行波法求解振动方程
- 格式:pdf
- 大小:1.95 MB
- 文档页数:16
第十章波动方程的达朗贝尔解(9)一、内容摘要1.行波法达朗贝尔公式行波法是以自变量的线性组合作变量代换,对方程进行求解的一种方法,它对波动方程类型的问题求解十分有。
一维无界弦自由振动(即无外力)定解问题为:()()()()()()()20,,0,0,,0.tt xx t u a u x t u x x x u x x x ϕψ⎧-=-∞<<∞≥⎪=-∞<<∞⎨⎪=-∞<<∞⎩ 可以证明,原问题具有如下形式的通解:()(),u x t f x t α=+将该通解代入泛定方程得到该方程的附加方程:220a α-=; 且解为a α=±。
原方程的通解可以表示为:()()()12,u x t f x at f x at =++-.原方程满足初始条件的特解可以表示为:()()()()11,[]+''22x at x at u x t x at x at x dx aϕϕψ+-=++-⎰,这个式子就是达朗贝尔公式()(),x x ϕψ为任意二次可微函数.达朗贝尔解可以理解为扰动在弦上总是以行波的形式沿相反的两个方向传播出去,因此该解发又称为行波法或传播波法。
2.行波法要点行波法始原于研究行进波,其解题要领为:(1)引入变量代换,将方程化为变量可积的形式,从而求得其通解;(2)用定解条件确定通解中的任意函数(或常数),从而求得其特解。
由于大多偏微分方程的通解难以求得,用定解条件定任意常数或函数也绝非易事,故行波法有较大局限性,但对于研究波动问题而言,有它的特殊优点。
二、习题1.求解初值问题(1)()()()()()2,,,0,;,0cos ,,0 2.,.tt xx t u a u x t u x x u x x ⎧=∈-∞∞∈∞⎪⎨==∈-∞∞⎪⎩.(2)()()()()(),0,,,.tt xx u u x t u x x x u x x x ϕψ=-∞<<∞>⎧⎪⎨-==⎪⎩.(3)()()()()22,,,0,;1,00,,0.1+tt xx t u a u x t u x u x x ⎧=∈-∞∞∈∞⎪⎨==⎪⎩. (4)()()()()()()2,,,0,;,0,,0'.tt xx t u a u x t u x x u x a x ϕϕ⎧=∈-∞∞∈∞⎪⎨==-⎪⎩.2.验证()()(),3u x y x y x y ϕψ=-++是偏微分方程230xx xy yy u u u +-=的解,其中,ϕψ是充分光滑的任意函数。
数学物理方法泰山医学院于承斌cbyu@第十四章行波法与达朗贝尔公式14.1 二阶线性偏微分方程的通解对于给定的偏微分方程,一般不能简单的确定通解,但对简单的标准形式的方程或一个标准形式进一步化简后,有的可以得到通解。
例14.1.1 求偏微分方程的通解为:板书讲解P280例14.1.2 求偏微分方程的通解为:板书讲解P28114.2 二阶线性偏微分方程的行波解通解法中有一种特殊的解法――行波法, 即以自变量的线性组合作变量代换,进行求解的一种方法,它对波动方程类型的求解十分有效.1.简单的含实系数的二阶线性偏微分方程为了方便起见,我们首先讨论如下的含实常系数的简单二阶线性偏微分方程xx xy yy au bu cu ++=(14.2.1)方程中的系数,,a b c 为实常数.,,a b c (,)x y (说明:这里我们用了小写字母表示它是实常数,而不是的函数)假设方程的行波解具有下列形式(,)()u x y F y x λ=+代入方程即得2()()()0a F y x b F y x cF y x λλλλλ′′′′′′+++++=需要求方程的非零解,故20a b c λλ++=(14.2.2)''()0F y x λ+≠上述方程变为(i) 240b ac ∆=−>12(,)()()u x y F y x G y x λλ=+++(14.2.3)240b ac ∆=−=(ii) 122b aλλ==−对应于抛物型方程,式(14.2.2)有相等的实根11(,)()()u x y F y x xG y x λλ=+++(14.2.4)对应于双曲型方程,式(14.2.2)有两个不同的实根12,λλ240b ac ∆=−<12i ,i λαβλαβ=+=−(iii) ,对应于椭圆型方程,式(14.2.4),则有两个虚根12(,)()()[()i ][()i ]u x y F y x G y x F y x x G y x x λλαβαβ=+++=++++−(14.2.5)2. 更为一般的含实常系数的偏微分方程如果方程具有更一般的形式222220u u u u u a b c d e fu x x y y x y ∂∂∂∂∂+++++=∂∂∂∂∂∂(14.2.6)其中,,,,,a b c d e f 均为实常数.我们可以令(14.2.7)代入方程(14.2.6)得(14.2.8)(,)mx ny u x y e+=220am bmn cn dm en f +++++=12()()12(,)mx n m y mx n m y u x y c ec e ++=+14.2.92(i) 40,b ac −>双曲型,上述方程有两个不同的实根,则1(),n m 2()n m 2(ii) 40,b ac −=抛物型,上述方程有相等的实根,则12()()n m n m =(14.2.11)2(iii) 40,b ac −<椭圆型,上述方程有两个共轭虚根,则12()(),()()n m i m n m i m αβαβ=+=−[()()][()()]12(,)mx m i m y mx m i m yu x y c e c e αβαβ+++−=+(14.2.10)(注明:上式中的第二项乘以x 是为了保证两根线性独立)12()()12(,)mx n m y mx n m yu x y c e c xe ++=+例题14.2.1 14.2.2 14.2.3 14.2.4 讲解本节以行波解法为依据,介绍求解定解问题的达朗贝尔公式.14.3.1 达朗贝尔公式设有一维无界弦自由振动(即无强迫力)定解问题为14.3 达朗贝尔公式2,0(14.3.1)0(,0)()(.0)()tt xx t x t u a u u x x u x x ϕψ−∞<<+∞>−===容易得知偏微分方程的判别式240a ∆=>,该方程为双曲型.由22a λ−=12 , a aλλ==−泛定方程(14.3.1)的通解为12(,)()()u x t F x at F x at =++−(14.3.2)其中12,F F 是任意两个连续二次可微函数.我们使用初始条件可确定12,F F 函数.注:本问题由于涉及无界弦问题,故没有边界条件,只有初始条件。
振动方程波动方程振动方程和波动方程是物理学中重要的概念,涉及到很多领域,比如力学、声学等。
本文将分步骤阐述这两个方程及其应用。
一、振动方程1、概念:振动方程是描述物体振动的方程,表达式为m(x)'' + kx = 0,其中m是物体的质量,k是物体的弹性系数,x是物体的位移。
2、推导过程:假设物体振动的位移为x(t),速度为v(t),加速度为a(t),那么有以下三个式子:v(t) = dx(t)/dta(t) = dv(t)/dt = d^2x(t)/dt^2由于物体的振动是受弹性力和外力的作用,所以可以列出以下公式:ma = -kx其中m是物体的质量,a是物体的加速度,k是弹性系数,x是物体的位移。
把上式用v和x表示出来,则有:m(d^2x(t) / dt^2) = -kx(t)这就是振动方程的表达式。
3、应用:振动方程广泛应用于机械振动、电子振动等领域。
例如,有些机械装置发生共振时,会发出沉闷的低音,这就是振动方程的应用之一。
二、波动方程1、概念:波动方程是描写波动传播的方程,包括机械波、电磁波等;通常表达式为d^2u(x,t) / dx^2 = 1/v^2 * d^2u(x,t) / dt^2,其中u是波的振幅,x和t分别为空间和时间坐标,v为波的传播速度。
2、推导过程:波动方程是由质点振动传播而来,描写质点的受力情况来推导的。
假设沿着x轴传播的机械波的振幅为u(x,t),波的传播速度为v,则有以下式子:1. 法向受力方程:F = ma,其中m是质点的质量,a是质点的加速度,F是在某时刻x处的受力,可以表示成F = -dV/dx,其中V为波势函数。
于是有以下公式:m(d^2u / dt^2) = -dV/dx = -d^2u / dx^2 * k其中k是弹性系数。
2. 波方程:由于波的传播速度为v,所以有以下公式:v = w/k其中w是波的圆频率。
把k代入波的受力方程,整理得出波动方程:d^2u(x,t) / dx^2 = 1/v^2 * d^2u(x,t) / dt^23、应用:波动方程广泛应用于物理、化学、信息科学等领域。
行波法与达朗贝尔公式我们已经熟悉常微分方程的常规解法:先不考虑任何附加条件,从方程本身求出通解,通解中含有任意常数(积分常数),然后利用附加条件确定这些常数。
偏微分方程能否仿照这种办法求解呢? (一)达朗贝尔公式试研究均匀弦的横振动方程(7-1-6)、均匀杆的纵振动方程(7-1-9)、理想传输线方程(7-1-14),它们具有同一形式,0 22222=⎪⎭⎫ ⎝⎛∂∂-∂∂u x a t即.0 =⎪⎭⎫ ⎝⎛∂∂-∂∂⎪⎭⎫ ⎝⎛∂∂+∂∂u x a t x a t(7-4-1)(1)通解方程(7-4-1)的形式提示我们作代换, ),(ηξηξ-=+=t a x(7-4-2)因为在这个代换下,, x a t x x t t ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂ξξξ , ⎪⎭⎫ ⎝⎛∂∂-∂∂-=∂∂∂∂+∂∂∂∂=∂∂x a tx x t t ηηη 方程(7-4-1)就成为 0) /(2=∂∂∂u ηξ。
但为了以后的书写便利,把代换(7-4-2)修改为⎪⎪⎩⎪⎪⎨⎧-=+=),(21),(21ηξηξa t x 即⎩⎨⎧-=+=.,at x at x ηξ在此代换下,方程(7-4-1)化为,0 2=∂∂∂ηξu(7-4-3)就很容易求解了。
先对 η 积分,得)( ξξf u=∂∂(7-4-4)其中 f 是任意函数。
再对ξ 积分,就得到通解),()( )()()()(21212at x f at x f f f f d f u -++=+=+=⎰ηξηξξ(7-4-5)其中 1f 和 2f 都是任意函数。
式(7-4-5)就是偏微分方程(7-4-1)的通解。
不同于常微分方程的情况,式中出现任意函数而不是任意常数。
通解(7-4-5)具有鲜明物理意义。
以 )(2at x f - 而论,改用以速度a 沿x 正方向移动的坐标轴 X ,则新旧坐标和时间之间的关系为⎩⎨⎧=-=,,t T at x X而),()(22X f at x f =-与时间 T 无关。
第三章 行波法§3.1 达朗贝尔法(行波法)考虑无界弦的自由振动问题,有定解问题如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧==∂∂=∂∂)()0,()()0,(22222x x u x x u x u a t u tψϕ ∞+<∞-+∞<<∞->+∞<<∞-x x t x 0, 对于上面的标准形方程,它有两族特征曲线1c at x =+,2c at x =-作变换at x +=ξ,at x -=η由上面的方程变为:02=∂∂∂ηξu 求上面偏微分方程的解先对η积分一次得)(1ξηf u =∂∂ 再对ξ积分一次得:⎰+=+=)()()()(2ηξηξξG F f d f u其中G F ,是具有任意连续可微函数,将原自变量代回得原方程的通解为)()(),(at x G at x F t x u -++=下面通过初始条件确定上面的任意函数G F ,∵ )(0x u t ϕ==,)(0x u t t ψ==∴ )()()(x x G x F ϕ=+ (1))()()(//x x aG x aF ψ=- (2)对(2)从0x 到x 积分得:⎰-+=-x x x G x F d ax G x F 0)()()(1)()(00ααψ (3)(1)+(3)得)]()([21)(21)(21)(000x G x F d a x x F x x -++=⎰ααψϕ ⎰---=x x x G x F d a x x G 0)]()([21)(21)(21)(00ααψϕ ∴ ⎰+-+++-=at x atx d a at x at x t x u ααψϕϕ)(21)]()([21),( 该公式叫达朗贝尔公式例:确定初值问题:⎪⎩⎪⎨⎧==>∞+<∞∂∂=∂∂-122222)0,( cos )0,(0 e x u x x u ,t x -x u a t u t 解:略。
达朗贝尔方程的物理定义:先讨论0)(=x ψ (即振动只有初始位移))]()([21),(at x at x t x u ++-=ϕϕ 先看)(at x -ϕ项:当0=t 时若观察者位于c x =处,此时 )()(c at x ϕϕ=-在x 轴上,若观察者以速度a 沿轴正方向运动,则在t 时刻观察者位于at c x +=处,此时:)()()(c at at c at x ϕϕϕ=-+=-由于t 是任意的,这说明观察者在运动过程中随时可以看到相同的波形,可见,波形和观察者一样,以速度a 沿x 轴正方向传播。
已知波动方程求某点的振动方程如果你已知波动方程,并希望求解某点的振动方程,可以按照以下步骤进行:
1. 确定波动方程:首先,确认你所研究的波动方程的形式。
波动方程通常可以描述为时间和空间变量的关系,例如一维波动方程可以表示为:
∂²u/∂t² = v²∂²u/∂x²
其中u 是振动的位移或波函数,t 是时间,x 是空间位置,v 是波速。
2. 确定求解点:确定你想要求解振动方程的具体点位置,即确定所感兴趣的 x 值。
3. 替换变量并求解:将波动方程中的 x 替换为你感兴趣的位置,得到在该位置的振动方程。
其他变量保持不变。
例如,假设你感兴趣的位置为 x = x₀,则波动方程中的 x 替换为 x₀,得到:∂²u/∂t² = v²∂²u/∂x₀²
这是在位置 x = x₀处的振动方程。
4. 解振动方程:对得到的振动方程进行求解,以获得振动的解析表达式或数值解。
具体的求解方法将取决于波动方程的形式和边界条件。
常见的求解方法包括分离变量法、叠加法、有限差分法等。
请注意,上述步骤是一个一般性的指导,具体的求解方法和步骤可能因波动方程的具体形式和边界条件而有所不同。
如果你能提供更具体的波动方程和求解要求,我可以提供更详细和具体的帮助。