变化-平移.8.D【分析】根据二次函数图象上点的坐标特征得到-m2+1=0,解得m1=1,m2=-1,然后根据二次函数的定义确定m的值.【详解】把(0,0)代入y=(m-1)x2-mx-m2+1得-m2+1=0,解得m1=1,m2=-1,而m-1≠0,所以m=-1.故选D.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的定义.9.C【详解】根据二次函数的定义,易得S是R的二次函数,故选C.10.B【解析】∵PC与⊙O相切,∴∠OCP=90°.∵∠P=20°,∴∠POC=90°-20°=70°,∴∠A=70°÷2=35°.故选B.11.C【解析】【分析】设大正方形的边长为x,根据等腰直角三角形的性质知AC、BC的长,进而可求得S2的边长,由面积的求法可得答案.【详解】如图,设大正方形的边长为x ,根据等腰直角三角形的性质知,BC ,,∴AC=2CD ,CD=3x ,∴S 2x ,S 2的面积为29x 2,S 1的边长为2x ,S 1的面积为14x 2,∴S 1>S 2.故选:C .【点睛】本题考查了正方形的性质和等腰直角三角形的性质,掌握勾股定理及正方形的性质是解题的关键.12.B【详解】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x =1,而点(﹣1,0)关于直线x =1的对称点的坐标为(3,0),∴方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3,所以②正确;∵x =﹣2b a =1,即b =﹣2a ,而x =﹣1时,y =0,即a ﹣b +c =0,∴a +2a +c =0,所以③错误;∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x =1,∴当x <1时,y 随x 增大而增大,所以⑤正确.故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.13.3x 2-10x-4=0.【解析】先把一元二次方程3x (x ﹣2)=4(x+1)的各项相乘,再按二次项,一次项,常数项的顺序进行排列即可.解:∵一元二次方程3x(x﹣2)=4(x+1)可化为3x2-6x-4x--4=0,∴化为一元二次方程的一般形式为3x2-10x-4=0.14.4 9【详解】试题分析:观察这个图形可知:黑色区域(4块)的面积占总面积(9块)的4 9,则它最终停留在黑色方砖上的概率是4 9;故答案为4 9.考点:几何概率.15.4【解析】【分析】设底面半径为r,母线为l,由轴截面是等腰直角三角形,得出l,代入S侧=πrl,求出r,l,从而求得圆锥的高.【详解】设底面半径为r,母线为l,∵主视图为等腰直角三角形,∴,∴侧面积S侧22,解得r=4,,∴圆锥的高h=4cm,故答案为:4.【点睛】本题考查了圆锥的计算,解题的关键是能够熟练掌握有关的计算公式.16.10a a≤≠且【解析】∵关于x的一元二次方程ax2+2x+1=0有实数根,∴△=4−4a≥0且a≠0,∴a≤1且a≠0.故答案是:10a a且≤≠.17.1:4.【详解】解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴AB:DE=OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.考点:位似变换.18..【分析】延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.运用勾股定理求解.【详解】解:如图,延长FP交AB于M,当FP⊥AB时,点P到AB的距离最小.∵AC=6,CF=2,∴AF=AC-CF=4,∵∠A=60°,∠AMF=90°,∴∠AFM=30°,∴AM=12AF=2,∴,∵FP=FC=2,∴,∴点P到边AB距离的最小值是.故答案为:.【点睛】本题考查了翻折变换,涉及到的知识点有直角三角形两锐角互余、勾股定理等,解题的关键是确定出点P 的位置.19.∴x 1=2-,x 2=32-【解析】首先找出公式中的a ,b ,c 的值,再代入求根公式求解即可.本题解析:∵a=1,b=3,c=﹣2,∴△=b 2﹣4ac=32﹣4×1×(﹣2)=17,∴x=32-±,∴x 1x 220.5米【详解】试题分析:设半径OD=r ,则由题意易得OF=OE-EF=r-2;由OE ⊥CD ,根据“垂径定理”可得DF=12CD=4,这样在Rt △ODF 中由勾股定理建立方程就可解得r.试题解析:设⊙O 的半径为r 米,则OF=(r-2)米,∵OE ⊥CD∴DF=12CD=4在Rt △OFD 中,由勾股定理可得:(r-2)2+42=r 2,解得:r=5,∴CD 所在⊙O 的半径DO 为5米.21.(1)图形见解析;(2)A 1(3,1);C 1(3,4);(3)点A 旋转到A 1所经过的路线长是52π.【详解】试题分析:(1)题目已给出了旋转中心、旋转角度和旋转方向,可连接DA 、DB 、DC,然后根据要求旋转得到对应的顶点A 1、B 1、C 1,再顺次连接三点即可.(2)由(1)得到的图形,可根据A 1、C 1的位置来确定它们的坐标.(3)点A 旋转到A 1所经过的路线长是以D 为圆心、90°为圆心角、DA 为半径的弧长,先求出DA 的长,然后根据弧长公式计算即可.试题解析:(1)(2)A 1(3,1);C 1(3,4);(3)点A 旋转到A 1所经过的路线是弧AA 1,∵AD=5,∠ADA 1=90°,∴弧AA 1的长=;∴点A 旋转到A 1所经过的路线长是.考点:1.旋转变换,2.弧长的计算.22.(1)y=﹣x 2+2x+3,y=﹣x+3;(2)当m=32时,MN 有最大值,MN 的最大值为94;(3)32+或32.【解析】(1)由A 、C 两点的坐标利用待定系数法可求得抛物线解析式,则可求得B 点坐标,再利用待定系数法可求得直线BC 的解析式;(2)用m 可分别表示出N 、M 的坐标,则可表示出MN 的长,再利用二次函数的最值可求得MN 的最大值;(3)由条件可得出MN=OC ,结合(2)可得到关于m 的方程,可求得m 的值本题解析:(1)∵抛物线过A 、C 两点,∴代入抛物线解析式可得10{3b c c --+==,解得2{3b c ==,∴抛物线解析式为y=﹣x 2+2x+3,令y=0可得,﹣x 2+2x+3=0,解x 1=﹣1,x 2=3,∵B 点在A 点右侧,∴B 点坐标为(3,0),设直线BC 解析式为y=kx+s ,把B 、C 坐标代入可得30{3k s s +==,解得1{3k s =-=,∴直线BC 解析式为y=﹣x+3;(2)∵PM ⊥x 轴,点P 的横坐标为m ,∴M (m ,﹣m 2+2m+3),N (m ,-m+3),∵P 在线段OB 上运动,∴M 点在N 点上方,∴MN=﹣m 2+2m+3﹣(﹣m+3)=﹣m 2+3m=﹣(m ﹣32)2+94,∴当m=32时,MN 有最大值,MN 的最大值为94;(3)∵PM ⊥x 轴,∴MN ∥OC ,当以C 、O 、M 、N 为顶点的四边形是平行四边形时,则有OC=MN ,当点P 在线段OB 上时,则有MN=﹣m 2+3m ,∴﹣m 2+3m=3,此方程无实数根,当点P 不在线段OB 上时,则有MN=﹣m+3﹣(﹣m 2+2m+3)=m 2﹣3m ,∴m 2﹣3m=3,解得或,综上可知当以C 、O 、M 、N 为顶点的四边形是平行四边形时,m 的值为32或32.23.(1)12;(2)公平,理由见解析.【解析】【分析】(1)首先画树状图,然后根据树状图即可求得甲获胜的概率;(2)根据树状图,求得甲、乙获胜的概率,然后比较概率,即可求得这个游戏规则对甲、乙双方是否公平.【详解】(1)画树状图得:∴一共有12种等可能的结果,两球编号之和为奇数有6种情况,∴P (甲胜)=612=12(2)公平.∵P (乙胜)=612=12,∴P (甲胜)=P (乙胜),∴这个游戏规则对甲、乙双方公平【点睛】本题考查了游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.24.(1)a=4,m=﹣4;(2)双曲线与直线y=﹣2x+2另一个交点B 的坐标为(2,﹣2).【解析】试题分析:(1)将A 坐标代入一次函数解析式中即可求得a 的值,将A (﹣1,4)坐标代入反比例解析式中即可求得m 的值;(2)解方程组=−2+2=−4,即可解答.试题解析:(1)∵点A 的坐标是(﹣1,a ),在直线y=﹣2x+2上,∴a=﹣2×(﹣1)+2=4,∴点A 的坐标是(﹣1,4),代入反比例函数=,∴m=﹣4.(2)解方程组:=−2+2=−4,解得:=−1=4或=2=−2,∴该双曲线与直线y=﹣2x+2另一个交点B 的坐标为(2,﹣2).考点:反比例函数与一次函数的交点问题.25.(1)证明见解析;(2)12;(3【分析】(1)要证明△ABD ∽△AEB ,已经有一组对应角是公共角,只需要再找出另一组对应角相等即可;(2)由于AB :BC=4:3,可设AB=4,BC=3,求出AC 的值,再利用(1)中结论可得2AB AD AE =⋅,进而求出AE 的值,所以tanE=ED AB BE AE=;(3)设AB=4x ,BC=3x ,由于已知AF 的值,构造直角三角形后利用勾股定理列方程求出x 的值,即可知道半径3x 的值.【详解】(1)证明:∵∠ABC=90°,∴90ABD DBC ∠=︒-∠,由题意知:DE 是直径,∴∠DBE=90°,∴90E BDE ∠=︒-∠,∵BC=CD ,∴∠DBC=∠BDE ,∴∠ABD=∠E ,∵∠A=∠A ,∴△ABD ∽△AEB ;(2)解:∵AB :BC=4:3,∴设AB=4,BC=3,∴AC==5,∵BC=CD=3,∴AD=AC -CD=5-3=2,由(1)可知:△ABD ∽△AEB ,∴ABADBDAE AB BE ==,∴2AB AD AE =⋅,∴242AE =,∴AE=8,在Rt △DBE 中,41tan ==82BD ABE BE AE ==;(3)过点F 作FM ⊥AE 于点M ,∵:4:3AB BC =,∴设AB=4x ,BC=3x ,∴由(2)可知;AE=8x ,AD=2x ,∴DE=AE -AD=6x ,∵AF 平分∠BAC ,∴BFABEF AE =,∴4182BF xEF x ==,∵1tan 2E =,∴cos E =5,sin E =∴BD BE =∴5BE x =,∴23EF =,5BE =,∴sin 5MFE EF ==,∴85MF x =,∵1tan 2E =,∴1625ME MF x ==,∴245AM AE ME x =-=,∵222AF AM MF =+,∴22248455x x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,∴8x =,∴⊙C的半径为:3x =【点睛】本题属于圆的综合题,涉及了相似三角形判定与性质、三角函数值的知识,综合性较强,解题的关键是熟练掌握有关性质.26.(1)CD=BE .理由见解析;(2)△AMN 是等边三角形.理由见解析.【分析】(1)CD=BE .利用“等边三角形的三条边相等、三个内角都是60°”的性质证得△ABE ≌△ACD ;然后根据全等三角形的对应边相等即可求得结论CD=BE ;(2)△AMN 是等边三角形.首先利用全等三角形“△ABE ≌△ACD”的对应角相等、已知条件“M 、N 分别是BE 、CD 的中点”、等边△ABC 的性质证得△ABM ≌△ACN ;然后利用全等三角形的对应边相等、对应角相等求得AM=AN 、∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°,所以有一个角是60°的等腰三角形的正三角形.【详解】(1)CD=BE .理由如下:∵△ABC 和△ADE 为等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠EAD=60°,∵∠BAE=∠BAC ﹣∠EAC=60°﹣∠EAC ,∠DAC=∠DAE ﹣∠EAC=60°﹣∠EAC ,∴∠BAE=∠DAC ,在△ABE 和△ACD 中,=AB AC BAE DAC AE AD =⎧⎪∠∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS )∴CD=BE(2)△AMN 是等边三角形.理由如下:∵△ABE ≌△ACD ,∴∠ABE=∠ACD .∵M 、N 分别是BE 、CD 的中点,∴BM=CN∵AB=AC ,∠ABE=∠ACD ,在△ABM 和△ACN 中,=BM CN ABE ACD AB AC =⎧⎪∠∠⎨⎪=⎩,∴△ABM ≌△ACN (SAS ).∴AM=AN ,∠MAB=∠NAC .∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠BAC=60°∴△AMN 是等边三角形【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质、旋转的性质.等边三角形的判定:有一个角是60°的等腰三角形是等边三角形.27.(1)t=209;(2)y=-236105t t +;(3)1:4;(4)t=32【分析】(1)当PQ ∥MN 时,可得:CP CQ PA QB =,从而得到:45t t t t -=-,解方程求出t 的值;(2)作PD BC ⊥于点D ,则可以得到CPD CBA ∽,根据相似三角形的性质可以求出3(4)5PD t =-,CQ t =,利用三角形的面积公式求出S 与t 的关系式;(3)根据S △QMC :1:4ABQP S =四边形可以得到关于t 的方程,解方程求出t 的值;(4)作ME BC ⊥于点E ,PD BC ⊥于点D ,则△CPD ∽△CBA ,利用相似三角形的性质可以得到:2123()55t -16999()()5555t t =-+,解方程求出t 的值.【详解】解:(1)如图所示,若PQ ∥MN ,则有CP CQ PA QB =,∵CQ PA t ==,4CP t =-,5QB t =-,∴45t t t t-=-,即22209t t t -+=,解得209t =(2)如图所示,作PD BC ⊥于点D ,则△CPD ∽△CBA ,∴CP PDCB BA =,∵3BA =,4CP t =-,5BC =,∴453tPD-=,∴3(4)5PD t =-又∵CQ t =,∴△QMC 的面积为:()21336425105y t t t t=⨯-=-+(3)存在2t =时,使得S △QMC :1:4ABQP S =四边形理由如下:∵PM ∥BC ∴236105PQC QMC S S t t∆∆==-+∵S △QMC :1:4ABQP S =四边形,∴S △PQC :S △ABC =1:5,∵3462ABC S ⨯== .∴236:61:5105t t ⎛⎫-+= ⎪⎝⎭∴2440t t -+=∴122t t ==∴存在当2t =时,S △QMC :1:4ABQP S =四边形;(4)存在某一时刻32t =,使PQ MQ⊥理由如下:如图所示,作ME BC ⊥于点E ,PD BC ⊥于点D ,则△CPD ∽△CBA ,∴CP PDCDCB BA CA==∵3BA =,4CP t =-,5BC =,4CA =,∴4534tPD CD-==,∴3(4)5PD t =-,4(4)5CD t =-∵PQ ⊥MQ ,∴△PDQ ∽△QEM ,∴PD DQQE EM =,即··PD EM QE DQ=∵3123(4)555EM PD t t ==-=-,4169(4)555DQ CD CQ t t t =-=--=-,4995[(4)]555QE DE DQ t t t =-=---=+,∴2123()55t -16999()()5555t t =-+,即2230t t -=,∴32t =,0t =(舍去)∴当32t =时,使PQ ⊥MQ .【点睛】本题考查相似三角形的综合运用;一元二次方程的应用.。
九年级数学上册期中考试试卷及答案(试卷满分:150分;考试时间:120分钟)一.选择题(共10小题,每小题4分,共40分)1.﹣2023的绝对值是()A.﹣2023B.12023C.﹣12023D.20232.如图所示图形绕直线旋转一周,可以得到圆柱的是()A.B.C.D.3.2023年10月1日,国庆假期第一天,天下第一泉(济南趵突泉)风景区接待游客超过291200人次.将数字291200用科学记数法表示应为()A.2912×102B.29.12×104C.2.912×105D.2.912×1064.在数8,﹣0.5,﹣|﹣2|,0,(﹣3)2,﹣12中,负数的个数是()A.2B.3C.4D.55.计算机层析成像(CT)技术的工作原理与几何体的切截相似,只不过这里的“截”不是真正的截,“几何体”是病人的患病器官,“刀”是射线.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.6.下列各式正确的是()A.﹣(x+6)=﹣x﹣6B.﹣y2﹣y2=0C.9a2b﹣9ab2=0D.a+a2=a37.下列说法中正确的是()A.﹣的系数是﹣5B.单项式x的系数为1,次数为0C.﹣22xyz2的次数是6D.xy+x﹣1是二次三项式8.若代数式2x2﹣x+3的值是4,则代数式﹣4x2+2x+5的值是()A.2 B.3 C.7 D.109.有理数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣3B.a>bC.ab>0D.﹣a>c①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2022次“F”运算的结果是()A.1B.4C.2020D.42020二.填空题(共6小题,每小题4分,24分共)11.比较大小:﹣7﹣5.12.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为.13.如图,是正方体的一种表面展开图,各面都标有数字,则数字为﹣4的面与它对面的数字之和是.14.若代数式﹣2x3y b与2x a y2的和为0,则b﹣a=.15.用符号(a,b)表示a、b两数中较小的一个数,用符号[a,b]表示a、b两数中较大的一个数,计算[﹣2,1]﹣(﹣1,﹣2.5)=.16.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=22,a7=2002,a95=﹣2023,且满足任意相邻三个数的和为同一个常数,则a1+a2+a3+…+a98+a99+a100的值为.三.解答题(共7小题)17.(12分)(1)(﹣12)﹣5+(﹣14)﹣(﹣39)(2)(﹣+﹣)×(﹣24)(3)(﹣)÷+(﹣)÷(﹣15)(4)﹣14﹣×[2﹣(﹣3)2]18.(6分)(1)把下列各数:,|﹣4|在数轴上表示出来;(2)将上列各数用“<”号从小到大连接.19.(6分)化简.(1)(6m﹣5n)﹣(7m﹣8n)(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y)20.(8分)先化简,再求值:﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b),其中a=﹣1,b=.21.(6分)如图,是一些棱长为2cm的小立方块组成的几何体.(1)请在上面方格纸中分别画出从左面、上面看到的这个几何体的形状图.(2)该几何体的体积是.22.(8分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣(2x2﹣2x+1)=﹣x2﹣4x﹣3,则所捂住的多项式是____.(1)求所捂的二次三项式;(2)当x=﹣2时,求所捂二次三项式的值.23.(12分)校运动会,小明负责在一条东西赛道上为同学们拍照,这天他从主席台出发,最后停留在A处.规定以主席台为原点,以向东的方向为正方向,步行记录如下(单位:米):+10,﹣8,+6,﹣13,+7,﹣12,+2,﹣2(1)小明离主席台最远是米;(2)以主席台为原点,用1个单位长度表示1m,请在数轴上表示点A;(3)在主席台东边5米处是仲裁处,小明经过仲裁处次;(4)若小明每步行1米消耗0.04卡路里,那么他在拍照过程中步行消耗的卡路里是多少?24.(10分)书籍是人类进步的阶梯!为爱护书本我们一般都会将书本用包书纸包好.现有一本如图所示的数学课本,长为26cm、宽为18.5cm、厚为1cm,小海打算用一张长方形包书纸包好这本数学书.第一步,他将包书纸沿虚线折出折痕,封面和封底各折进去x cm;第二步,将阴影部分沿虚线剪掉,请帮助小海解决以下问题:(1)小海第一步中所用的长方形包书纸周长是多少厘米?(用含x的代数式表示)(2)若封面和封底沿虚线各折进去2cm,剪掉阴影部分后,包书纸的面积是多少?25.(12分)探索规律.(1)观察上面的图,发现:图①空白部分小正方形的个数是22﹣12=2+1;图②空白部分小正方形的个数是42﹣32=4+3;图③空白部分小正方形的个数是52﹣42=+.(2)像这样继续排列下去,你会发现一些有趣的规律,﹣n2=+.(3)运用规律计算:(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012.26.(12分)已知|a+30|+(c﹣20)2=0,在数轴上点A表示的数是a,点C表示的数是c,A,C两点之间的距离AC=|a﹣c|.(1)直接写出a、c的值,a=,c=;(2)若数轴上有一点D满足CD=3AD,且点D在A,C之间,则D点表示的数为;(3)点M从原点O出发在O,A之间以v1的速度沿数轴负方向运动,点N从点C出发在O,C之间以v2的速度沿数轴负方向运动,运动时间为t,点Q为O,N之间一点,且QN=AN,若M,N运动过程中MQ的值固定不变,求的值.参考答案一.选择题(共10小题)1.﹣2023的绝对值是()A.﹣2023B.C.D.2023【分析】一个数在数轴上对应的点到原点的距离即为这个数的绝对值,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0,据此即可求得答案.【解答】解:|﹣2023|=2023故选:D.【点评】本题考查绝对值的定义及绝对值的性质,此为基础且重要知识点,必须熟练掌握.2.如图所示图形绕直线旋转一周,可以得到圆柱的是()A.B.C.D.【分析】根据每一个几何体的特征判断即可.【解答】解:A、将所示图形绕直线旋转一周,可以得到圆柱,故A符合题意;B、将所示图形绕直线旋转一周,可以得到球体,故B不符合题意;C、将所示图形绕直线旋转一周,可以得到圆锥,故C不符合题意;D.将所示图形绕直线旋转一周,可以得到圆台,故D不符合题意;故选:A.【点评】本题考查了点、线、面、体,熟练掌握每一个几何体的特征是解题的关键.3.2023年10月1日,国庆假期第一天,天下第一泉(济南趵突泉)风景区接待游客超过291200人次.将数字291200A.2912×102B.29.12×104C.2.912×105D.2.912×106【分析】科学记数法的表现形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正整数,当原数绝对值小于1时,n是负整数;由此进行求解即可得到答案.【解答】解:291200=2.912×105.故选:C.【点评】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.4.在数8,﹣0.5,﹣|﹣2|,0,(﹣3)2,﹣12中,负数的个数是()A.2B.3C.4D.5【分析】根据绝对值、有理数的乘方、负数解决此题.【解答】解:∵8>0,﹣0.5<0,﹣|﹣2|=﹣2<0,0,(﹣3)2=9>0,﹣12=﹣1<0∴负数有﹣0.5,﹣|﹣2|,﹣12,共3个.故选:B.【点评】本题主要考查绝对值、有理数的乘方、负数,熟练掌握绝对值、有理数的乘方、负数是解决本题的关键.5.计算机层析成像(CT)技术的工作原理与几何体的切截相似,只不过这里的“截”不是真正的截,“几何体”是病人的患病器官,“刀”是射线.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C.D.【分析】根据用一个平行于圆锥底面的平面截圆锥,截面的形状是圆即可得出答案.【解答】解:用一个平行于圆锥底面的平面截圆锥,截面的形状是圆故选:B.【点评】本题考查了截一个几何体,掌握用一个平行于圆锥底面的平面截圆锥,截面的形状是圆是解题的关键.6.下列各式正确的是()A.﹣(x+6)=﹣x﹣6B.﹣y2﹣y2=0C.9a2b﹣9ab2=0D.a+a2=a3【分析】A.根据去括号法则,去掉括号,进行判断即可;B.根据合并同类项法则,进行合并,然后判断;C,D选项均观察各个加数是不是同类项,能否合并,进行判断即可.【解答】解:A.∵﹣(x+6)=﹣x﹣6,∴此选项计算正确,故符合题意;B.∵﹣y2﹣y2=﹣2y2,∴此选项计算错误,故不符合题意;D.∵a和a2不是同类项,不能合并,∴此选项计算错误,故不符合题意;故选:A.【点评】本题主要考查了整式的加减运算,解题关键是熟练掌握去括号法则和合并同类项法则.7.下列说法中正确的是()A.﹣的系数是﹣5B.单项式x的系数为1,次数为0C.﹣22xyz2的次数是6D.xy+x﹣1是二次三项式【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【解答】解:A、﹣的系数是﹣,此选项错误;B、单项式x的系数为1,次数为1,此选项错误;C、﹣22xyz2的次数是4,此选项错误;D、xy+x﹣1是二次三项式,此选项正确;故选:D.【点评】此题主要考查了单项式,关键是掌握单项式的系数、次数的定义,以及多项式的次数的计算方法.8.若代数式2x2﹣x+3的值是4,则代数式﹣4x2+2x+5的值是()A.2B.3C.7D.10【分析】由代数式2x2﹣x+3的值是4,可得2x2﹣x=1,再将﹣4x2+2x+5转化为﹣2(2x2﹣x)+5,再整体代入计算即可.【解答】解:∵2x2﹣x+3的值是4,即2x2﹣x+3=4∴2x2﹣x=1∴﹣4x2+2x+5=﹣2(2x2﹣x)+5=﹣2×1+5=﹣2+5=3故选:B.【点评】本题考查代数式求值,将﹣4x2+2x+5转化为﹣2(2x2﹣x)+5是正确解答的关键.9.有理数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣3B.a>b C.ab>0D.﹣a>c【分析】根据数轴上点的位置,先确定a、b、c对应点的数,再逐个判断得结论.【解答】解:A、由数轴知:﹣4<a<﹣3,故选项A错误;B、由数轴知,a<b,故选项B错误;C、因为a<0,b>0,所以ab<0,故选项C错误;D、因为﹣4<a<﹣3,所以3<﹣a<4,因为2<c<3,所以﹣a>c,故选项D正确.故选:D.【点评】本题考查了数轴及有理数乘法的符号法则.认真分析数轴得到有用信息是解决本题的关键.10.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2022次“F”运算的结果是()A.1B.4C.2020D.42020【分析】通过计算可知从第4次开始,运算结果1,4循环出现,则第2022次“F”运算的结果与第1次运算结果相同,再求解即可.【解答】解:当n=13时第1次运算结果为13×3+1=40第2次运算结果为=5第3次运算结果为5×3+1=16第4次运算结果为=1第5次运算结果为1×3+1=4第6次运算结果为=1第7次运算结果为1×3+1=4……∴从第4次开始,运算结果1,4循环出现∵(2022﹣3)÷2=1009 (1)∴第2022次“F”运算的结果是1故选:A.二.填空题(共6小题)11.比较大小:﹣7 <﹣5.【分析】根据两个负数,绝对值大的其值反而小判断即可.【解答】解:∵|﹣7|=7,|﹣5|=5而7>5∴﹣7<﹣5.故答案为<.【点评】本题考查了有理数大小比较,关键是掌握有理数大小比较法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小.12.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.【分析】根据正数与负数的意义可直接求解.【解答】解:若气温为零上10℃记作+10℃,则﹣3℃表示气温为零下3℃.故答案为零下3℃.【点评】本题主要考查正数与负数,理解正数与负数的意义是解题的关键.13.如图,是正方体的一种表面展开图,各面都标有数字,则数字为﹣4的面与它对面的数字之和是﹣7.【分析】根据正方体的表面展开图找相对面的方法,“Z”字两端是对面,判断即可.【解答】解:由图可知:﹣4与﹣3相对∴﹣4+(﹣3)=﹣7故答案为:﹣7.【点评】本题考查了正方体相对两个面上的文字,熟练掌握根据正方体的表面展开图找相对面的方法是解题的关键.14.若代数式﹣2x3y b与2x a y2的和为0,则b﹣a=﹣1.【分析】根据同类项的定义判断出a,b的值,可得结论.【解答】解:由题意a=3,b=2∴b﹣a=2﹣3=﹣1.故答案为:﹣1.【点评】本题考查整式的加减,解题的关键是理解题意,灵活运用所学知识解决问题.1,﹣2.5)= 3.5.【分析】根据定义,所求式子可化为1﹣(﹣2.5),再求值即可.【解答】解:[﹣2,1]﹣(﹣1,﹣2.5)=1﹣(﹣2.5)=1+2.5=3.5故答案为:3.5.【点评】本题考查有理数的加减法,熟练掌握有理数的加减法运算,会比较有理数的大小,弄清定义是解题的关键.16.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=22,a7=2002,a95=﹣2023,且满足任意相邻三个数的和为同一个常数,则a1+a2+a3+…+a98+a99+a100的值为2035.【分析】根据题中所给“任意相邻三个数的和为同一个常数”可求出这一列数,进而可解决问题.【解答】解:由题知因为这列数中任意相邻三个数的和为同一个常数所以a1+a2+a3=a2+a3+a4则a1=a4.同理可得a1=a4=a7=…=a100a2=a5=a8=…=a98a3=a6=a9=…=a99所以这列数按2002,﹣2023,22循环出现.又因为100÷3=33余1且2002+(﹣2023)+22=1所以a1+a2+a3+…+a98+a99+a100=1×33+2002=2035.故答案为:2035.【点评】本题考查数字变化的规律,能根据题意得出这列数按2002,﹣2023,22循环出现是解题的关键.三.解答题(共7小题)17.(1)(﹣12)﹣5+(﹣14)﹣(﹣39);(2)(﹣+﹣)×(﹣24);(3)(﹣)÷+(﹣)÷(﹣15);(4)﹣14﹣×[2﹣(﹣3)2].【分析】(1)先把减法转化为加法,再根据加法法则计算即可;(2)根据乘法分配律计算即可;(3)先算除法,再算加法即可;(4)先算乘方和括号内的式子,再算括号外的乘法,最后算减法即可.【解答】解:(1)(﹣12)﹣5+(﹣14)﹣(﹣39)=(﹣12)+(﹣5)+(﹣14)+39=8;(2)(﹣+﹣)×(﹣24)=﹣×(﹣24)+×(﹣24)﹣×(﹣24)=20+(﹣9)+6=17;(3)(﹣)÷+(﹣)÷(﹣15)=(﹣)×9+(﹣)×(﹣)=﹣24+=﹣23;(4)﹣14﹣×[2﹣(﹣3)2]=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用.18.(1)把下列各数:,|﹣4|在数轴上表示出来;(2)将上列各数用“<”号从小到大连接.【分析】(1)在数轴上准确找到各数对应的点,即可解答;(2)利用(1)的结论,即可解答.【解答】解:(1)如图:(2)由(1)可得:.【点评】本题考查了有理数的大小比较,数轴,绝对值,准确熟练地在数轴上找到各数对应的点是解题的关键.19.化简.(1)(6m﹣5n)﹣(7m﹣8n);(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y);【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可;【解答】解:(1)(6m﹣5n)﹣(7m﹣8n)=6m﹣5n﹣7m+8n=﹣m+3n;(2)5(3x2y﹣xy2)﹣4(﹣xy2+2x2y)=15x2y﹣5xy2+4xy2﹣8x2y=7x2y﹣xy2;20.先化简,再求值:﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b),其中a=﹣1,b=.﹣a2b+(﹣8ab2﹣a2b)﹣2(5ab2﹣a2b)=﹣a2b﹣8ab2﹣a2b﹣10ab2+2a2b=﹣18ab2当a=﹣1,b=时原式=﹣18×(﹣1)×()2=2.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.如图,是一些棱长为2cm的小立方块组成的几何体.(1)请在上面方格纸中分别画出从左面、上面看到的这个几何体的形状图.(2)该几何体的体积是48cm3.【分析】(1)根据三视图的定义画图即可.(2)用1个小立方块的体积乘以小方块的个数即可.【解答】解:(1)如图所示.(2)该几何体的体积是23×6=48(cm3).故答案为:48cm3.【点评】本题考查作图﹣三视图,解题的关键是理解三视图的定义,难度不大.22.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如﹣(2x2﹣2x+1)=﹣x2﹣4x﹣3,则所捂住的多项式是____.(1)求所捂的二次三项式;(2)当x=﹣2时,求所捂二次三项式的值.【分析】(1)根据题意可知:所捂的二次三项式是:(﹣x2﹣4x﹣3)+(2x2﹣2x+1),然后计算即可;(2)将x=﹣2代入(1)中的结果计算即可.【解答】解:(1)由题意可得所捂的二次三项式是:(﹣x2﹣4x﹣3)+(2x2﹣2x+1)=﹣x2﹣4x﹣3+2x2﹣2x+1=x2﹣6x﹣2;(2)当x=﹣2时,x2﹣6x﹣2=(﹣2)2﹣6×(﹣2)﹣2=4+12﹣2=14.【点评】本题考查整式的加减、代数式求值,解答本题的关键是明确去括号法则和合并同类项的方法.23.校运动会,小明负责在一条东西赛道上为同学们拍照,这天他从主席台出发,最后停留在A处.规定以主席台为原点,以向东的方向为正方向,步行记录如下(单位:米):+10,﹣8,+6,﹣13,+7,﹣12,+2,﹣2(1)小明离主席台最远是10米;(2)以主席台为原点,用1个单位长度表示1m,请在数轴上表示点A;(3)在主席台东边5米处是仲裁处,小明经过仲裁处4次;(4)若小明每步行1米消耗0.04卡路里,那么他在拍照过程中步行消耗的卡路里是多少?【分析】(1)分别求出小明每次运动后的位置,即可得到答案;(2)结合(1),在数轴上标出最后位置即可;(3)由运动过程可求出经过仲裁处的次数;(4)根据每步行1米消耗0.04卡路里列式计算即可.【解答】解:(1)∵+10﹣8=2;2+6=8;8﹣13=﹣5;﹣5+7=2,2﹣12=﹣10;﹣10+2=﹣8;﹣8﹣2=﹣10;∴小明离主席台最远是10米;故答案为:10;(2)如图所示,点A即为所求;(3)从主席台出发,+10经过仲裁处,由+10到﹣8经过仲裁处,﹣8到+6经过仲裁处,+6到﹣13经过仲裁处∴经过仲裁处4次;故答案为:4;(4)(10+8+6+13+7+12+2+2)×0.04=60×0.04=2.4(卡路里)答:小明在拍照过程中步行消耗2.4卡路里.【点评】本题考查有理数混合运算,解题的关键是读懂题意,理解小明的运动过程.24.书籍是人类进步的阶梯!为爱护书本我们一般都会将书本用包书纸包好.现有一本如图所示的数学课本,长为26cm、宽为18.5cm、厚为1cm,小海打算用一张长方形包书纸包好这本数学书.第一步,他将包书纸沿虚线折出折痕,封面和封底各折进去x cm;第二步,将阴影部分沿虚线剪掉,请帮助小海解决以下问题:(1)小海第一步中所用的长方形包书纸周长是多少厘米?(用含x的代数式表示)(2)若封面和封底沿虚线各折进去2cm,剪掉阴影部分后,包书纸的面积是多少?【分析】(1)由题意列式计算即可;(2)当x=2cm时,求出包书纸长和宽,即可解决问题.【解答】解:(1)小海所用包书纸的周长为:2(18.5×2+1+2x)+2(26+2x)=2(38+2x)+2(26+2x)=(8x+128)cm答:小海所用包书纸的周长为(8x+128)cm;(2)当x=2cm时,包书纸长为:18.5×2+1+2×2=42(cm)包书纸宽为:26+2×2=30(cm)∴包书纸的面积=42×30﹣2×2×4﹣2×1×2=1240(cm2)答:包书纸的面积为1240cm2.【点评】本题考查了矩形的性质以及列代数式,熟练掌握矩形的性质是解题的关键.25.探索规律.(1)观察上面的图,发现:图①空白部分小正方形的个数是22﹣12=2+1;图②空白部分小正方形的个数是42﹣32=4+3;图③空白部分小正方形的个数是52﹣42=5+4.(2)像这样继续排列下去,你会发现一些有趣的规律,(n+1)2﹣n2=n+1+n.(3)运用规律计算:(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012.【分析】(1)根据所给的等式的形式进行求解即可;(2)根据(1)进行总结,从而可求解;(3)利用(2)中的规律进行求解即可.【解答】解:(1)由题意得:图③空白部分小正方形的个数是52﹣42=5+4故答案为:5,4;(2)(n+1)2﹣n2=n+1+n故答案为:(n+1)2,n+1,n;(3)(20242﹣20232+20222﹣20212+20202﹣20192+…+22﹣12)÷1012=(2024+2023+2022+2021+2020+2019+2018+…+2+1)÷1012=[(2024+1)+(2023+2)+(2022+3)+…+(1013+1012)]÷1012=2025×1012÷1012=2025.【点评】本题主要考查数字的变化规律,解答的关键是由所给的等式总结出存在的规律.26.已知|a +30|+(c ﹣20)2=0,在数轴上点A 表示的数是a ,点C 表示的数是c ,A ,C 两点之间的距离AC =|a ﹣c |.(1)直接写出a 、c 的值,a = ﹣30 ,c = 20 ;(2)若数轴上有一点D 满足CD =3AD ,且点D 在A ,C 之间,则D点表示的数为 ﹣ ; (3)点M 从原点O 出发在O ,A 之间以v 1的速度沿数轴负方向运动,点N 从点C 出发在O ,C 之间以v 2的速度沿数轴负方向运动,运动时间为t ,点Q 为O ,N 之间一点,且QN =AN ,若M ,N 运动过程中MQ 的值固定不变,求的值.【分析】(1)根据绝对值和平方的非负性求解即可;(2)根据两点间距离公式求解即可;(3)写出MQ 距离的代数式,根据MQ 距离不变,得出v 1,v 2的比值即可.【解答】解:(1)∵|a +30|≥0,(c ﹣20)2≥0,|a +30|+(c ﹣20)2=0∴|a +30|=0,(c ﹣20)2=0∴a =﹣30,c =20故答案为:﹣30,20.(2)设D 点表示的数为x则有:20﹣x =3{x ﹣(﹣30)}解得:x =﹣故答案为:﹣.(3)OM 的长度为:v 1t ,CN 的长度为v 2t∴AM =﹣v 1t ﹣(﹣30)=﹣v 1t +30,AN =20+20﹣v 2t =50﹣v 2t∵QN =AN∴AQ =AN =(50﹣v 2t )∴MQ =AQ ﹣AM =(50﹣v 2t )﹣(﹣v 1t +30)=+(v 1﹣v 2)t∵MQ 的长度不随t 的变化而变化∴v 1﹣v 2=0 ∴=.【点评】本题主要考查了数轴,确定MQ 长度不变的条件是本题解题的关键.。
可编辑修改精选全文完整版第一学期期中考试九年级数学试题1. 计算()23-的结果是()A.3B.3- C.3±2. 若P(x;-3)与点Q(4;y)关于原点对称;则x+y=()A、7B、-7C、1D、-13. 下列二次根式是最简二次根式的是()4. 一元二次方程22350xx++=的根的情况是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法判断5. 用配方法解方程0142=++xx;则配方正确的是()A、3)2(2=+x B、5)2(2-=+xC、3)2(2-=+x D、3)4(2=+x6. 如图;AB、AC都是圆O的弦;OM⊥AB;ON⊥AC;垂足分别为M、N;如果MN=3;那么BC=(). A. 4 B.5 C. 6 D.7二、填空题(共8小题;每小题3分;满分24分)7. 2-x在实数范围内有意义;则x的取值范围是.8. 221x-=的二次项系数是 ;一次项系数是 ;常数项是 .9. 一只蚂蚁沿图中所示的折线由A点爬到了C点;则蚂蚁一共爬行了______cm.(图中小方格边长代表1cm)NMOCBA10. 关于x 的一元二次方程04)2(22=-+-+m mx x m 有一根为0;则m= . 11. 对于任意不相等的两个数a;b;定义一种运算*如下:ba b a b a -+=*;如523232*3=-+=;那么)5(*3-= .12. 有4个命题:①直径相等的两个圆是等圆;②长度相等的两条弧是等弧;③圆中最大的弦是通过圆心的弦;④在同圆或等圆中;相等的两条弦所对的弧是等弧;其中真命题是_________。
13. 有两个完全重合的矩形;将其中一个始终保持不动;另一个矩形绕其对称中心O 按逆时针方向进行旋转;每次均旋转22.5︒;第.2.次.旋转后得到图①;第.4.次.旋转后得到图②…;则第20次旋转后得到的图形与图①~图④中相同的是____. (填写序号)14. 等腰三角形两边的长分别为方程02092=+-x x 的两根;则三角形的周长是 .三、解答题(共4小题;每小题6分;共24分) 15. 解方程:x(x-2)+x-2=016. 计算:0)15(282218-+--图① 图② 图③ 图④ OOOO17. 下面两个网格图均是4×4正方形网格;请分别在两个网格图中选取两个白色的单位正方形并涂黑;使整个网格图满足下列要求. 18. 如图;大正方形的边长515+;小正为方形的边长为515-;求图中的阴影部分的面积.四、(本大题共2小题;每小题8分;共16分)19. 数学课上;小军把一个菱形通过旋转且每次旋转120°后得到甲的图案。
九年级数学上册期中考试试卷初三数学初三( )班学号_________ 姓名_________ 成绩________一、填空题(每空2分,共22分)1.方程x2-5x=0的根是______________.2.若a2-2a-3=0,则2a2-4a=_______________.3.若关于x的方程x2-(m+1)x+m=0有两个相等的实数根,则m的值为________.4.二次函数y=-x2+2x+3的图象开口向_________,顶点坐标是_________.5.若将抛物线y=3x2-1向左平移1个单位后,则得到的新抛物线解析式为__________.6.若抛物线y=ax2+4ax-3与x轴的一个交点为A(-1,0),则抛物线与x轴的另一个交点B的坐标为______________.7.若抛物线y=x2+bx+c的对称轴为直线x=1,且经过两点(-1,y1),(-2,y2),试比较y1和y2的大小:y1________y2.(填“>”,“<”或“=”)8.如图,三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小都相同.正常水位时,大孔水面宽度AB=20m,顶点M距水面6m(即MO=6m),小孔顶点N距水面4.5 m(即NC=4.5m).当水位上涨刚好淹没小孔时,借助图中的平面直角坐标系,则此时大孔的水面宽度EF为_________m.9.抛物线y=ax2-3x+a2-1的一部分如图,则a的值是__________.10.若抛物线y=x2+(m-1)x+m-2与x轴的两个交点之间的距离为2,则m=________.二、选择题(每小题3分,共30分)题号11 12 13 14 15 16 17 18 19 20 答案11.若关于x的一元二次方程(m-1)x2+5x+m2-3m+2=0的一个根为0,则m的值为( ) A.0 B.1或2 C.1 D.212.关于x的一元二次方程x2+bx-1=0的根的情况为 ( ) A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.不能确定13.某外贸公司受全球金融危机影响,今年五月份销售额为450万元,从六月份起经济有所复苏,销售额逐月上升,七月份销售额达到648万元.则该公司六、七两月份销售额平均增长率为 ( )A.10% B.20% C.19% D.25%14.用配方法将二次函数y=3x2-4x-2写成形如y=a(x+m)2+n的形式,则m,n的值分别是( )A.23m=,103n= B.23m=-,103n=- C.m=2,n=6 D.m=2,n=-215.抛物线y=ax2+bx+c如图所示,则下列关系式不正确...的是 ( ) A.a<0 B.abc>0 C.a+b+c>0 D.b2-4ac>016.已知函数y=x2-2x-2的图象如图所示,根据图中提供的信息,可求得使y≥1成立的x的取值范围是 ( )A .-1≤x ≤3B .-3≤x ≤1C .x ≥-3D .x ≤-1或x ≥3 17.对于二次函数y=ax 2+bx+c(a ≠0),我们把使函数值等于0的实数x 叫做这个函数的 零点..,则二次函数232y x mx m =-+-的零点..的个数是 ( ) A .1 B .2 C .0 D .不能确定 18.如图,在同一平面直角坐标系中,一次函数y=ax+b 和二次函数y=ax 2+bx 的图象 可能为 ( )19.抛物线y=x 2-4x -5与x 轴交于点A 、B ,点P 在抛物线上,若△PAB 的面积为27,则满足条件的点P 有 ( ) A .1个 B .2个 C .3个 D .4个20.已知二次函数y=ax 2+bx+c 的y 与x 的部分对应值如下表:x … -1 0 1 3 … y…-3131…则下列判断中正确的是 ( ) A .抛物线与y 轴交于负半轴 B .抛物线开口向上C .当x=4时,y>0D .方程ax 2+bx+c=0的正根在3与4之间 三、解答题(本题共8小题,共48分) 21.解下列方程(每小题3分,共6分) (1)2x 2-x -1=0 (2)212111x x x -=--22.根据下列条件,求二次函数的解析式(每小题3分,共6分) (1)图象的顶点为(2,3),且过点(3,1):(2)图象经过点(1,-2)、(0,-1)、(一2,-11).23.若关于x 的一元二次方程kx 2+2(k -2)x+k -3=0有两个不相等的实数根,试求实数 k 的取值范围.(本题5分)24.若关于x 的一元二次方程x 2-(2m+1)x+m 2+m -2=0的两个实数根x 1,x 2满足:12112x x +=,求m 的值. (本题5分)25.如图,在平面直角坐标系中,O为坐标原点,二次函数y=x2+bx+c的图象与x轴相交于点A、B,与y轴的负半轴相交于点C,若点C的坐标为(0,-3),且BO=CO.(1)求这个二次函数的解析式;(2)求当y<0时,x的取值范围.(本题6分)26.如图,长方形鸡场的一边靠墙(墙长18m),墙对面有一个2m宽的门:另三边用竹篱笆围成,篱笆总长33m.(1)若鸡场面积为150m2,求鸡场的长和宽各为多少m?(2)求围成的鸡场的最大面积.(本题6分)27.某公司经销某品牌运动鞋,年售量为10万双,每双鞋按250元销售,可获利25%,设每双鞋的成本价为a元.(1) a=___________;(2)为了扩大销售量,公司决定拿出一定量的资金做广告,根据市场调查,若每年投入广告费为x(万元)时,产品的年销售量将是原销售量的y倍,且y与x之间的关系如图所示,可近似看作是抛物线的一部分.①根据图象提供的信息,求y与x之间的函数关系式;②求年利润S(万元)与广告费x(万元)之间的函数关系式,并请回答广告费x(万元)在什么范围内,公司获得的年利润S(万元)随广告费的增大而增多?(注:年利润S=年销售总额-成本费-广告费) (本题7分)28.如图,已知抛物线与x轴交于点A(-2,0),B(4,0),与y轴交于点C(0,8).(1)试求抛物线的解析式;(2)设点D是该抛物线的顶点,试求直线CD的解析式:(3)若直线CD交x轴于点E,过点B作x轴的垂线,交直线CD于点F,将抛物线沿其对称轴上、下平移,使抛物线与线段......试探究:抛物线向上最多可平移多少个.......EF..总有公共点单位长度? 向下最多可平移多少个单位长度? (本题7分)。
数学九年级上册全册试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若 a > b,则 -a 与 -b 的大小关系是:A. -a > -bB. -a < -bC. -a = -bD. 无法确定2. 下列哪个数是无理数?A. √9B. √16C. √3D. √13. 下列函数中,哪个是增函数?A. y = -2x + 3B. y = x²C. y = -3/xD. y = 1/x²4. 若平行四边形的对角线互相垂直,则这个平行四边形是:A. 矩形B. 菱形C. 正方形D. 无法确定5. 下列哪个角是锐角?A. 120°B. 135°C. 150°D. 60°二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。
()2. 两个负数相乘的结果是正数。
()3. 对角线相等的平行四边形一定是矩形。
()4. 任何数的平方都是非负数。
()5. 一元二次方程的解可能是两个相等的实数根。
()三、填空题(每题1分,共5分)1. 两个质数的和一定是______。
2. 若a² = b²,则 a 与 b 的大小关系可能是______。
3. 一次函数 y = kx + b 的图像是一条______。
4. 若平行四边形的对角线互相平分,则这个平行四边形是______。
5. 两个等腰三角形的面积相等,若它们的底边长相等,则它们的顶角也相等。
(______)四、简答题(每题2分,共10分)1. 简述实数的分类。
2. 解释一元二次方程的判别式。
3. 什么是平行四边形的对角线定理?4. 简述正弦函数的定义域和值域。
5. 什么是相似三角形?它们有哪些性质?五、应用题(每题2分,共10分)1. 已知 a > b,求证 -a < -b。
2. 解一元二次方程x² 5x + 6 = 0。
3. 计算三角形的面积,已知底边长为 10,高为 5。
人教版九年级上册《数学》期末考试卷及答案【可打印】一、选择题(每题1分,共5分)1. 若x^2 3x + 2 = 0,则x的值为多少?A. 1B. 2C. 1D. 22. 若sin(θ) = 1/2,则θ的值为多少?A. 30°B. 45°C. 60°D. 90°3. 若一个正方形的边长为4cm,则其面积为多少?A. 16cm^2B. 8cm^2C. 12cm^2D. 6cm^24. 若一个长方体的长、宽、高分别为2cm、3cm、4cm,则其体积为多少?A. 24cm^3B. 12cm^3C. 6cm^3D. 8cm^35. 若一个等腰三角形的底边长为6cm,腰长为5cm,则其面积为多少?A. 15cm^2B. 10cm^2C. 12cm^2D. 8cm^2二、判断题(每题1分,共5分)1. 一个等边三角形的三个内角都是60°。
()2. 一个正方形的对角线互相垂直且平分。
()3. 一个圆的半径是直径的一半。
()4. 一个长方体的对角线互相垂直。
()5. 一个等腰三角形的底角等于顶角。
()三、填空题(每题1分,共5分)1. 一个等边三角形的每个内角是______度。
2. 一个正方形的对角线长是边长的______倍。
3. 一个圆的周长是直径的______倍。
4. 一个长方体的体积是长、宽、高的______。
5. 一个等腰三角形的底边长是腰长的______倍。
四、简答题(每题2分,共10分)1. 简述等边三角形的性质。
2. 简述正方形的性质。
3. 简述圆的性质。
4. 简述长方体的性质。
5. 简述等腰三角形的性质。
五、应用题(每题2分,共10分)1. 一个等边三角形的边长为10cm,求其周长。
2. 一个正方形的边长为8cm,求其对角线长。
3. 一个圆的直径为14cm,求其周长。
4. 一个长方体的长、宽、高分别为6cm、4cm、3cm,求其体积。
5. 一个等腰三角形的底边长为10cm,腰长为8cm,求其周长。
2023年鲁教版(五四制)数学九年级上册期末考试测试卷及答案(一)一、选择题(每题3分,共30分)1.如图是一个正方体被截去一角后得到的几何体,它的俯视图是( )2.在△ABC 中,A ,B 都是锐角,且sin A =32,tan B =3,AB =8,则AB 边上的高为( ) A .4 3 B .8 3 C .16 3 D .24 33.点A (a ,b )是反比例函数y =k x上的一点,且a ,b 是方程x 2-mx +4=0的根,则反比例函数的表达式是( )A .y =1xB .y =-1xC .y =4xD .y =-4x4.二次函数y =ax 2+bx +c ,自变量x 与函数y 的对应值如下表:下列说法正确的是( )A .抛物线的开口向下B .当x >-3时,y 随x 的增大而增大C .二次函数的最小值是-2D .抛物线的对称轴是直线x =-525.抛物线y =-2(x -3)2-4的顶点坐标为( )A .(-3,4)B .(-3,-4)C .(3,-4)D .(3,4) 6.下列各组投影是平行投影的是( )7.一次函数y =ax +b 和反比例函数y =a -bx在同一直角坐标系中的大致图象是( )8.已知AE ,CF 是锐角三角形ABC 的两条高,AE ∶CF =2 ∶3,则sin ∠BAC ∶sin ∠ACB =( )A .2 ∶3B .3 ∶2C .4 ∶9D .9 ∶49.已知二次函数y =ax 2+2ax -3的部分图象(如图),由图象可知关于x 的一元二次方程ax 2+2ax -3=0的两个根分别是x 1=1.3和x 2等于( ) A .-1.3 B .-2.3 C .0.3 D .-3.310.函数y =x 2+bx +c 与y =x 的图象如图所示,有以下结论:①b 2-4c >0,②b +c +1=0,③(c +1)2>b 2,④当1<x <3时,x 2+(b -1)x +c <0.其中正确的个数为( ) A .4个 B .3个 C .2个 D .1个二、填空题(每题3分,共24分)11.在△ABC 中,∠C =90°,BC =3,tan A =23,则AB =________.12.把抛物线y =x 2-2x +3沿x 轴向右平移2个单位,得到的抛物线的表达式为________. 13.王英同学从A 地沿北偏西60°方向走100 m 到B 地,再从B 地向西南方走到C 地,此时C 地在A 地的正西方向,则王英同学离A 地__________.14.如图:两条宽为A 的纸条,交叉重叠放在一起,且它们的交角为α,则重叠部分的面积(阴影部分)为________.15.一个几何体是由一些大小相同的小正方体摆成的,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有________个.16.若一次函数y 1=x -2与反比例函数y 2=3x的图象相交于点A ,B ,则当y 1>y 2时,x 的取值范围是________.17.如图,过x 轴负半轴上的任意一点P ,作y 轴的平行线,分别与反比例函数y =-6x,y=4x的图象交于B ,A 两点,若点C 是y 轴上任意一点,连接AC ,BC ,则△ABC 的面积是________.18.如图,边长为n 的正方形OABC 的边OA 、OC 分别在x 轴和y 轴的正半轴上,A 1,A 2,A 3,…,A n -1为边OA 的n 等分点,B 1,B 2,B 3,…,B n -1为边CB 的n 等分点,连接A 1B 1,A 2B 2,A 3B 3,…,A n -1B n -1,分别交y =1nx 2(x ≥0)的图象于点C 1,C 2,C 3,…,C n -1.若有B 5C 5=3C 5A 5,则n =________.三、解答题(19题6分,20,21题每题8分,25题14分,其余每题10分,共66分) 19.计算:(-1)2 019+cos 245°-(π-3)0+3·sin60°·tan45°.20.如图,九年级(1)班的小明与小艳两位同学去操场测量旗杆DE 的高度,已知直立在地面上的竹竿AB 的长为3 m .某一时刻,测得竹竿AB 在阳光下的投影BC 的长为2 m. (1)请你在图中画出此时旗杆DE 在阳光下的投影,并写出画图步骤;(2)在测量竹竿AB 的影长时,同时测得旗杆DE 在阳光下的影长为6 m ,请你计算旗杆DE 的高度.21.如图,某人在山坡坡脚A 处测得电视塔尖点C 的仰角为60°.沿山坡向上走到P 处再测得点C 的仰角为45°.已知OA =100 m ,山坡坡度为12⎝⎛⎭⎪⎫即tan ∠PAB =12,且O ,A ,B 在同一条直线上.求电视塔OC 的高度以及此人所在位置点P 的铅直高度.(测倾器的高度忽略不计,结果保留根号)22.如图,在直角坐标系中,已知A (-4,12),B (-1,2)是一次函数y 1=kx +b 与反比例函数y 2=m x(m ≠0,x <0)图象的两个交点,AC ⊥x 轴于C ,BD ⊥y 轴于D . (1)根据图象直接写出关于x 的不等式kx +b >m x(x <0)的解集; (2)求一次函数和反比例函数的表达式;(3)设P 是第二象限双曲线上AB 之间的一点,连接PA ,PB ,PC ,PD ,若△PCA 和△PDB 的面积相等,求点P 的坐标.23.如图,直角三角形纸片ACB ,∠ACB =90°,AB =5,AC =3,将其折叠,使点C 落在斜边上的点C ′处,折痕为AD ;再沿DE 折叠,使点B 落在DC ′的延长线上的点B ′处. (1)求∠ADE 的度数; (2)求折痕DE 的长.24.“绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.(1)求该型号自行车的进价和标价分别是多少元?(2)若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?25.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且抛物线经过A(1,0),C(0,3)两点,与x轴交于点B.(1)求抛物线的表达式;(2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.答案一、1.A 2.A 3.C 4.D 5.C 6.A 7.A 8.B 9.D 10.C 二、11.3132 12.y =(x -3)2+213.(50 3+50)m 14.a 2sin α15.5 点拨:综合左视图和主视图知,这个几何体有两层,底层最少有2+1=3(个)小正方体,第二层有2个小正方体,因此组成这个几何体的小正方体最少有3+2=5(个). 16.x >3或-1<x <0 17.5 18.10三、19.解:原式=-1+⎝ ⎛⎭⎪⎫222-1+3×32×1 =-1+12-1+32=0.20.解:(1)如图,线段EF 就是此时旗杆DE 在阳光下的投影.作法:连接AC ,过点D 作DF ∥AC ,交直线BE 于点F ,则线段EF 即为所求. (2)∵AC ∥DF , ∴∠ACB =∠DFE .又∠ABC =∠DEF =90°, ∴△ABC ∽△DEF . ∴AB DE =BC EF. ∵AB =3 m ,BC =2 m ,EF =6 m ,∴3DE =26. ∴DE =9 m ,即旗杆DE 的高度为9 m.21.解:在Rt △OAC 中,OC =OA ·tan 6 0°=100×3=100 3(m).如图所示,过点P 作PE ⊥O C 于点E ,PF ⊥AB 于点F ,由tan ∠PAB =12,设PF 为x m ,则AF =2x m ,O E =x m ,∴CE =100 3-x =100+2x ,解得x =100(3-1)3.∴电视塔OC 的高度是100 3 m ,此人所在位置P 的铅直高度为100(3-1)3m.22.解:(1)-4<x <-1.(2)∵一次函数y 1=kx +b 的图象过点⎝ ⎛⎭⎪⎫-4,12,(-1,2), ∴⎩⎪⎨⎪⎧-4k +b =12,-k +b =2,解得⎩⎪⎨⎪⎧k =12,b =52.∴一次函数的表达式为y 1=12x +52.又∵反比例函数y =m x的图象过点(-1,2), ∴m =-1×2=-2. ∴反比例函数的表达式为y =-2x(x <0).(3)设P (a ,-2a),a <0,由△PCA 和△PDB 的面积相等得12×12×(a +4)=12×|-1|×⎝ ⎛⎭⎪⎫2+2a ,解得a =-2. ∴P 点的坐标是(-2,1).23.解:(1)由折叠的性质知∠ADC =∠ADC ′,∠BDE =∠B ′DE ,∵∠ADC +∠ADC ′+∠BDE +∠B ′DE =180°, ∴∠ADC ′+∠B ′DE =90°, 即∠ADE =90°.(2)∵∠ACB =90°,AB =5,AC =3, ∴BC =4.由折叠的性质知,∠AC ′D =∠ACD =90°,DC =DC ′,AC ′=AC =3,BC ′=AB -AC ′=2.设DC =DC ′=x ,则BD =4-x .∵tan B =AC BC =34,又tan B =DC ′BC ′=x2, ∴x 2=34,∴x =32,即DC =DC ′=32. ∴AD =32+⎝ ⎛⎭⎪⎫322=3 52.∵∠CAD =∠BAD ,∴tan ∠CAD =CD AC =tan ∠BAD =DE AD. ∴323=DE 3 52. ∴DE =3 54.24.解:(1)设该型号自行车的进价为x 元,则标价为1.5x 元,由题意得:1.5x ×0.9×8-8x =(1.5x -100)×7-7x ,解得x =1 000,1.5×1 000=1 500(元).答:该型号自行车的进价为1 000元,标价为1 500元. (2)设该型号自行车降价a 元,利润为w 元,由题意得:w =(51+a20×3)(1 500-1 000-a )=-320(a -80)2+26 460,∵-320<0,∴当a =80时,w 最大为26 460,答:该型号自行车降价80元时,每月获利最大,最大利润是26 460元. 25.解:(1)依题意得:⎩⎪⎨⎪⎧-b2a =-1,a +b +c =0,c =3,解之得⎩⎪⎨⎪⎧a =-1,b =-2,c =3. ∴抛物线的表达式为y =-x 2-2x +3.(2)易知点B 坐标为(-3,0),过点B 、点C 作直线BC ,又知C (0,3),易得直线BC 的表达式为y =x +3,设直线BC 与对称轴x =-1的交点为M ,则此时MA +MC 的值最小. 把x =-1代入y =x +3得y =2. ∴M (-1,2),即当点M 到点A 的距离与到点C 的距离之和最小时,点M 的坐标为(-1,2). (3)设P (-1,t ), 又∵B (-3,0),C (0,3),∴BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t -3)2=t 2-6t +10.①若点B 为直角顶点,则BC 2+PB 2=PC 2,即18+4+t 2=t 2-6t +10,解之得t =-2; ②若点C 为直角顶点,则BC 2+PC 2=PB 2,即18+t 2-6t +10=4+t 2,解之得t =4; ③若点P 为直角顶点,则PB 2+PC 2=BC 2,即4+t 2+t 2-6t +10=18,解之得t 1=3+172,t 2=3-172. 综上所述,点P 的坐标为(-1,-2)或(-1,4)或(-1,3+172)或(-1,3-172).2023年鲁教版(五四制)数学九年级上册期末考试测试卷(二)一、选择题(本大题共10小题,共30分。
人教版九年级上册数学期末考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是( )A .2019B .-2019C .12019D .12019- 2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.若式子2m 2(m 1)+-有意义,则实数m 的取值范围是( ) A .m 2>- B .m 2>-且m 1≠C .m 2≥-D .m 2≥-且m 1≠ 4.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .45.某排球队6名场上队员的身高(单位:cm )是:180,184,188,190,192,194.现用一名身高为186cm 的队员换下场上身高为192cm 的队员,与换人前相比,场上队员的身高( )A .平均数变小,方差变小B .平均数变小,方差变大C .平均数变大,方差变小D .平均数变大,方差变大6.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根7.如图,直线AB∥CD,则下列结论正确的是()A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180°D.∠3+∠4=180°8.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m的值为()A.180 B.182 C.184 D.1869.如图,已知AB是O的直径,点P在BA的延长线上,PD与O相切于点D,过点B作PD的垂线交PD的延长线于点C,若O的半径为4,6BC ,则PA的长为()A.4 B.23C.3 D.2.510.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A .4个B .3个C .2个D .1个二、填空题(本大题共6小题,每小题3分,共18分)1.计算368⨯-的结果是______________.2.分解因式:2242a a ++=___________.3.函数2y x =-中,自变量x 的取值范围是__________.4.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =__________度.5.如图,某校教学楼AC 与实验楼BD 的水平间距153CD =米,在实验楼顶部B 点测得教学楼顶部A 点的仰角是30,底部C 点的俯角是45︒,则教学楼AC 的高度是__________米(结果保留根号).6.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =__________.三、解答题(本大题共6小题,共72分)1.解方程:21133x x x x =+++2.已知A -B =7a 2-7ab ,且B =-4a 2+6ab +7.(1)求A 等于多少?(2)若|a+1|+(b-2)2=0,求A的值.3.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B (3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?5.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、C5、A6、A7、D8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)12、22(1)a +3、2x ≥4、805、)6、245三、解答题(本大题共6小题,共72分)1、32x =-2、(1)3a 2-ab +7;(2)12.3、(1)抛物线解析式为y=﹣x 2+2x+3;直线AC 的解析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P 的坐标为(73,209)或(103,﹣139),4、(1)略;(2)45°;(3)略.5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.6、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.。
一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标是()。
A.(2,3)B.(2,3)C.(2,3)D.(2,3)2. 已知一组数据:1,2,3,4,5,那么这组数据的众数、中位数、平均数分别是()。
A. 3,3,3B. 3,3,3.5C. 3,3,4D. 3,3,4.53. 下列函数中,属于一次函数的是()。
A. y=2x+1B. y=x^2C. y=2/xD. y=3sinx4. 已知正比例函数y=kx(k≠0),当x=2时,y=4,那么k的值为()。
A. 2B. 4C. 2D. 45. 在等腰三角形ABC中,AB=AC,∠A=40°,则∠B的度数是()。
A. 40°B. 70°C. 80°D. 90°二、判断题(每题1分,共5分)1. 任意两个等腰三角形的底边长度相等。
()2. 两条平行线上的任意两个点之间的距离相等。
()3. 当两个数的和为0时,它们互为相反数。
()4. 函数y=2x+1的图像是一条直线。
()5. 正比例函数的图像经过原点。
()三、填空题(每题1分,共5分)1. 若x2y=3,则2x4y=______。
2. 若函数y=kx(k≠0)的图像经过点(1,2),则k=______。
3. 已知等腰三角形ABC中,AB=AC=5,BC=8,则∠B的度数是______。
4. 若一组数据的平均数为5,则这组数据的总和是______。
5. 若两个等腰三角形的底边长度相等,则它们一定全等。
()四、简答题(每题2分,共10分)1. 简述正比例函数的定义。
2. 简述等腰三角形的性质。
3. 简述函数图像平移的规律。
4. 简述求解二元一次方程组的方法。
5. 简述众数、中位数、平均数的定义及区别。
五、应用题(每题2分,共10分)1. 某商店销售一批商品,售价为每件20元,成本为每件15元。
若要使利润率达到50%,则售价应定为多少元?2. 已知函数y=kx(k≠0),若该函数的图像经过点(2,4),求k的值。
九年级上册数学试卷及答案【含答案】专业课原理概述部分一、选择题1. 下列哪个数是素数?()A. 21B. 37C. 39D. 272. 一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的周长是多少cm?()A. 16cmB. 26cmC. 28cmD. 36cm3. 下列哪个式子是多项式?()A. 2x + 3B. 3x^2 5x + 2C. √x + 1D. 1/x + 24. 一个正方形的边长为6cm,那么它的面积是多少cm²?()A. 12cm²B. 24cm²C. 36cm²D. 48cm²5. 下列哪个数是无理数?()A. √9B. √16C. √3D. √1二、判断题1. 两个等腰三角形的底边长相等,那么这两个三角形全等。
()2. 一个数的平方根有两个,它们互为相反数。
()3. 两个负数相乘,结果一定是正数。
()4. 任何数乘以0都等于0。
()5. 两个正方形的面积相等,那么它们的边长也相等。
()三、填空题1. 一个等边三角形的边长为6cm,那么它的周长是____cm。
2. 一个数的平方是64,那么这个数是____。
3. 两个数的和为9,它们的差为3,那么这两个数分别是____和____。
4. 一个长方形的长是8cm,宽是4cm,那么它的面积是____cm²。
5. 下列各数中,____是合数。
四、简答题1. 解释什么是素数。
2. 解释什么是等腰三角形。
3. 解释什么是多项式。
4. 解释什么是无理数。
5. 解释什么是长方形的面积。
五、应用题1. 一个长方形的长是10cm,宽是5cm,求它的面积。
2. 一个等腰三角形的底边长为8cm,腰长为10cm,求这个三角形的面积。
3. 解方程:2x + 3 = 11。
4. 计算下列各式的值:√9,√16,√25。
5. 判断下列各数中,哪些是素数:23,39,47,57。
六、分析题1. 两个等腰三角形的底边长相等,那么这两个三角形是否全等?为什么?2. 两个正方形的面积相等,那么它们的边长是否相等?为什么?七、实践操作题1. 画出一个边长为6cm的正方形,并计算它的面积。
九年级上册第一次月考一.选择题(每小题3分,共36分) 四个答案中有且只有一个答案是正确的. 1、下列计算正确的是……………………………………………………………………… 【 】 A.145454522=-⨯+=- B.145452222=-=- C.694)9)(4(=-⨯-=-- D.694)9)(4(=⨯=--2、方程x(x-2)= x 的根是………………………………………………………………… 【 】 A.x=0 B.x=2 C. x 1=0,x 2=3 D.x 1=0,x 2=23.对于二次根式92+x ,以下说法不正确的是 ………………………………… 【 】 A .它是一个正数 B .是一个无理数 C .是最简二次根式 D .它的最小值是3 4、若a-b+c=0,则方程ax 2+bx+c=0(a 0≠)必有一个根是………………………… 【 】A .0B 、1C .-1D 、ba-5.下列式子化为最简二次根式后和2是同类二次根式的为……………………………… 【 】A. 27B. 18C. 12D.946.关于x 的一元二次方程(m -1)x 2 +x +m 2-1=0的一个根是0,则m 的值为【 】A .1 B. -1 C. -1或1 D. 217、对于任意实数x ,多项式x 2-6x+10的值是一个……………………………………【 】.A. 负数B. 非正数C. 正数D. 无法确定正负的数8、使分式2561x x x --+的值等于零的x 是…………………………………………………【 】.A.6B.-1或6C.-1D.-69. 用配方法解方程2250x x --=时,原方程应变形为……………………………………【 】A .()216x += B .()216x -=C .()229x +=D .()229x -=10、已知一次函数b ax y +=随x 的增大而减小,且与y 轴的正半轴相交,则关于x 的方程022=+-b x ax 的根的情况是……………………………………………………………………………………………………【 】 A 、有两个不相等的实数根 B 、有两个相等的实数根 C 、没有实数根 D 、无法确定 11、如图所示,某小区规划在一个长为40 m 、宽为26 m 的矩形场地ABCD 上修建三条同样宽的道路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草.若使每一块草坪的面积为144 m 2,求道路的宽度.若设道路的宽度为x m ,则x 满足的方程为 【 】A 、6144)26)(40(⨯=--x xB 、614426402640⨯=--⨯x xC 、614422624026402⨯=+⨯--⨯x x xD 、6144)226)(240(⨯=--x x12.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A .12B .12或15C .15D .不能确定二、填空题(每小题3分,共18分)请将最后答案直接填在题中横线上.)13.在二次根式31-+x x 中,x 的取值范围是_____________. 14、若01=++-y x x ,则20132012y x +的值为 .15、方程2230x ax -+=有一个根是1,则另一根为 ,a 的值是16.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于 .17.将4个数a,b,c,d 排成2行、2列,两边各加一条竖直线记成a b c d称为二阶行列式,定义a b ad bc c d=-,若11611x x x x +-=-+,则x=_____18.已知△ABC 的三边a 、b 、c 满足a 2+b+21--c =10a+24-b -22,则△ABC 的形状是 。
三、解答题(本大题共7题,共72分)19.计算求值(每小题6分,共18分)①(348+12-272)÷3 ②02)+③先化简,再求值:,其中.20、(12分)按要求解方程① x 2+2x-3=0(用配方法) ② 22510x x +-=(用公式法)21.(6分)阅读下面的例题,请参照下面例题的解法解方程2110x x ---=.例.解方程220xx --=解:⑴当x ≥0时,原方程化为220x x --=,解得:122,1x x ==-(不合题意,舍去). ⑵当x <0时,原方程化为220x x +-=, 解得:122,1x x =-=(不合题意,舍去). ∴原方程的根是122,2x x ==-. 22、(6分)已知关于x 的一元二次方程(a +1)2x -x +2a -3a -3=0有一根是1(1)、求a 的值 (2)、求方程的另一根23、(7分)某商场今年1月份销售额为100万元,2月份销售额下降了10%, 该商场马上采取措施,改进经营管理,使月销售额大幅上升,4月份的销售额达到129.6万元,求3、4月份平均每月销售额增长的百分率.24.(6分)已知1x 、2x 是一元二次方程01442=++-k kx kx 的两个实数根。
(1)是否存在实数k ,使23)2)(2(2121-=--x x x x 成立?若存在,求出k 的值;若不存在,请说明理由。
(2分)(2)求使21221-+x x x x 的值为整数的实数k 的整数值。
(4分)25、(11分)西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克,为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克,另外,每天的房租等固定成本共24元.(1)设销售单价为每千克a 元,每天平均获利为y 元,请解答下列问题:(每空2分) ①每天平均销售量可以表示为_____;②每天平均销售额可以表示为______; ③每天平均获利可以表示为y=________;(2) 该经营户要想每天盈利200元,应将每千克小型西瓜的售价降多少元? (5分) 参考答案一、选择题(每小题3分,共36分)1、 D.2、 C. 3. B . 4、 C .5. B. 6. B. 7、C. 8、 A. 9. B . 10、A 、 11、 C 、 12. C . 二、填空题(每小题3分,共18分)13.31≠-≥x x 且 14、0 15、,3, 216.2 17. 2±18.等边三角形三、解答题(本大题共7个小题,共66分)19.①(348+12-272)÷3②0293618(32)(12)23+--+-+- ③先化简,再求值:,其中.原式= = ==.当x=﹣3时,原式==.20、① x 2+2x-3=0(用配方法)移项得 322=+x x配方得 4)1(2=+x即 11=x 32-=x ② 22510x x +-=(用公式法)这里2=a 5=b 1-=c∴方程有两个不相等的实根 4625424524b 2±-=±-=-±-=a ac b x即 46251+-=x 46252--=x 21. 解:⑴当x ≥1时,原方程化为 02=-x x ,解得:01=x (不合题意,舍去).12=x ⑵当x <1时,原方程化为 022=-+x x , 解得:21-=x 12=x (不合题意,舍去). ∴原方程的根是21-==x x或.22、解:⑴当x =1时,有 033112=--+-+a a a ,即0322=--a a解得:31=a 12-=a∵由题意知01≠+a 即1-≠a ∴3=a(2)当3=a时原方程即为0342=--x x解得 11=x 432-=x∴方程的另一根为43-=x23、解:设3、4月份平均每月销售额增长的百分率为x .依题意得 6.1291001011002=+-⨯))((x 解得 2.01=x 2.22-=x∵2.2-=x 不符合题意,舍去 ∴00202.01==x因此3、4月份平均每月销售额增长的百分率为20℅24.解:(1)解:(1)由k ≠0和△≥0⇒k <0∵121=+x x ,kk x x 4121+=∴2122121219)(2)2)(2(x x x x x x x x -+=-- ∴59=k,而k <0 ∴不存在。
(2)21221-+x x x x =4)(21221-+x x x x =14+-k ,要使14+-k 的值为整数,而k 为整数,1+k 只能取±1、±2、±4,又k <0∴存在整数k 的值为-2、-3、-525. 解:(1)①)4001400(a -千克②a a )4001400(-元③24)4001400)(2(---=a a y (元)(2) 该经营户要想每天盈利200元,应将每千克小型西瓜的售价降多少元?解法一:设应将每千克小型西瓜的售价降低x 元,根据题意,得:()40322002420001x x ⎛⎫--+-= ⎪.⎝⎭; 解这个方程,得:120203x x =.,=.因此 应将每千克小型西瓜的售价降低0.2或0.3元. 解法二:由(1)根据题意,得:(a-2)(1400-400a)-24=200整理得 056.75.52=-+a a解得7.21=a 8.22=a 当7.2=a时3.03=-a 当8.2=a 时2.03=-a因此 应将每千克小型西瓜的售价降低0.2或0.3元。