数列的概念练习题(有答案) 百度文库
- 格式:doc
- 大小:2.32 MB
- 文档页数:26
高中数学《数列》练习题(含答案解析)一、单选题1.已知等差数列{an }的前n 项和为Sn ,且48S S =13,则816S S =( )A .310 B .37C .13D .122.已知等比数列{an }的前n 项和为Sn ,则“Sn +1>Sn ”是“{an }单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件3.现有下列说法:①元素有三个以上的数集就是一个数列; ①数列1,1,1,1,…是无穷数列; ①每个数列都有通项公式;①根据一个数列的前若干项,只能写出唯一的通项公式; ①数列可以看着是一个定义在正整数集上的函数. 其中正确的有( ). A .0个B .1个C .2个D .3个4.数列{}n a 的前n 项和为n S ,且1(1)(21)n n a n +=-⋅+,则2021S =( )A .2020B .2021C .2022D .20235.已知等差数列{}n a 中,6819,27a a ==,则数列{}n a 的公差为( ) A .2B .3C .4D .56.标准对数视力表(如图)采用的“五分记录法”是我国独创的视力记录方式.标准对数视力表各行为正方形“E ”字视标,且从视力5.1的视标所在行开始往上,每一行“E ”的边长都是下方一行“E ”的边长的视力4.0的视标边长为a ,则视力4.9的视标边长为( )A .4510aB .91010aC .4510a -D .91010a -7.已知数列{}n a ,2141n n a n n ,则下列说法正确的是( )A .此数列没有最大项B .此数列的最大项是3aC .此数列没有最小项D .此数列的最小项是2a8.已知{}n a 是等差数列,公差0d >,其前n 项和为n S ,若2a 、52a+、172a +成等比数列,()12n n n a S +=,则不正确的是( ) A .1d= B .1020a = C .2n S n n =+ D .当2n ≥时,32n n S a ≥9.已知数列{}n a 的前n 项和为n S ,112a =,对任意的*n ∈N 都有1(2)n n na n a +=+,则2021S =( ) A .20192020B .20202021C .20212022D .1010101110.等差数列{}n a 前n 项和为n S , 281112a a a ++=,则13S =( ) A .32B .42C .52D .62二、填空题11.已知a 是1,2的等差中项,b 是1-,16-的等比中项,则ab 等于___________. 12.已知等差数列{}n a 的前n 项和为n S ,若65210,6Sa a =+=,则d =_________.13.设n S 是等差数列{}n a 的前n 项和,若891715a a =,则1517S S =______.14.已知等差数列{}n a 的前n 项和为nS,且1516a a +=-,936S =-,则n S 的最小值是______.三、解答题15.已知数列{}n a 为等差数列,{}n b 是公比为2的等比数列,且满足11221,5a b b a ==+=(1)求数列{}n a 和{}n b 的通项公式; (2)令n n n c a b =+求数列{}n c 的前n 项和n S ;16.已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-. (1)求{}n a 的通项公式;(2)2n nb a =-+求数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T . 17.某公司2021年年初花费25万元引进一种新的设备,设备投入后每年的收益均为21万元.若2021年为第1年,且该公司第()n n *∈N 年需要支付的设备维修和工人工资等费用总和n a (单位:万元)的情况如图所示.(1)求n a ;(2)引进这种设备后,第几年该公司开始获利? 18.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列. (1)求{}n a 和{}nb 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <.参考答案与解析:1.A【分析】运用等差数列前n 项和公式进行求解即可. 【详解】设等差数列{an }的公差为d , ①41181461582832a d a d a d S S +==⇒=+,显然0d ≠, ①8161182820283161204012010a d d d a d S d S d ++===++, 故选:A 2.D【分析】由110++>⇒>n n n S S a ,举反例102=>n na 和12nn a =-即可得出结果 【详解】110++>⇒>n n n S S a ,例如102=>n na ,但是数列{}n a 不单调递增,故不充分; 数列{}n a 单调递增,例如12n na =-,但是1n n S S +<,故不必要; 故选:D 3.B【分析】根据给定条件,利用数列的定义逐一分析各个命题,判断作答.【详解】对于①,数列是按一定次序排成的一列数,而数集的元素无顺序性,①不正确; 对于①,由无穷数列的意义知,数列1,1,1,1,…是无穷数列,①正确; 对于①0.1,0.01,0.001,0.0001,得到的不足近似值,依次排成一列得到的数列没有通项公式,①不正确;对于①,前4项为1,1,1,1的数列通项公式可以为1,N n a n =∈,cos 2π,N n b n n *=∈等,即根据一个数列的前若干项,写出的通项公式可以不唯一,①不正确;对于①,有些数列是有穷数列,不可以看着是一个定义在正整数集上的函数,①不正确, 所以说法正确的个数是1. 故选:B 4.D【分析】根据数列{}n a 的通项公式,可求得12342,2a aa a +=-+=-,依此类推,即可求解.【详解】①1(1)(21)n n a n +=-⋅+,故12343,5,7,9a a a a ==-==-故202112320202021S a a a a a =+++⋅⋅⋅++357940414043=-+-+⋅⋅⋅-+2101040432023=-⨯+=.故选:D. 5.C【分析】利用862d a a =-,直接计算公差即可. 【详解】等差数列{}n a 中,6819,27aa ==,设公差为d ,则86227198d a a =-=-=,即4d =.故选:C. 6.D【分析】由等比数列的通项公式计算.【详解】设第n 行视标边长为n a ,第n 1-行视标边长为()12n a n -≥,由题意可得()12n n a n -=≥,则()1101102nn a n a --=≥,则数列{}n a 为首项为a ,公比为11010-的等比数列, 所以101191010101010a a a ---⎛⎫== ⎪⎝⎭,则视力4.9的视标边长为91010a -,故选:D. 7.B【分析】令10t n =-≥,则1n t =+,22641411ttyt t t t ,然后利用函数的知识可得答案. 【详解】令10t n =-≥,则1n t =+,22,641411tty tt t t当0=t 时,0y = 当0t >时,146y t t=++,由双勾函数的知识可得y 在()02,上单调递增,在()2,+∞上单调递减 所以当2t =即3n =时,y 取得最大值, 所以此数列的最大项是3a ,最小项为10a = 故选:B . 8.A【分析】利用等差数列的求和公式可得出1n a na =,可得出10d a =>,根据已知条件求出1a 的值,可求得n a 、n S 的表达式,然后逐项判断可得出合适的选项.【详解】因为{}n a 是等差数列,则()()1122nn n n a n a a S ++==,所以,1n a na =, 所以,110n n d a a a +=-=>,因为()()2521722a a a +=+,可得()()2111522172a a a +=+,整理可得21191640a a --=,因为10a >,故12d a ==,A 错;12n a na n ==,则1020a =,B 对;()()112nn n a S n n +==+,C 对;当2n ≥时,()233202n n S a n n n n n -=+-=-≥,即32n n S a ≥,D 对.故选:A. 9.C【解析】由1(2)n n na n a +=+,可得1(1)(1)(2)n n n n a n n a ++=++,数列{}(1)n n n a +为常数列,令1n =,可得1(1)21n n n a a +==,进而可得1(1)n a n n =+,利用裂项求和即可求解.【详解】数列{}n a 满足112a =,对任意的*n ∈N 都有1(2)n n na n a +=+, 则有1(1)(1)(2)n n n n a n n a ++=++,可得数列{}(1)n n n a +为常数列, 有1(1)2n n n a a +=,得(1)1n n n a +=,得1(1)n a n n =+,又由111(1)1n a n n n n ==-++,所以20211111112021112232021202220222022S =-+-+⋅⋅⋅-=-=.故选:C【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和; (4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解. 10.C【分析】将2811a a a ++化成1a 和d 的形式,得到二者关系,求得7a ,利用13713S a =求得结果. 【详解】()()28111111()71031812a a a a d a d a d a d ++=+++++=+=164a d ∴+=,即74a = ()1131371313134522a a S a +∴===⨯= 故选:C.【点睛】思路点睛:该题考查的是有关数列的问题,解题思路如下:(1)根据题中所给的条件,结合等差数列通项公式,将其转化为关于首项与公差的式子; (2)化简求得数列的某一项;(3)结合等差数列求和公式,得到和与项的关系,求得结果. 11.6±【分析】根据等差和等比中项的定义求出,a b 得值,即可求解. 【详解】因为a 是1,2的等差中项,所以12322a +==, 因为b 是1-,16-的等比中项,所以2(1)(16)16b =-⨯-=,4b =±,所以6ab =±.故答案为:6±. 12.1【分析】由等差中项性质可求4a ,又510S =依据等差数列的前n 项和公式及通项公式列方程即可求得公差 【详解】由266a a +=有43a =,而510S = ①结合等差数列的前n 项和公式及通项公式113322a d a d +=⎧⎨+=⎩即可得1d = 故答案为:1【点睛】本题考查了等差数列,利用等差中项求项,结合已知条件、前n 项和公式、通项公式求公差13.1【分析】利用等差数列性质及前n 项和公式计算作答.【详解】在等差数列{}n a 中,891715a a =,所以1151511588117171179915(15(152152117(17)(1717)2))2a a S a a a a a a S a a a a ++⨯====⋅=++⨯. 故答案为:1 14.42-【分析】根据给定条件求出等差数列{}n a 的首项、公差,探求数列{}n a 的单调性即可计算作答.【详解】设等差数列{}n a 的公差为d ,由1591636a a S +=-⎧⎨=-⎩得112416989362a d a d +=-⎧⎪⎨⨯+=-⎪⎩,解得1122a d =-⎧⎨=⎩, 因此,()1212214n a n n =-+-⨯=-,令0n a =,解得7n =,于是得数列{}n a 是递增等差数列,其前6项为负,第7项为0,从第8项开始为正, 所以6S 或7S 最小,最小值为()656122422⨯⨯-+⨯=-. 故答案为:42-15.(1)21n a n =-,12n n b -=(2)221nn S n =+-【分析】(1)根据等差数列和等比数列的通项公式得到2d =,根据通项公式的求法得到结果;(2)1221n n n n c a b n -+=+=-分组求和即可.【详解】(1)设{}n a 的公差为d , 由已知,有215d ++=解得2d =,所以{}n a 的通项公式为21,n a n n *=-∈N , {}n b 的通项公式为12,n n b n -*=∈N .(2)1221n n n n c a b n -+=+=-,分组求和,分别根据等比数列求和公式与等差数列求和公式得到:212(121)21122n n n n n S n -+-=+=+--.16.(1)2n a n =-;(2)1n nT n =+.【解析】(1)由30S =,55S =-,可得113230254552a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=-⎪⎩求出1,a d ,从而可得{}n a 的通项公式;(2)由(1)可得n b n =,从而可得11111(1)1n n b b n n n n +==-++,然后利用裂项相消求和法可求得n T 【详解】解:(1)设等差数列{}n a 的公差为d , 因为30S =,55S =-.所以113230254552a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=-⎪⎩,化简得11021a d a d +=⎧⎨+=-⎩,解得111a d =⎧⎨=-⎩,所以1(1)1(1)(1)2n a a n d n n =+-=+--=-, (2)由(1)可知2(2)2n n b a n n =-+=--+=, 所以11111(1)1n n b b n n n n +==-++, 所以111111(1)()()1223111n nT n n n n =-+-+⋅⋅⋅+-=-=+++ 【点睛】此题考查等差数列前n 项和的基本量计算,考查裂项相消求和法的应用,考查计算能力,属于基础题17.(1)2n a n =;(2)第2年该公司开始获利.【分析】(1)根据题意得出数列的首项和公差,进而求得通项公式 (2)根据题意算出总利润,进而令总利润大于0,解出不等式即可. 【详解】(1)由题意知,数列{}n a 是12a =,公差2d =的等差数列, 所以()()112122n a a n d n n =+-=+-⨯=.(2)设引进这种设备后,净利润与年数n 的关系为()F n ,则()()2121222520252n n F n n n n n -⎡⎤=-+⨯-=--⎢⎥⎣⎦. 令()0F n >得220250n n -+<,解得1010n -<+ 又因为n *∈N ,所以2n =,3,4,…,18, 即第2年该公司开始获利.18.(1)11()3n n a -=,3n nn b =;(2)证明见解析. 【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可; (2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可.【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==. (2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S , 230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++= ⎪ ⎪⎝⎭⎝⎭012111012222333---++++111233---+n nn n .设0121111101212222Γ3333------=++++n n n , ① 则1231111012112222Γ33333-----=++++n nn . ①由①-①得1121113312111113322Γ13233332313--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭-n n n n n n n . 所以211312Γ432323----=--=-⨯⨯⨯n n n n n n . 因此10232323--=-=-<⨯⨯n n n n nS n n nT . 故2nn S T <. [方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n n n n T --=++++,① 231112133333n n n n n T +-=++++,① ①-①得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---, 所以31(1)4323n n n n T =--⋅, 所以2n n S T -=3131(1)(1)043234323n n n n n n ----=-<⋅⋅, 所以2n n S T <. [方法三]:构造裂项法由(①)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭n n c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭n n n n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243n n c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭. 则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎪⎝⎭⎝⎭,下同方法二. [方法四]:导函数法设()231()1-=++++=-n n x x f x x x x x x ,由于()()()()()()1221'111'11(1)'1(1)1n n n n n x x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦, 则12121(1)()123(1)+-+-+=++++='-n nn nx n x f x x x nx x . 又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭' 13113311(1)4334423n n n n n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二.【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n nS T,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nnc n,使1+=-n n nb c c,求得nT的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.。
4.1 数列的概念1.(2020·宜宾市南溪区第二中学校高一月考)已知数列28n na n =+,则数列{}n a 的第4项为( ) A .110B .16C .14 D .13【答案】B【解析】依题意4244148246a ===+.故选:B. 2.(2020·浙江鄞州·宁波诺丁汉附中高一期中)已知数列的通项公式是()()31{22n n n a n n +=-是奇数是偶数,则23⋅a a 等于( ) A .70 B .28C .20D .8【答案】C【解析】因为()()31{22n n n a n n +=-是奇数是偶数,所以,所以23⋅a a =20.故选C.3.(2020·广西田阳高中高一月考)已知数列的一个通项公式为()11312n n n n a +-+=-,则5a = ( ) A .12B .12-C .932D .932-【答案】A 【解析】()11312n n n n a +-+=-,则()51551531122a +-+=-=.故选:A. 4.(2020·广西田阳高中高一月考)已知数列2,5,22,11…,则25是这个数列的( ) A .第六项 B .第七项C .第八项D .第九项【答案】B题组一 根据通项求项【解析】由数列前几项归纳可知通项公式为n a =,=时,7n =,为数列第七项,故选B.5.(2020·浙江鄞州·宁波咸祥中学高一期中)已知数列{}n a 的通项公式为22n a n n =+,则10(a = )A .100B .110C .120D .130【答案】C【解析】数列{}n a 的通项公式为22n a n n =+,则21010210120a =+⨯=.故选:C.6.(2020·四川高一期中)已知数列{}n a 的通项公式是1(2)2n a n n =+,则220是这个数列的( ) A .第19项 B .第20项 C .第21项D .第22项【答案】B【解析】由题意,令1(2)2202n n +=,则(2)440n n +=,解得20n =或22n =-; 因为*n N ∈,所以20n =,即220是这个数列的第20项.故选:B.7.(2020·四川省苍溪实验中学校高一期中)已知数列2,4,……,则8是该数列的第________项 【答案】118=,解得11n =,所以8是该数列的第11项,故答案为:11.8.(2020·上海高二课时练习)在数列{}n a 中,已知()*cos2n n a n N π=∈,则{}n a 的前6项分别为______. 【答案】0,1,0,1,0,1--【解析】易得1cos02a π==,2cos 1a π==-,33cos02a π==,4cos 21a π==,55cos 02a π==,66cos12a π==-.故答案为:0,1,0,1,0,1-- 9.(2020·上海高二课时练习)已知数列{}n a 的通项公式为1(2)n a n n =+,那么199是这数列的第_____项.【答案】9【解析】令11(2)99n n =+,即22990n n +-=,解得9n =或11-(舍去),则199是这数列的第9项,故答案为: 9. 10.(2020·上海高二课时练习)数列{}n a 中,1003n a n =-(*n N ∈),该数列从第_____项开始每项均为负值. 【答案】34【解析】令10030n a n =-<,解不等式得:1003n >,由于*n N ∈,故34n =.故答案为:34.1.(2020·江西高一月考)数列3579,,,24816--,…的一个通项公式为( ) A .()n n n n21a 12+=-⋅ B .()nn n 2n 1a 12+=-⋅C .()n n 1n n 21a 12++=-⋅ D .()n 1n n2n 1a 12++=-⋅【答案】D【解析】根据分子、分母还有正负号的变化,可知,()12112n n nn a ++=-⋅.故选D. 题组二 根据项写通项2.(2020·四川双流·艺体中学)数列2,43,85,167,329…的一个通项公式a n 等于( ) A .221nn -B .2n nC .221nn -D .221nn +【答案】C【解析】数列2,43,85,167,329… 可写成:12211⨯-,22221⨯-,32231⨯-,42241⨯-,52251⨯-… 所以通项公式a n 2=21nn -.故选C. 3.(2020·上海市杨浦高级中学)已知数列1、0、1、0、,可猜想此数列的通项公式是( ).A .()()1*11n n a n N -⎡⎤=+-∈⎣⎦B .()()*1112nn a n N ⎡⎤=+-∈⎣⎦C .()()()()1*111122n n a n n n N +⎡⎤=+-+--∈⎣⎦ D .()()*11cos 2n a n n N π=-∈【答案】D【解析】对于A 选项,()011121a =+-=≠,不合乎题意; 对于B 选项,()1111012a =⨯-=≠,不合乎题意; 对于C 选项,()4311121312a ⎡⎤=⨯+-+⨯=≠⎣⎦,不合乎题意;对于D 选项,当n 为奇数时,cos 1n π=-,此时()11112n a =⨯+=, 当n 为偶数时,cos 1n π=,此时()11102n a =⨯-=,合乎题意. 故选:D.4.(2018·吉林宽城·长春市养正高中高一期中)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式n a =__________.【答案】54n -【解析】第一图点数是1;第二图点数6=1+5 ;第三图是11=1+25 ;第四图是16=1+35 则第n 个图点数=1+(n-1)554n a n 故答案为:54n -5.(2019·山东东营·)已知数列{}n a 的前4项依次为23,45-,67,89-,试写出数列{}n a 的一个通项公式n a =______.【答案】12(1)21n nn +-+ 【解析】2,4,6,8,的通项公式为2n ,3,5,7,9,的通项公式为21n , 正负交替的通项公式为1(1)n +-,所以数列{}n a 的通项公式12(1)21n n n a n +=-+.故答案为:12(1)21n n n +-+ 6.(2020·全国高一课时练习)写出下列各数列的一个通项公式,使它的前几项分别是下列各数: (1)5784,,2,,,245--⋯(2)246810,,,,,315356399(3)5,55,555,5555,(4)2,0,2,0,2,0,【答案】(1)()131n n n a n ++=-;(2)()2221n n a n =-;(3)()51019n na =-;(4)()111n n a -=+- 【解析】解(1)考虑到第2,4项的分母恰好是所在项的序号, 于是这个数列的前4项可以改写成4567,,,1234--, 这4项的分母都与项的序号相同,分子都恰好是序号加3,且奇数项为正,偶数项为负, 所以它的一个通项公式为()131n n n a n++=-. (2)考虑到分子2,4,6,8,10恰好是序号的2倍,所以分子应为2n .分母22222321,1541,3561,6381,99101=-=-=-=-=-都为分子的平方数减去1,因此它的一个通项公式为()2221n na n =-.(3)这个数列的第n 项可以是n 个5组成的n 位数555n n a ↑=,用代数式替代省略号,可考虑前4项改写成55559,99,999,99999999⨯⨯⨯⨯,其中9999999999,,,又可表示成1234101,101,101,101----, 这里的10的正整数次幂的指数恰好与数列中项的序号相等, 所以它的一个通项公式为()51019n n a =-. (4)211,011=+=-,考虑到其每一项与序号的关系将前几项分别写成:()()()()012311,11,11,11+-+-+-+-, 因此它的一个通项公式为()111n n a -=+-.1.(2020·眉山市东坡区多悦高级中学校高一期中)在数列{}n a 中,已知11a =,25a =,()*21n n n a a a n N ++=-∈,则5a 等于( )A .4-B .5-C .4D .5【答案】B【解析】由()*21n n n a a a n N++=-∈知:3214a a a 4321a a a 5435a a a故选:B2.(2020·自贡市第十四中学校高一期中)数列3,7,11,15,的一个通项公式是( )A .41n a n =+B .21n a n =+C .41n a n =-D .21n a n =-【答案】C【解析】因为数列3,7,11,15⋯的一个通项公式为41n -,故数列3,7,11,15,⋯的一个通项公式是41n a n =-,故选:C . 3.(2019·河北廊坊·高一期末)数列{}n a 的前几项为11121,3,,8,222,则此数列的通项可能是( )A .542n n a -=B .322n n a -=C .652n n a -=D .1092n n a -=【答案】A题组三 根据递推公式求项【解析】数列为16111621,,,,22222其分母为2,分子是首项为1,公差为5的等比数列,故通项公式为542n n a -=. 4.(2020·安徽黄山·高一期末)数列1111,,,,...24816--的一个通项公式是( ) A .1(1)2+-n nB .(1)2-n nC .sin 2nn πD .cos(1)2nn π+【答案】B 【解析】()111122-=-⨯,()2211142=-⨯,()3311182-=-⨯,()44111162=-⨯ 所以其通项公式是:(1)2-nn 故选:B5.(2020·武汉外国语学校高一月考)数列4,6,10,18,34,……的通项公式n a 等于( ) A .12n + B .21n + C .22n + D .22n +【答案】C【解析】234521134522,22,22,22,22a a a a a =+=+=+=+=+22n n a ∴=+故选:C6.(2020·浙江越城·绍兴一中期中)在数列{}n a 中,()1111,1(2)nnn a a n a --==+≥,则5a 等于A .32B .53C .85D .23【答案】D【解析】已知1a 逐一求解2345122323a a a a ====,,,.故选D7.(2020·吉林前郭尔罗斯县第五中学高一期中)数列12-,2,92-,8,252-,…它的一个通项公式可以是( )A .()212nn n a =-B .()2112n n n a +=- C .22n n a =D .1n n a n =-+ 【答案】A【解析】将1n =代入四个选项可得A 为12-,B 为12,C 为12,D 为12-.所以排除B 、C 选项. 将2n =代入A 、D,得A 为2,D 为23-,所以排除D 综上可知,A 可以是一个通项公式故选:A 8.(2019·息县第一高级中学高二月考(文))数列1-,3,7-,15,…的一个通项公式可以是( ) A .()(1)21nnn a =-⋅- B .(1)(21)nn a n =-⋅- C .()1(1)21n n n a +=-⋅-D .1(1)(21)n n a n +=-⋅-【答案】A【解析】将1n =代入四个选项,可知C 中11,a =D 中11,a =所以排除C 、D.当3n =,代入B 可得35,a =-所以排除B ,即A 正确,故选:A.9.(2018·安徽六安一中高一期末(文))已知*n N ∈,给出4个表达式:①0,1,n n a n ⎧=⎨⎩为奇数为偶数,②1(1)2n n a +-=,③1cos 2n n a π+=,④sin 2n n a π=.其中能作为数列:0,1,0,1,0,1,0,1,…的通项公式的是( ) A .①②③ B .①②④C .②③④D .①③④【答案】A【解析】①②③逐一写出为010101,,,,,可以,④逐一写出为1010101,,,,,,不满足,故选A .10.(2020·湖北十堰·高一期末)数列1111,,,57911--,…的通项公式可能是n a =( ) A .1(1)23n n --+B .(1)32nn -+C .1(1)32n n --+D .(1)23nn -+【答案】D【解析】由115a =-,排除A ,C ,由217a =,排除B.故选:D.11.(2020·金华市曙光学校高一开学考试)数列1-,3,5-,7,9-,,的一个通项公式为( )A .21n a n =-B .(1)(12)nn a n =-- C .(1)(21)nn a n =--D .1(1)(21)n n a n +=--【答案】C【解析】∵数列{a n }各项值为1-,3,5-,7,9-,,∴各项绝对值构成一个以1为首项,以2为公差的等差数列,∴|a n |=2n ﹣1 又∵数列的奇数项为负,偶数项为正,∴a n =(﹣1)n (2n ﹣1).故选C .1.(2019·云南东川明月中学高一期中)数列{}n a 的前n 项和21n S n n =++,则{}n a 的通项公式n a = _____.【答案】()()3122n nn ⎧=⎪⎨≥⎪⎩ 【解析】当1n =时,113a S ==;题组四 公式法求通项当2n ≥时,()()()22111112n n n a S S n n n n n -⎡⎤=-=++--+-+=⎣⎦; ∴()()3122n n a n n ⎧=⎪=⎨≥⎪⎩故答案为()()3122n n n ⎧=⎪⎨≥⎪⎩2.(2019·湖南岳阳)已知数列{}n a ,若1222n a a na n +++=,则数列{}1n n a a +的前n 项和为__________. 【答案】41n n + 【解析】因为122++2n a a na n +⋯=所以1212++12n 1n a a n a ()()-+⋯-=- 两式相减得2n na =所以2n a n=设数列{}1n n a a +的前n 项和为S n 则1223342111n n n n n n n S a a a a a a a a a a a a ---+=+++⋅⋅⋅++2222222222221223342111n n n n n n =⨯+⨯+⨯+⋅⋅⋅⨯+⨯+⨯---+ 1111111111141223342111n n n n n n ⎛⎫=-+-+-+⋅⋅⋅-+-+- ⎪---+⎝⎭ 144111n n n ⎛⎫=-= ⎪++⎝⎭3.(2020·上海市金山中学期中)已知数列{}n a 的前n 项和2231n S n n =-+,则n a =__________.【答案】0,145,2n n a n n =⎧=⎨-≥⎩【解析】当1n =时,110a S ==当2n ≥时,由2231n S n n =-+,得212(1)3(1)1n S n n -=---+,两式相减,145n n n a S S n -=-=-,将1n =代入上式,110a =-≠,∴通项公式为0,145,2n n a n n =⎧=⎨-≥⎩故答案为0,145,2n n a n n =⎧=⎨-≥⎩. 4.(2019·黑龙江哈尔滨市第六中学校期中)已知数列{}n a 前n 项和为n S ,且2n S n =,则n a =_______【答案】21n -.【解析】当1n =时,111a S ==当2n ≥且*n N ∈时,()221121n n n a S S n n n -=-=--=-综上所述:21n a n =-,*n N ∈本题正确结果:21n -5.(2020·河北石家庄·辛集中学)在数列{}n a 中,已知其前n 项和为23n n S =+,则n a =__________. 【答案】15,12,2n n n a n -=⎧=⎨≥⎩【解析】当2n ≥时,111(23)(23)2n n n n n n a S S ---=-=+-+=;当1n =时,11235a S ==+=,不满足上式。
课时规范练28数列的概念基础巩固组1.已知数列√5,√11,√17,√23,√29,…,则5√5是它的()A.第19项B.第20项C.第21项D.第22项2.记S n为数列{a n}的前n项和.“任意正整数n,均有a n>0”是“数列{S n}是递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(多选)已知数列{a n}满足a n+1=1-1a n(n∈N*),且a1=2,则()A.a3=-1B.a2 019=12C.S6=3D.2S2 019=2 0194.(2020河北保定高三期末)在数列{a n}中,若a1=1,a2=3,a n+2=a n+1-a n(n∈N*),则该数列的前100项之和是() A.18 B.8 C.5 D.25.(多选)已知数列{a n}:12,13+23,14+24+34,…,110+210+310+…+910,…,若b n=1a n·a n+1,设数列{b n}的前n项和为S n,则()A.a n=n2B.a n=nC.S n=4nn+1D.S n=5nn+16.(2020湖南益阳高三期末)已知{a n}是等差数列,且满足:对∀n∈N*,a n+a n+1=2n,则数列{a n}的通项公式a n=() A.n B.n-1C.n-12D.n+127.已知数列{a n}的首项a1=21,且满足(2n-5)a n+1=(2n-3)a n+4n2-16n+15,则数列{a n}的最小的一项是()A.a5B.a6C.a7D.a88.已知每项均大于零的数列{a n},首项a1=1且前n项和S n满足S n√S n-1-S n-1√S n=2√S n S n-1(n∈N*且n≥2),则a81=()A.638B.639C.640D.6419.设S n为数列{a n}的前n项和,且a1=4,a n+1=S n,n∈N*,则S4=.10.在数列{a n}中,a1=2,a n+1n+1=a nn+ln1+1n,则a n=.11.已知数列{a n}的通项公式为a n=n+13n-16(n∈N*),则数列{a n}的最小项是第项.12.已知数列{a n}满足a1=3,a n+1=4a n+3.(1)写出该数列的前4项,并归纳出数列{a n}的通项公式;公众号:一枚试卷君(2)证明:a n+1+1a n+1=4.综合提升组13.(2020广东中山期末)设数列{a n}的前n项和为S n,且a1=1,{S n+na n}为常数列,则a n=()A.13n-1B.2 n(n+1)C.1(n+1)(n+2)D.5-2n314.(2020安徽江淮十校第三次联考)已知数列{a n}满足a n+1-a nn =2,a1=20,则a nn的最小值为()A.4√5B.4√5-1C.8D.915.(多选)(2020江西赣州教育发展联盟2月联考)已知数列{a n}的前n项和为S n(S n≠0),且满足a n+4S n-1S n=0(n≥2),a1=14,则下列说法正确的是()A.数列{a n}的前n项和为S n=14nB.数列{a n}的通项公式为a n=14n(n+1)C.数列{a n}为递增数列D.数列1S n为递增数列创新应用组16.已知数列{a n}的前n项和为S n,a1=a,a n+1=S n+3n,若a n+1≥a n对∀n∈N*成立,则实数a的取值范围是.17.已知二次函数f(x)=x2-ax+a(a>0,x∈R)有且只有一个零点,数列{a n}的前n项和S n=f(n)(n∈N*).(1)求数列{a n}的通项公式;(2)设c n=1-4a n (n∈N*),定义所有满足c m·c m+1<0的正整数m的个数,称为这个数列{c n}的变号数,求数列{c n}的变号数.参考答案课时规范练28 数列的概念1.C 数列√5,√11,√17,√23,√29,…,中的各项可变形为√5,√5+6,√5+2×6,√5+3×6,√5+4×6,…,所以通项公式为a n =√5+6(n -1)=√6n -1,令√6n -1=5√5,得n=21.2.A ∵a n >0,∴数列{S n }是递增数列,∴“a n >0”是“数列{S n }是递增数列”的充分条件.如数列{a n }为-1,1,3,5,7,9,…,显然数列{S n }是递增数列,但是a n 不一定大于零,还有可能小于零, ∴数列{S n }是递增数列不能推出a n >0.∴“a n >0”是“数列{S n }是递增数列”的不必要条件. ∴“任意正整数n ,均有a n >0”是“数列{S n }是递增数列”的充分不必要条件.3.ACD 数列{a n }满足a 1=2,a n +1=1-1a n(n ∈N *),可得a 2=12,a 3=-1,a 4=2,a 5=12,…,所以a n+3=a n ,数列的周期为3,a 2 019=a 672×3+3=a 3=-1,S 6=3,S 2 019=2 0192. 4.C ∵a 1=1,a 2=3,a n +2=a n +1-a n (n ∈N *),∴a 3=3-1=2, a 4=2-3=-1, a 5=-1-2=-3, a 6=-3+1=-2, a 7=-2+3=1, a 8=1+2=3, a 9=3-1=2, …∴{a n }是周期为6的周期数列,∴S 100=S 16×6+4=16×(1+3+2-1-3-2)+(1+3+2-1)=5.故选C. 5.AC 由题意得a n =1n+1+2n+1+…+nn+1=1+2+3+…+nn+1=n2,∴b n =1n 2·n+12=4n (n+1)=41n −1n+1,∴数列{b n }的前n 项和S n =b 1+b 2+b 3+…+b n =41-12+12−13+13−14+…+1n −1n+1=41-1n+1=4nn+1.故选AC.6.C 由a n +a n+1=2n ,得a n+1+a n+2=2n+2,两式相减得a n+2-a n =2=2d ,∴d=1,又a n +a n +d=2n ,∴a n =n-12.故选C .7.A ∵4n 2-16n+15=(2n-3)(2n-5),∴(2n-5)a n+1=(2n-3)a n +(2n-3)(2n-5), 等式两边同时除以(2n-3)(2n-5),可得a n+12n -3=a n2n -5+1, 可设b n =a n 2n -5,则b n+1=an+12n -3, ∴b n+1=b n +1,即b n+1-b n =1.∵b 1=a 12×1-5=21-3=-7, ∴数列{b n }是以-7为首项,1为公差的等差数列. ∴b n =-7+(n-1)×1=n-8,n ∈N *.∴a n =(n-8)(2n-5)=2n 2-21n+40.可把a n 看成关于n 的二次函数,则根据二次函数的性质,可知其对称轴n=10.52=5.25. ∴当n=5时,a n 取得最小值.故选A .8.C 已知S n √S n -1-S n-1√S n =2√S n S n -1,数列{a n }的每项均大于零,故等号两边同时除以√S n S n -1,可得√S n −√S n -1=2,∴{√S n }是以1为首项,2为公差的等差数列,故√S n =2n-1,S n =(2n-1)2,∴a 81=S 81-S 80=1612-1592=640.故选C .9.32 因为S n 为数列{a n }的前n 项和,且a 1=4,a n+1=S n ,n ∈N *, ① 则当n ≥2时,a n =S n-1, ②由①-②得a n+1-a n =a n ,∴an+1a n=2,则数列{a n }是从第二项起,公比为2的等比数列,又a 2=S 1=4,∴a n =4·2n-2=2n (n ≥2),故a n ={4(n =1),2n (n ≥2).所以S 4=a 5=25=32.10.2n+n ln n 由题意得a n+1n+1−a n n =ln(n+1)-ln n ,a n n −an -1n -1=ln n-ln(n-1)(n ≥2). ∴a 22−a 11=ln 2-ln 1,a 33−a22=ln 3-ln 2,…,a n n−an -1n -1=ln n-ln(n-1)(n ≥2). 累加得a n n −a 11=ln n ,又a 1=2,∴a nn =2+ln n (n ≥2),当n=1时,a 1=2,上式成立,故a n =2n+n ln n. 11.5 a n =n+13n -16=131+193n -16.当n>5时,a n >0,且单调递减, 当n ≤5时,a n <0,且单调递减. ∴当n=5时,a n 最小.12.(1)解 a 1=3,a 2=15,a 3=63,a 4=255.因为a 1=41-1,a 2=42-1,a 3=43-1,a 4=44-1,…, 所以归纳得a n =4n -1. (2)证明 因为a n +1=4a n +3,所以a n+1+1a n +1=4a n +3+1a n +1=4(a n +1)a n +1=4. 13.B ∵数列{a n }的前n 项和为S n ,且a 1=1,∴S 1+1×a 1=1+1=2.∵{S n +na n }为常数列,∴S n +na n =2.当n ≥2时,S n-1+(n-1)a n-1=2,∴(n+1)a n =(n-1)a n-1,从而a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=13·24·35·…·n -1n+1,∴a n =2n (n+1)(n ≥2),当n=1时上式成立,∴a n =2n (n+1).故选B . 14.C 由a n +1-a n =2n ,知a 2-a 1=2×1,a 3-a 2=2×2,…,a n -a n -1=2(n-1),n ≥2.以上各式相加得a n -a 1=n 2-n ,n ≥2,所以a n =n 2-n+20,n ≥2, 当n=1时,a 1=20符合上式,所以a n n =n+20n-1,n ∈N *, 所以当n ≤4时,a n n单调递减,当n ≥5时,a n n单调递增.因为a 44=a55=8,所以ann 的最小值为8.故选C .15.AD 由题意,可知数列{a n }的前n 项和为S n (S n ≠0),且满足a n +4S n-1S n =0(n ≥2),则S n -S n-1=-4S n-1S n (n ≥2),即1S n−1S n -1=4(n ≥2).又因为a 1=14,所以1S 1=4,所以数列1S n是以4为首项,4为公差的等差数列,所以数列1S n为递增数列,且1S n=4+(n-1)×4=4n ,则S n =14n .又因为当n ≥2时,a n =S n -S n-1=14n −14(n -1)=-14n (n -1),a 1=14,所以数列{a n }的通项公式为a n ={14,n =1,-14n (n -1),n ≥2.故选AD. 16.[-9,+∞) 据题意,得a n+1=S n+1-S n =S n +3n ,∴S n+1=2S n +3n ,∴S n+1-3n+1=2(S n -3n ).又S 1-31=a-3,∴数列{S n -3n }是以a-3为首项,2为公比的等比数列,∴S n -3n =(a-3)·2n-1即S n =3n +(a-3)·2n-1.当n=1时,a 1=a ;当n ≥2时,a n =S n -S n-1=3n +(a-3)×2n-1-3n-1-(a-3)×2n-2=2×3n-1+(a-3)×2n-2,∴a n+1-a n =4×3n-1+(a-3)×2n-2.又当n ≥2时,a n+1≥a n 恒成立,∴a ≥3-12×(32)n -2对∀n ∈N *,且n ≥2成立,∴a ≥-9.又a 2=a 1+3,∴a 2≥a 1成立.综上,所求实数a 的取值范围是[-9,+∞).17.解 (1)依题意,得Δ=a 2-4a=0,所以a=0或a=4.又由a>0得a=4,所以f (x )=x 2-4x+4. 所以S n =n 2-4n+4. 当n=1时,a 1=S 1=1-4+4=1; 当n ≥2时,a n =S n -S n -1=2n-5.所以数列{a n }的通项公式为a n ={1,n =1,2n -5,n ≥2.(2)由题意得c n ={-3,n =1,1-42n -5,n ≥2.由c n =1-42n -5可知,当n ≥5时,恒有c n >0. 又因为c 1=-3,c 2=5,c 3=-3, c 4=-13,c 5=15,即c 1·c 2<0,c 2·c 3<0,c 4·c 5<0, 所以数列{c n }的变号数为3.。
强力推荐人教版数学高中必修 5 习题第二章 数列1. { a n } 是首项 a 1= 1,公差为 d =3 的等差数列,如果 a n = 2 005,则序号 n 等于 () .A .667B . 668C . 669D . 6702.在各项都为正数的等比数列 { a n } 中,首项 a 1= 3,前三项和为 21,则 a 3+ a 4+ a 5= () .A .33B . 72C . 84D . 1893.如果 a 1 ,a 2,⋯, a 8 为各项都大于零的等差数列,公差 d ≠0,则 () .A . a 1 a 8 > a 4 a 5B . a 1a 8< a 4a 5C . a 1+ a 8 <a 4+ a 5D . a 1a 8= a 4a 54.已知方程 ( x 2- 2x +m)( x 2-2x + n) = 0 的四个根组成一个首项为1的等差数列,则4| m - n |等于 () .A . 1B .3C .1D . 34285.等比数列 { a n } 中, a 2= 9, a 5= 243,则 { a n } 的前 4 项和为 ( ).A .81B .120C . 168D . 1926.若数列 { a n } 是等差数列,首项a 1>0,a 2 003+ a 2 004> 0,a 2 003·a 2 004< 0,则使前 n 项和 S n >0 成立的最大自然数 n是 () .A .4 005B . 4 006C . 4 007D . 4 0087.已知等差数列 { a n } 的公差为 2,若 a 1, a 3, a 4 成等比数列 , 则 a 2 =( ) .A .- 4B .- 6C .- 8D . -108.设 S n 是等差数列 { a n } 的前 n 项和,若a 5=5 ,则S 9 = () .a 3 9 S 5A . 1B .- 1C . 2D .129.已知数列- 1,a 1, a 2,- 4 成等差数列,- 1, b 1,b 2 ,b 3,- 4 成等比数列,则 a 2 a 1的值是 () .b 2 A .1B .-1C .-1或1D .1222 2 4A.38B. 20C. 10D. 9二、填空题11.设 f( x) =1,利用课本中推导等差数列前n 项和公式的方法,可求得 f( - 5)+ f( - 4) +⋯+ f(0)+⋯+ f( 5)2 x2+ f( 6) 的值为.12.已知等比数列 { a n} 中,( 1) 若 a3· a4·a5=8,则 a2·a3·a4· a5· a6=.( 2) 若 a1+ a2=324, a3+ a4= 36,则 a5+ a6=.( 3) 若 S4= 2, S8= 6,则 a17+a18+ a19+ a20=.13.在8和27之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为.3214.在等差数列 { a n} 中, 3( a3+ a5) +2( a7+ a10+ a13) = 24,则此数列前13 项之和为.15.在等差数列 { a n} 中, a5= 3, a6=- 2,则 a4+a5+⋯+ a10=.16.设平面内有 n 条直线 ( n≥ 3) ,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f( n) 表示这 n 条直线交点的个数,则f( 4) =;当 n> 4 时, f( n) =.三、解答题17. ( 1) 已知数列 { a n } 的前 n 项和 S n= 3n2- 2n,求证数列 { a n} 成等差数列 .( 2) 已知1,1,1成等差数列,求证b c ,c a,a b也成等差数列.a b c a b c18.设 { a n } 是公比为q 的等比数列,且a1, a3, a2成等差数列.( 1) 求 q 的值;( 2) 设 { b n} 是以 2 为首项, q 为公差的等差数列,其前n 项和为 S n,当 n≥ 2 时,比较S n与 b n的大小,并说明理由.19.数列 { a n} 的前 n 项和记为 S n,已知 a1= 1,a n+1=n2S n( n=1, 2, 3⋯ ) .n求证:数列 { Sn } 是等比数列.n20.已知数列 { a n} 是首项为 a 且公比不等于 1 的等比数列, S n为其前 n 项和, a1,2a7,3a4成等差数列,求证:12S3,S6, S12- S6成等比数列 .第二章数列参考答案一、选择题1. C解析:由题设,代入通项公式a n= a1+ ( n- 1) d,即 2 005= 1+3( n- 1) ,∴ n= 699.2. C解析:本题考查等比数列的相关概念,及其有关计算能力.设等比数列 { a n} 的公比为q( q>0) ,由题意得a1+ a2+ a3= 21,即a1( 1+ q+q2) = 21,又 a1= 3,∴ 1+ q+ q2= 7.解得 q=2 或 q=- 3( 不合题意,舍去 ) ,∴ a3+ a4+ a5= a1q2( 1+q+ q2) = 3× 22× 7= 84.3. B.解析:由 a1+ a8= a4+ a5,∴排除C.又a1· a8= a1( a1+ 7d) = a12+ 7a1d,∴a4· a5= ( a1+ 3d)( a1+ 4d) =a12+ 7a1d + 12d2> a1· a8.4. C 解析:解法 1:设 a1=1,a2=1+d, a3=1+ 2d, a4=1+ 3d,而方程 x2-2x+ m= 0 中两根之和为2, x2-2x+ n= 0 中4444两根之和也为2,∴a1+ a2+ a3+ a4= 1+ 6d= 4,∴ d=1, a =1, a =7是一个方程的两个根, a =3,a =5是另一个方程的两个根.144132444∴7,15分别为 m 或 n,16 16∴| m- n|=1,故选 C.2由等差数列的性质:若+ s = p + q ,则 a + a s = a p + a q ,若设 x 1 为第一项, x 2 必为第四项,则 x 2= 7,于是可得等差4数列为 1, 3, 5, 7,4 4 4 4∴ m = 7 ,n =15 ,1616∴| m - n |= 1.25. B解析:∵ a 2= 9, a 5= 243, a 5= q 3=243= 27,a 2 9∴ q = 3, a 1 q =9, a 1= 3,5∴S 4=3-3=240= 120.1-326. B解析:解法 1:由 a 2 003+ a 2 004> 0,a 2 003·a 2 004< 0,知 a 2 003 和 a 2 004 两项中有一正数一负数,又a 1> 0,则公差为负数,否则各项总为正数,故a 2 003> a 2 004,即 a 2 003> 0, a 2 004< 0.∴ S 4 006=4 006( a 1+ a)4 006( a + a)4 006=2 0032 004> 0,22∴ S 4 007=4 007· ( a 1+a 4 007) =4 007· 2a 2 004< 0,22故 4 006 为 S n > 0 的最大自然数 . 选 B .解法 2:由 a 1> 0,a 2 003+ a 2 004> 0, a 2 003·a 2 004<0,同解法 1 的分析得 a 2 003> 0,a 2 004< 0,∴ S 2 003 为 S n 中的最大值.∵ S n 是关于 n 的二次函数,如草图所示,∴ 2 003 到对称轴的距离比 2 004 到对称轴的距离小,∴4 007在对称轴的右侧.( 第 6 题 )2根据已知条件及图象的对称性可得 4 006 在图象中右侧 零点 B 的左侧,4 007,4 008都在其右侧, S n > 0 的最大自然数是 4 006.解析:∵ { a n} 是等差数列,∴a3=a1+ 4, a4= a1+ 6,又由 a1, a3, a4成等比数列,∴( a1+ 4) 2= a1( a1+ 6) ,解得 a1=- 8,∴a2=- 8+2=- 6.8. A解析:∵ S99(a1a9 )=2= 9 a5=9·5=1,∴选 A.S55(a1a5 ) 5 a35929. A解析:设 d 和 q 分别为公差和公比,则-4=- 1+ 3d 且- 4= ( -1) q 4,∴ d=- 1, q2= 2,∴ a2 a1=d2=1.b2q210. C解析:∵ { a n} 为等差数列,∴an2= a n-1+ a n+1,∴ a n2=2a n,又 a n≠ 0,∴ a n= 2, { a n} 为常数数列,而a n=S2 n 1,即 2n- 1=38= 19,2n 12∴n= 10.二、填空题11.3 2.解析:∵ f( x) =1,x221x12x∴ f( 1- x) = 2 =22221 x 2 2x=22 x,112x112x1( 2 2 x)2∴ f( x) + f( 1- x) =+2=2=2=.x2 2 x 2 2x22 2 2 2 x设S= f( - 5) + f( - 4) +⋯+ f(0) +⋯+ f( 5) + f( 6) ,则 S= f( 6) + f( 5) +⋯+ f(0) +⋯+ f( - 4) + f( - 5) ,.∴ 2S= [ f( 6)+ f( - 5)] + [ f( 5) +f( - 4)] +⋯+ [ f(- 5) + f( 6)] = 6 2 ,∴ S= f( - 5)+ f( - 4) +⋯+ f(0) +⋯+ f( 5) + f( 6)=3 2.12.( 1)32;( 2)4;( 3)32.解析:( 1)由 a3· a5= a42,得 a4=2,∴a2· a3· a4· a5· a6= a45= 32.a1a2 324 1 ,( 2)q 2( a1a2 )q2 369∴ a5+ a6= ( a1+ a2 ) q4=4.S4=a1+ a2+a3+ a4=2q 4=2 ,( 3)S8= a1+ a2++a8=S4+S4q4∴ a17+ a18+a19+a20= S4q16= 32.13. 216.解析:本题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与中间数为827=6,插入的三个数之积为8×27×6= 216.3232 14. 26.解析:∵ a3+ a5= 2a4, a7+ a13= 2a10,∴6( a4+ a10) = 24, a4+ a10= 4,∴S=13( a1+a13)= 13( a4+a10 ) = 134=26.1322215.- 49.解析:∵ d= a6- a5=- 5,∴a4+ a5+⋯+ a10=7( a4+a10)2=7( a5- d+a5+5d )2=7( a5+ 2d)8,27同号,由等比中项的3 2.=- 49.116. 5, ( n + 1)( n - 2) .解析:同一平面内两条直线若不平行则一定相交,故每增加一条直线一定与前面已有的每条直线都相交,∴ f( k) = f( k- 1) + ( k - 1) .由 f( 3) = 2,f( 4) = f( 3) + 3=2+ 3= 5,f( 5) = f( 4) + 4=2+ 3+ 4=9,⋯⋯f( n) = f( n - 1) +( n - 1) ,相加得 f( n) = 2+ 3+ 4+⋯+ ( n -1) = 1( n + 1)( n - 2) .2三、解答题17.分析:判定给定数列是否为等差数列关键看是否满足从第2 项开始每项与其前一项差为常数.证明:( 1) n = 1 时, a 1= S 1= 3- 2= 1,当 n ≥ 2 时, a n = S n - S n - 1= 3n 2- 2n -[ 3( n - 1) 2-2( n - 1)] = 6n - 5,n = 1 时,亦满足,∴ a n = 6n - 5( n ∈ N* ) .首项 a 1= 1,a n - a n - 1= 6n - 5- [ 6( n - 1) -5] = 6( 常数 )( n ∈N* ) ,∴数列 { a n } 成等差数列且 a 1= 1,公差为 6.111( 2)∵ , , 成等差数列,∴ 2 = 1 + 1化简得 2ac = b( a + c) . b a cb +c + a +b = bc + c 2+ a 2+ ab = b( a + c)+ a 2+ c 2= ( a + c) 2 = ( a + c)2= 2·a +c,acac acacb( a +c)b2∴b +c,c +a,a +b也成等差数列.abc18.解:( 1)由题设 2a 3= a 1+ a 2,即 2a 1q 2= a 1+ a 1q ,∵ a 1≠ 0,∴ 2q 2- q - 1=0,∴ q = 1 或-1..2( 2)若 q = 1,则 S n = 2n +n( n -1)= n+3n.22当 n ≥ 2 时, S n -b n = S n - 1=( n -1)( n +2)> 0,故 S n>b n . 22若 q =- 1 ,则 S n = 2n +n( n -1)( - 1) = - n +9n.222 4当 n ≥ 2 时, S n -b n = S n - 1=( n -1)( 10-n),4故对于 n ∈ N +,当 2≤ n ≤ 9 时, S n > b n ;当 n = 10 时, S n = b n ;当 n ≥ 11 时, S n < b n .n +2n∴ ( n + 2) S n = n( S n + 1-S n ) ,整理得 nS n + 1= 2( n + 1) S n ,所以Sn +1=2Sn.n +1 n故 {S n} 是以 2 为公比的等比数列. n20.证明:由 a 1, 2a 7, 3a 4 成等差数列,得 4a 7= a 1+ 3a 4,即 4 a 1q 6= a 1+ 3a 1q 3,变形得 ( 4q 3+ 1)( q 3- 1) = 0,∴ q 3=- 1或 q 3=1( 舍) . 4a 1(1 q 6) 1 q3S 6=1 q= 1;由 312= 1612S 3 12a 1 (1 q )1 qa 1 (1 12q)S12S 6= S12- 1=1 q- 6-1=1 ; S 6S 6 a 1 (1 61= 1+q 16q )1 q S 6 = S 12 S 6.得S 612S 3∴ 12S 3, S 6, S 12- S 6 成等比数列.。
数列的概念与简单表示[A 级 基础题——基稳才能楼高]1.在数列{a n }中,a 1=1,a n +1=2a n +1(n ∈N *),则a 4的值为( ) A .31 B .30 C .15D .63解析:选C 由题意,得a 2=2a 1+1=3,a 3=2a 2+1=7,a 4=2a 3+1=15,故选C. 2.已知数列{a n }满足a n +1=11-a n ,若a 1=12,则a 2 019=( ) A .-1 B .12C .1D .2解析:选A 由a 1=12,a n +1=11-a n ,得a 2=11-a 1=2,a 3=11-a 2=-1,a 4=11-a 3=12,a 5=11-a 4=2,…,于是可知数列{a n }是以3为周期的周期数列,因此a 2 018=a 3×672+3=a 3=-1.3.数列-1,4,-9,16,-25,…的一个通项公式为( ) A .a n =n 2B .a n =(-1)n ·n 2C .a n =(-1)n +1·n 2D .a n =(-1)n ·(n +1)2解析:选B 易知数列-1,4,-9,16,-25,…的一个通项公式为a n =(-1)n ·n 2,故选B.4.在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .若a 6=64,则a 9等于( )A .256B .510C .512D .1 024解析:选C 在各项均为正数的数列{a n }中,对任意m ,n ∈N *,都有a m +n =a m ·a n .所以a 6=a 3·a 3=64,a 3=8.所以a 9=a 6·a 3=64×8=512.5.设数列{a n }的通项公式为a n =n 2-bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为( )A .(-∞,-1]B .(-∞,2]C .(-∞,3)D .⎝⎛⎦⎥⎤-∞,92解析:选C 因为数列{a n }是单调递增数列,所以a n +1-a n =2n +1-b >0(n ∈N *), 所以b <2n +1(n ∈N *), 所以b <(2n +1)min =3,即b <3.[B 级 保分题——准做快做达标]1.(2019·福建四校联考)若数列的前4项分别是12,-13,14,-15,则此数列的一个通项公式为( )A.-1n +1n +1B .-1nn +1C.-1nnD .-1n -1n解析:选A 由于数列的前4项分别是12,-13,14,-15,可得奇数项为正数,偶数项为负数,第n 项的绝对值等于⎪⎪⎪⎪⎪⎪1n +1,故此数列的一个通项公式为-1n +1n +1.故选A.2.(2019·沈阳模拟)已知数列{a n }中a 1=1,a n =n (a n +1-a n )(n ∈N *),则a n =( ) A .2n -1 B .⎝⎛⎭⎪⎫n +1n n -1C .nD .n 2解析:选C 由a n =n (a n +1-a n ),得(n +1)a n =na n +1,即a n +1n +1=a n n ,∴⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n 为常数列,即a n n =a 11=1,故a n =n .故选C.3.(2019·北京西城区模拟)已知数列{a n }的前n 项和S n =2-2n +1,则a 3=( ) A .-1 B .-2 C .-4D .-8解析:选D ∵数列{a n }的前n 项和S n =2-2n +1,∴a 3=S 3-S 2=(2-24)-(2-23)=-8.故选D.4.(2019·桂林四地六校联考)数列1,2,2,3,3,3,4,4,4,4,…的第100项是( ) A .10 B .12 C .13D .14解析:选D 1+2+3+…+n =12n (n +1),由12n (n +1)≤100,得n 的最大值为13,易知最后一个13是已知数列的第91项,又已知数列中14共有14项,所以第100项应为14.故选D.5.(2019·兖州质检)已知数列{a n }满足a n =⎩⎨⎧a n -2,n <4,6-a n -a ,n ≥4,若对任意的n ∈N *都有a n <a n +1成立,则实数a 的取值范围为( )A .(1,4)B .(2,5)C .(1,6)D .(4,6)解析:选A 因为对任意的n ∈N *都有a n <a n +1成立,所以数列{a n }是递增数列,因此⎩⎨⎧1<a ,6-a >0,a <6-a×4-a ,解得1<a <4,故选A.6.(2019·湖北八校联考)已知数列{a n }满足a n =5n -1(n ∈N *),将数列{a n }中的整数项按原来的顺序组成新数列{b n },则b 2 019的末位数字为( )A .8B .2C .3D .7解析:选D 由a n =5n -1(n ∈N *),可得此数列为4,9,14,19,24,29,34,39,44,49,54,59,64,…,{a n }中的整数项为4,9,49,64,144,169,…,∴数列{b n }的各项依次为2,3,7,8,12,13,17,18,…,末位数字分别是2,3,7,8,2,3,7,8,….∵2 019=4×504+3,故b 2 019的末位数字为7.故选D.7.(2018·长沙调研)已知数列{a n },则“a n +1>a n -1”是“数列{a n }为递增数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 由题意,若“数列{a n }为递增数列”,则a n +1>a n >a n -1,但a n +1>a n -1不能推出a n +1>a n ,如a n =1,a n +1=1,{a n }为常数列,则不能推出“数列{a n }为递增数列”,所以“a n +1>a n -1”是“数列{a n }为递增数列”的必要不充分条件.故选B.8.(2019·长春模拟)设数列{a n }的前n 项和为S n ,且a 1=1,{S n +na n }为常数列,则a n 等于( )A.13n -1B .2nn +1C.6n +1n +2D .5-2n3解析:选 B 由题意知,S n +na n =2,当n ≥2时,(n +1)a n =(n -1)a n -1,从而a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=13·24·…·n -1n +1,有a n =2n n +1,当n =1时上式成立,所以a n =2n n +1.9.(2019·兰州诊断)已知数列{a n },{b n },若b 1=0,a n =1nn +1,当n ≥2时,有b n =b n -1+a n -1,则b 501=________.解析:由b n =b n -1+a n -1得b n -b n -1=a n -1,所以b 2-b 1=a 1,b 3-b 2=a 2,…,b n -b n -1=a n -1,所以b 2-b 1+b 3-b 2+…+b n -b n -1=a 1+a 2+…+a n -1=11×2+12×3+…+1n -1×n ,即b n -b 1=a 1+a 2+…+a n -1=11×2+12×3+…+1n -1×n =11-12+12-13+…+1n -1-1n =1-1n =n -1n ,又b 1=0,所以b n =n -1n ,所以b 501=500501. 答案:50050110.(2019·河南八市重点高中测评)已知数列{a n }满足a n ≠0,2a n (1-a n +1)-2a n +1(1-a n )=a n -a n +1+a n ·a n +1,且a 1=13,则数列{a n }的通项公式a n =________.解析:∵a n ≠0,2a n (1-a n +1)-2a n +1(1-a n )=a n -a n +1+a n ·a n +1,∴两边同除以a n ·a n+1,得21-a n +1a n +1-21-a na n=1a n +1-1a n +1,整理,得1a n +1-1a n =1,即⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n 是以3为首项,1为公差的等差数列,∴1a n =3+(n -1)×1=n +2,即a n =1n +2.答案:1n +211.(2019·宝鸡质检)若数列{a n }是正项数列,且a 1+a 2+a 3+…+a n =n 2+n ,则a 1+a 22+…+a nn=________.解析:由题意得当n ≥2时,a n =n 2+n -(n -1)2-(n -1)=2n ,∴a n =4n 2.又n =1,a 1=2,∴a 1=4,∴a n n =4n ,∴a 1+a 22+…+a n n =12n (4+4n )=2n 2+2n .答案:2n 2+2n12.(2019·深圳期中)在数列{a n }中,a 1=1,a 1+a 222+a 332+…+a nn 2=a n (n ∈N *),则数列{a n }的通项公式a n =________.解析:由a 1+a 222+a 332+…+a nn 2=a n (n ∈N *)知,当n ≥2时,a 1+a 222+a 332+…+a n -1n -12=a n -1,∴a n n 2=a n -a n -1,即n +1n a n =n n -1a n -1,∴n +1n a n =…=2a 1=2,∴a n =2nn +1. 答案:2n n +113.(2019·衡阳四校联考)已知数列{a n }满足a 1=3,a n +1=4a n +3. (1)写出该数列的前4项,并归纳出数列{a n }的通项公式; (2)证明:a n +1+1a n +1=4. 解:(1)a 1=3,a 2=15,a 3=63,a 4=255.因为a 1=41-1,a 2=42-1,a 3=43-1,a 4=44-1,…,所以归纳得a n =4n -1.(2)证明:因为a n +1=4a n +3,所以a n +1+1a n +1=4a n +3+1a n +1=4a n +1a n +1=4. 14.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值;(2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0,解得1<n <4. 因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3.因为a n =n 2-5n +4=⎝ ⎛⎭⎪⎫n -522-94,由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n ,知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,解得k >-3.所以实数k 的取值范围为(-3,+∞).15.(2019·武汉调研)已知数列{a n }的前n 项和S n =n 2+1,数列{b n }中,b n =2a n +1,且其前n 项和为T n ,设c n =T 2n +1-T n .(1)求数列{b n }的通项公式; (2)判断数列{c n }的增减性.解:(1)∵a 1=S 1=2,a n =S n -S n -1=2n -1(n ≥2),∴b n=⎩⎪⎨⎪⎧23n =1,1nn ≥2.(2)由题意得c n =b n +1+b n +2+…+b 2n +1 =1n +1+1n +2+…+12n +1, ∴c n +1-c n =12n +2+12n +3-1n +1=12n +3-12n +2=-12n +32n +2<0,∴c n +1<c n ,∴数列{c n }为递减数列.。
4.3.1 等比数列的概念(第二课时)(同步练习)一、选择题1.在等比数列{a n}中,已知a1a38a15=243,则a39a11的值为()A.3B.9C.27D.812.已知各项均为正数的等比数列{a n}中,lg(a3a8a13)=6,则a1·a15的值为()A.100B.-100C.10 000D.-10 0003.若1,a1,a2,4成等差数列,1,b1,b2,b3,4成等比数列,则a1-a2b2的值等于()A.-12 B.12 C.±12 D.144.随着市场的变化与生产成本的降低,每隔5年计算机的价格降低13,则2003年价格为8 100元的计算机到2018年时的价格应为()A.900元B.2 200元C.2 400元D.3 600元5.数列{a n}是等比数列,对任意n∈N*,都有a n>0.若a3(a3+a5)+a4(a4+a6)=25,则a3+a5=()A.5B.10C.15D.206.已知{a n}为等比数列,a2,a16是方程x2+6x+2=0的根,则a2a16a9的值为()A.-2+22 B.- 2C. 2D.-2或 27.已知数列{a n}是等比数列,数列{b n}是等差数列,若a2·a6·a10=33,b1+b6+b11=7π,则tan b2+b101-a3·a9的值是()A.-22 B.22C. 1D.- 38.(多选)(2022年海南期末)在各项均为正数的等比数列{a n}中,已知a1+a5=1a1+1a5=52,则下列结论正确的是()A.a2a4=1B.a2+a4=32 2C.q=2或12 D.a1=2或12二、填空题9.若数列{a n}为等比数列,且a1+a2=1,a3+a4=4,则a9+a10=________10.在3和一个未知数间填上一个数,使三个数成等差数列,若中间项减去6成等比数列,则此未知数是________11.在右列表格中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则x +y+z的值为________12.各项均为正数的等比数列{a n}中,a2-a1=1.当a3取最小值时,数列{a n}的通项公式a n=________三、解答题13.有四个实数,前三个数成等比数列,且它们的乘积为216,后三个数成等差数列,且它们之和为12,求这四个数.14.为了治理沙尘暴,西部某地区政府经过多年努力,到2019年年底,将当地沙漠绿化了40%.从2020年开始,每年将出现这种现象:原有沙漠面积的12%被绿化,即改造为绿洲(被绿化的部分叫绿洲),同时原有绿洲面积的8%又被侵蚀为沙漠,问至少经过几年的绿化,才能使该地区的绿洲面积超过50%?(参考数据:lg 2≈0.3)15.已知数列{a n}为等差数列,公差d≠0,由{a n}中的部分项组成的数列ab1,ab2,…,ab n,…为等比数列,其中b1=1,b2=5,b3=17.求数列{b n}的通项公式.16.已知等差数列{a n}的前n项和为S n,等比数列{b n}的各项均为正数,公比是q,且满足a1=3,b1=1,b2+S2=12,S2=b2q.(1)求a n与b n;(2)设c n=3b n-λ·na32,若数列{c n}是递增数列,求实数λ的取值范围.参考答案及解析:一、选择题1.B 解析:设数列{a n }的公比为q ,∵a 1a 38a 15=243,a 1a 15=a 28,∴a 8=3,∴a 39a 11=a 38q 3a 8q3=a 28=9. 2.C 解析:∵a 3a 8a 13=a 38,∴lg(a 3a 8a 13)=lg a 38=3lg a 8=6.∴a 8=100.∴a 1a 15=a 28=10 000,故选C.3.A 解析:∵1,a 1,a 2,4成等差数列,∴3(a 2-a 1)=4-1,∴a 2-a 1=1. 又∵1,b 1,b 2,b 3,4成等比数列,设其公比为q ,则b 22=1×4=4,且b 2=1×q 2>0,∴b 2=2,∴a 1-a 2b 2=-(a 2-a 1)b 2=-12. 4.C 解析:8 100×323()=2 400.故选C.5.A 解析:由等比数列的性质及a 3(a 3+a 5)+a 4(a 4+a 6)=25,得a 3(a 3+a 5)+a 4(a 3q +a 5q)=25. ∴(a 3+a 5)(a 3+a 4q)=25,∴(a 3+a 5)2=25.∵对任意n ∈N *,都有a n >0,∴a 3+a 5>0,∴a 3+a 5=5.6.D 解析:由a 2,a 16是方程x 2+6x +2=0的根,可得a 2+a 16=-6,a 2a 16=2,显然两根同为负值,所以a 9=± a 2a 16=±2,所以a 2a 16a 9=±2.7.D 解析:因为{a n }是等比数列,所以a 2·a 6·a 10=a 36=33,所以a 6= 3.因为{b n }是等差数列,所以b 1+b 6+b 11=3b 6=7π,所以b 6=7π3.所以tan b 2+b 101-a 3·a 9=tan 2b 61-a 26=tan 14π31-3=-tan 7π3=- 3.故选D. 8.ABD 解析:设等比数列{a n }的公比为q ,因为a 1+a 5=1a 1+1a 5=52,所以⎩⎪⎨⎪⎧a 1+a 5=52,a 1a 5=1,所以⎩⎪⎨⎪⎧a 1=2,a 5=12或⎩⎪⎨⎪⎧a 1=12,a 5=2,即2×q 4=12或12×q 4=2,所以解得⎩⎪⎨⎪⎧a 1=2,q 2=12或⎩⎪⎨⎪⎧a 1=12,q 2=2,所以选项C 错误,选项D 正确;因为等比数列{a n }的各项均为正数,所以a 2a 4=a 1a 5=1,选项A 正确;a 2+a 4=a 1q +a 1q 3=322,选项B 正确.故选ABD .二、填空题 9.答案:256解析:∵{a n }是等比数列,∴a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8,a 9+a 10为等比数列,∴a 9+a 10=1×44=256. 10.答案:3或27解析:设此三数为3,a ,b ,则⎩⎪⎨⎪⎧ 2a =3+b ,(a -6)2=3b ,解得⎩⎪⎨⎪⎧ a =3,b =3或⎩⎪⎨⎪⎧a =15,b =27.所以这个未知数为3或27.11.答案:2解析:∵x 2=24,∴x =1.∵第一行中的数成等差数列,首项为2,公差为1,故后两格中数字分别为5,6.同理,第二行后两格中数字分别为52,3.∴y =5·312(),z =6·412().∴x +y +z =1+5·312()+6·412()=3216=2.12.答案:2n -1解析:设等比数列的公比为q(q>0).由a 2-a 1=1,得a 1(q -1)=1,q ≠1,所以a 1=1q -1. a 3=a 1q 2=q 2q -1=1-1q 2+1q(q>0),而-1q 2+1q=-⎝⎛⎭⎫1q -122+14≤14,当且仅当q =2时取等号, 所以当q =2时,a 3有最小值4.此时a 1=1q -1=12-1=1,所以数列{a n }的通项公式a n =2n -1.三、解答题13.解法一:设前三个数为a q ,a ,aq ,则a q ·a·aq =216,所以a 3=216.所以a =6.因此前三个数为6q ,6,6q.由题意知第4个数为12q -6.所以6+6q +12q -6=12,解得q =23.故所求的四个数为9,6,4,2.解法二:设后三个数为4-d,4,4+d ,则第一个数为14(4-d)2,由题意知14(4-d)2×(4-d)×4=216,解得4-d =6.所以d =-2.故所求得的四个数为9,6,4,2.14.解:设该地区沙漠与绿洲的总面积为1,2019年年底绿洲面积为a 1=25,经过n 年后绿洲面积为a n +1,设2019年年底沙漠面积为b 1,经过n 年后沙漠面积为b n +1,则a 1+b 1=1,a n +b n =1.依题意,a n +1由两部分组成:一部分是原有绿洲面积a n 减去被侵蚀的部分,即a n -8%·a n ;另一部分是新绿化的绿洲面积,即12%·b n . ∴a n +1=a n -8%·a n +12%(1-a n )=45a n +325,即a n +1-35=45⎝⎛⎭⎫a n -35. 又a 1-35=-15,∴⎩⎨⎧⎭⎬⎫a n -35是以-15为首项,45为公比的等比数列,则a n +1=35-15×n 45() 由a n +1>50%,得35-15×n 45()>12,∴n 45()<12,∴n >log 4512=lg 21-3lg 2≈3. 则当n ≥4时,不等式n 45()<12恒成立.∴至少需要4年才能使绿洲面积超过50%.15.解:依题意a 25=a 1a 17,即(a 1+4d)2=a 1(a 1+16d),所以a 1d =2d 2,因为d ≠0,所以a 1=2d ,数列{ab n }的公比q =a 5a 1=a 1+4d a 1=3,所以ab n =a 13n -1,①又ab n =a 1+(b n -1)d =b n +12a 1,②由①②得a 1·3n -1=b n +12·a 1.因为a 1=2d ≠0,所以b n =2×3n -1-1.16.解:(1)由已知可得⎩⎪⎨⎪⎧q +3+a 2=12,3+a 2=q 2,整理得q 2+q -12=0,解得q =3或q =-4(舍),从而a 2=6, 所以a n =3n ,b n =3n -1. (2)由(1)知,c n =3b n -λ·n a 32=3n -λ·2n .由题意知c n +1>c n 对任意的n ∈N *恒成立,即3n +1-λ·2n +1>3n -λ·2n 恒成立,即λ·2n <2·3n 恒成立,即λ<2·n32()恒成立.因为函数y =x 32()是增函数,所以n min 3]2[2()=2×32=3,故λ<3,即实数λ的取值范围为(-∞,3).。
完整版)数列典型例题(含答案)等差数列的前n项和公式为代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得。
因此,前项和为。
⑵由已知条件可得代入等差数列的前n项和公式,得到化简得因此,前项和为。
8.(2010山东理) 已知等差数列 $a_1,a_2,\ldots,a_n,\ldots$,其中 $a_1=1$,公差为 $d$。
1) 求 $a_5$ 和 $a_{10}$。
2) 满足 $a_1+a_2+\ldots+a_k=100$,$a_1+a_2+\ldots+a_{k+1}>100$,$k\in\mathbb{N}$,求该等差数列的前 $k$ XXX。
考查目的:考查等差数列的通项公式和前项和公式等基础知识,考查数列求和的基本方法以及运算求解能力。
答案:(1) $a_5=5d+1$,$a_{10}=10d+1$;(2) $k=13$,前$k$ 项和为 $819$。
解析:(1) 根据等差数列的通项公式 $a_n=a_1+(n-1)d$,可得 $a_5=1+4d$,$a_{10}=1+9d$。
2) 设该等差数列的前 $k$ 项和为 $S_k$,则由等差数列的前项和公式可得 $S_k=\dfrac{k}{2}[2a_1+(k-1)d]$。
根据已知条件可列出不等式组:begin{cases}S_k=100\\S_{k+1}>100end{cases}将 $S_k$ 代入得:frac{k}{2}[2+(k-1)d]=100整理得:$k^2+kd-400=0$。
2014年12月27日高中数学数列的概念一.选择题(共15小题)..cos cos cos4.数列、、、、、、、、、…依次排列到第a2010项属于的范围是().C.C D.{10.下面有四个命题:①如果已知一个数列的递推公式及其首项,那么可以写出这个数列的任何一项;②数列,,,,…的通项公式是a n=;③数列的图象是一群孤立的点;④数列1,﹣1,1,﹣1,…与数列﹣1,1,﹣1,1,…是同一数列.其中正确命题的个数是()11.已知数列{a n}的通项公式是a n=,则220是这个数列的()12.在数列{a n}中,a1=0,,则a2013=().C.13.数列{a n}满足,若,则数列的第2013项为().C D.14.已知a1=1,a2=﹣,a3=﹣,…,a n+1=﹣,….那么a2014=()15.已知数列{a n}的通项公式,在它的前12项中最大的项是()二.填空题(共7小题)16.(2013•广元二模)数列5,55,555,5555,…的一个通项公式为a n=_________.17.(2014•蚌埠三模)已知数列{a n}满足:a1为正整数,a n+1=,如果a1=1,则a1+a2+…+a2004= _________.18.数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…的第1000项是_________.19.数列,,,,…中,有序数对(a,b)可以是_________.20.数列{a n}满足a n+1=若a1=,则a2=_________,a24=_________.21.已知数列{a n}的前n项和,则a5+a6的值为_________.22.某资料室使用计算机进行编码,如下表所示,编码以一定规则排列,且从左到右以及从上到下都是无限延伸的,则此表中主对角线上的数构成的数列1,2,5,10,17,…的通项公式为_________.三.解答题(共8小题)23.已知数列{a n}前n项和S n=n2﹣9n,(1)求其通项a n;(2)若它的第k项满足5<a k<8,求k的值.24.已知数列{a n}的前n项和,求a n.25.已知数列{a n}的前n项和为S n,且S n=2n2﹣3n+2,求通项公式a n.26.在数列{a n}中,a1=1,a n+1=(n∈N+),试写出这个数列的前4项,并猜想这个数列的通项公式,并给以证明.27.已知数列{a n}满足a n=n2﹣5n﹣6,n∈N*.(1)数列中有哪些项是负数?(2)当n为何值时,a n取得最小值?并求出此最小值.28.已知数列a n的通项公式a n=,记f(n)=(1﹣a1)(1﹣a2)…(1﹣a n),试通过计算f (1),f(2),f(3)的值,推测出f(n)的值.29.数列{a n}的通项公式是a n=n2﹣7n+6.(1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项?(3)该数列从第几项开始各项都是正数?30.一数列{a n}的前n项的平均数为n.(1)求数列{a n}的通项公式;(2)设,证明数列{b n}是递增数列;(3)设,是否存在最大的数M?当x≤M时,对于一切非零自然数n,都有f(x)≤0.参考答案与试题解析一.选择题(共15小题)..cos cos cos=1coscos4.数列、、、、、、、、、…依次排列到第a2010项属于的范围是().C、、、、、…行最后的一个数为,前个数,然后以判断出第、、、、、…行最后的一个数为个数,行第一个数为,接下来是,,,个数是∈.C D.数列,的第三项可写成,∴{{项为=1+,故10.下面有四个命题:①如果已知一个数列的递推公式及其首项,那么可以写出这个数列的任何一项;②数列,,,,…的通项公式是a n=;③数列的图象是一群孤立的点;④数列1,﹣1,1,﹣1,…与数列﹣1,1,﹣1,1,…是同一数列.由数列的前几项为,,,=11.已知数列{a n}的通项公式是a n=,则220是这个数列的(),要判断是数列中的哪一项,只需令,解出解:∵,12.在数列{a n}中,a1=0,,则a2013=().C.,∴,=.13.数列{a n}满足,若,则数列的第2013项为().C D.,×﹣,×=×=×﹣,,14.已知a1=1,a2=﹣,a3=﹣,…,a n+1=﹣,….那么a2014=()=﹣15.已知数列{a n}的通项公式,在它的前12项中最大的项是()解:∵二.填空题(共7小题)16.(2013•广元二模)数列5,55,555,5555,…的一个通项公式为a n=.解:∵,,故答案为:17.(2014•蚌埠三模)已知数列{a n}满足:a1为正整数,a n+1=,如果a1=1,则a1+a2+…+a2004= 4676.,,=118.数列1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,6,…的第1000项是45.19.数列,,,,…中,有序数对(a,b)可以是(,﹣).从上面的规律可以看出,解上式得,﹣)20.数列{a n}满足a n+1=若a1=,则a2=,a24=.解:∵,∴=.∴∴∴,.21.已知数列{a n}的前n项和,则a5+a6的值为152.22.某资料室使用计算机进行编码,如下表所示,编码以一定规则排列,且从左到右以及从上到下都是无限延伸的,则此表中主对角线上的数构成的数列1,2,5,10,17,…的通项公式为(n﹣1)2.三.解答题(共8小题)23.已知数列{a n}前n项和S n=n2﹣9n,(1)求其通项a n;(2)若它的第k项满足5<a k<8,求k的值.24.已知数列{a n}的前n项和,求a n.利用公式∴25.已知数列{a n}的前n项和为S n,且S n=2n2﹣3n+2,求通项公式a n.∴.26.在数列{a n}中,a1=1,a n+1=(n∈N+),试写出这个数列的前4项,并猜想这个数列的通项公式,并给以证明.=,==,==,,=1成立,=27.已知数列{a n}满足a n=n2﹣5n﹣6,n∈N*.(1)数列中有哪些项是负数?(2)当n为何值时,a n取得最小值?并求出此最小值.6=,∴28.已知数列a n的通项公式a n=,记f(n)=(1﹣a1)(1﹣a2)…(1﹣a n),试通过计算f (1),f(2),f(3)的值,推测出f(n)的值..(6分)29.数列{a n}的通项公式是a n=n2﹣7n+6.(1)这个数列的第4项是多少?(2)150是不是这个数列的项?若是这个数列的项,它是第几项?(3)该数列从第几项开始各项都是正数?∴=30.一数列{a n}的前n项的平均数为n.(1)求数列{a n}的通项公式;(2)设,证明数列{b n}是递增数列;(3)设,是否存在最大的数M?当x≤M时,对于一切非零自然数n,都有f(x)≤0.)因此有最小值解出)由题意可得,∴=)∵有最小值,∴.。
3月6日数列综合练习题一、单选题1.已知数列为等比数列,是它的前n项和.若,且与的等差中项为,则()A .35B .33C .31D .29【答案】C 【解析】试题分析:∵等比数列{}n a ,∴21a a q =⋅,∴13134222a q a a q a a ⋅⋅=⇒⋅=⇒=,又∵与的等差中项为54,∴477512244a a a ⋅=+⇒=,∴3741182a q q a ==⇒=,∴41316a a q ==,515116(1)(1)32311112a q S q--===--.2.等差数列{}n a 中,19173150a a a ++=则10112a a -的值是()A.30B.32C.34D.25【答案】A 【解析】试题分析:本题考查等差数列的性质,难度中等.由条件知930a =,所以10112a a -=930a =,故选A.3.数列满足且,则等于()A.B.C.D.【答案】D 【解析】由有解知数列1n x ⎧⎫⎨⎬⎩⎭是首项为1,公差为211112x x -=的等差数列;所以11121(1),221n n n n x x n +=+-=∴=+.故选D 4.设等差数列{}n a 的前n 项和为n S ,数列21{}n a -的前n 项和为n T ,下列说法错误..的是()A .若n S 有最大值,则n T 也有最大值B .若n T 有最大值,则n S 也有最大值C .若数列{}n S 不单调,则数列{}n T 也不单调D .若数列{}n T 不单调,则数列{}n S 也不单调【答案】C 【解析】【详解】解:数列{a 2n ﹣1}的首项是a 1,公差为2d ,A .若S n 有最大值,则满足a 1>0,d <0,则2d <0,即T n 也有最大值,故A 正确,B .若T n 有最大值,则满足a 1>0,2d <0,则d <0,即S n 也有最大值,故B 正确,C .S n =na 1()12n n -+•d 2d =n 2+(a 12d -)n ,对称轴为n 111122222d da a a d d d --=-==--⨯,T n =na 1()12n n -+•2d =dn 2+(a 1﹣d )n ,对称轴为n 111222a d d -=-=-•1a d,不妨假设d >0,若数列{S n }不单调,此时对称轴n 11322a d =-≥,即1a d-≥1,此时T n 的对称轴n 1122=-•111122a d ≥+⨯=1,则对称轴1122-•132a d <有可能成立,此时数列{T n }有可能单调递增,故C 错误,D .不妨假设d >0,若数列{T n }不单调,此时对称轴n 1122=-•132a d ≥,即1a d-≥2,此时{S n }的对称轴n 11122a d =-≥+25322>=,即此时{S n }不单调,故D 正确则错误是C ,故选C .5.设n=()A .333n 个B .21333n - 个C .21333n- 个D .2333n 个【答案】A【解析】1013333n n -====⋅⋅⋅ 个.故选A.6.已知各项均为正数的数列{}n a 的前n 项和为n S ,满足2124n n a S n +=++,且21a -,3a ,7a 恰好构成等比数列的前三项,则4a =().A .1B .3C .5D .7【答案】C 【详解】∵2124n n a S n +=++,当2n ≥,()21214n n a S n -=+-+,两式相减,化简得()2211n n a a +=+,∵0n a >,∴11n n a a +=+,数列{}n a 是公差1的等差数列.又21a -,3a ,7a 恰好构成等比数列的前三项,∴()()211126a a a +=+,∴12a =,∴45a =.故选:C第II 卷(非选择题)二、填空题7.已知数列{}n a 的首项11a =,且1(1)12nn na a n a +=+ ,则5a =____.【答案】198.等差数列{}n a 中,39||||a a =,公差0d <,则使前n 项和n S 取得最大值的自然数n 是________.【答案】5或6【解析】试题分析:因为0d <,且39||||a a =,所以39a a =-,所以1128a d a d +=--,所以150a d +=,所以60a =,所以0n a >()15n ≤≤,所以n S 取得最大值时的自然数n 是5或6.9.数列{}n a 满足:11a =,121n n a a +=+,且{}n a 的前n 项和为n S ,则n S =__.【答案】122n n +--【详解】由121n n a a +=+得()1+121n n a a +=+所以1112+n n a a +=+,且112a +=所以数列{}1n a +是以2为首项,2为公比的等比数列,且11=222n nn a -+⨯=所以21nn a =-前n 项和()123121222222212n nn nS n n n +-=++++-==--- 10.已知数列{}n a 中,132a =前n 项和为n S ,且满足()*123n n a S n N ++=∈,则满足2348337n n S S <<所有正整数n 的和是___________.【答案】12【详解】由()*123n n a S n N++=∈得()123n n n SS S +-+=,即()11332n n S S +-=-,所以数列{}3n S -是首项为113332S a -=-=-,公比为12的等比数列,故31322n nS -=-⋅,所以332n n S =-,所以22332n n S =-.由2348337n n S S <<得2332334833732n n -<-<,化简得1113327n <<,故3,4,5n =.满足2348337n nS S <<所有正整数n 的和为34512++=.故答案为:12三、解答题11.已知数列{a n }满足a 1=3,a n ﹣a n ﹣1﹣3n =0,n ≥2.(1)求数列{a n }的通项公式;(2)设b n 1na =,求数列{b n }的前n 项和S n .【详解】(1)数列{a n }满足a 1=3,a n ﹣a n ﹣1﹣3n =0,n ≥2,即a n ﹣a n ﹣1=3n ,可得a n =a 1+(a 2﹣a 1)+(a 3﹣a 2)+…+(a n ﹣a n ﹣1)=3+6+9+…+3n 12=n (3+3n )32=n 232+n ;(2)b n 123n a ==•2123n n =+(111n n -+),前n 项和S n 23=(1111112231n n -+-++-+ )23=(111n -+)()231n n =+.12.在数列{}n a 中,n S 为其前n 项和,满足2(,*)n n S ka n n k R n N =+-∈∈.(I )若1k =,求数列{}n a 的通项公式;(II )若数列{}21n a n --为公比不为1的等比数列,求n S .【答案】解:(1)当1k =时,2,n n S a n n =+-所以21,(2)n S n n n -=-≥,即22(1)(1),(1)n S n n n n n =+-+=+≥……3分所以当1n =时,112a S ==;当2n ≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=所以数列{}n a 的通项公式为.……………6分(II )当时,1122n n n n n a S S ka ka n --=-=-+-,1(1)22n n k a ka n --=-+,111a S ka ==,若1k =,则211n a n --=-,从而{}21n a n --为公比为1的等比数列,不合题意;……………8分若1k ≠,则10a =,221a k=-,3246(1)k a k -=-212325378333,5,71(1)k k k a a a k k --+--=--=-=--由题意得,2213(5)(3)(7)0a a a -=--≠,所以0k =或32k =.……10分当0k =时,2n S n n =-,得22n a n =-,213n a n --=-,不合题意;…12分当32k =时,1344n n a a n -=-+,从而1213[2(1)1]n n a n a n ---=---因为121130,a -⨯-=-≠210n a n --≠,{}21n a n --为公比为3的等比数列,213nn a n --=-,所以231nn a n =-+,从而1233222n n S n n +=+-+.………………………14分【解析】试题分析:解:(1)当1k =时,2,n n S a n n =+-所以21,(2)n S n n n -=-≥,即22(1)(1),(1)n S n n n n n =+-+=+≥……3分所以当1n =时,112a S ==;当2n ≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=所以数列{}n a 的通项公式为…6分(2)当时,1122n n n n n a S S ka ka n --=-=-+-,1(1)22n n k a ka n --=-+,111a S ka ==,若1k =,则211n a n --=-,从而{}21n a n --为公比为1的等比数列,不合题意;若1k ≠,则10a =,221a k=-,3246(1)k a k -=-212325378333,5,71(1)k k k a a a k k --+--=--=-=--由题意得,2213(5)(3)(7)0a a a -=--≠,所以0k =或32k =.当0k =时,2n S n n =-,得22n a n =-,213n a n --=-,不合题意;当32k =时,1344n n a a n -=-+,从而1213[2(1)1]n n a n a n ---=---因为121130,a -⨯-=-≠210n a n --≠,{}21n a n --为公比为3的等比数列,213nn a n --=-,所以231nn a n =-+,从而1233222n n S n n +=+-+.13.设数列{}n a 的通项公式63n a n =-+,{}n b 为单调递增的等比数列,123512b b b =,1133a b a b +=+.()1求数列{}n b 的通项公式.()2若3nn na cb -=,求数列{}n c 的前n 项和n T .【详解】()1由题意,数列{}n a 的通项公式n a 6n 3=-+,{}n b 为单调递增的等比数列,设公比为q ,123b b b 512=,1133a b a b +=+.可得331b q 512=,2113b 15b q -+=-+,解得1b 4=,或1q 2(2=-舍去),则n 1n 1n b 422-+=⋅=。
新高考题型:解答题开放性问题(条件3选1)《数列》1.已知公差不为0的等差数列{}n a 的首项12a =,前n 项和是n S ,且____(①1a ,3a ,7a 成等比数列,①(3)2n n n S +=,①816a =,任选一个条件填入上空),设12n n n b a -=,求数列{}n b 的前n 项和n T .2.在①35a =,2526a a b +=;①22b =,3433a a b +=;①39S =,4528a a b +=,这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{}n a 的公差为(1)d d >,前n 项和为n S ,等比数列{}n b 的公比为q ,且11a b =,d q =, .(1)求数列{}n a ,{}n b 的通项公式. (2)记nn na cb =,求数列{}nc 的前n 项和n T .3.在等差数列{}n a 中,已知612a =,1836a =. (1)求数列{}n a 的通项公式n a ; (2)若____,求数列{}n b 的前n 项和n S . 在①14n n n b a a +=,①(1)n n n b a =-,①2n a n n b a =这三个条件中任选一个补充在第(2)问中,并对其求解.4.在①414S =-,①515S =-,①615S =-三个条件中任选两个,补充到下面问题中,并解答.已知等差数列{}n a 的前n 项和为n S ,满足: ,*n N ∈. (1)求n S 的最小值;(2)设数列671{}n n a a ++的前n 项和n T ,证明:1n T <.5.从条件①2(1)n n S n a =+,(2)n a n =,①0n a >,22nn n a a S +=中任选一个,补充到下面问题中,并给出解答.已知数列{}n a 的前n 项和为n S ,11a =,_____.若1a ,k a ,2k S +成等比数列,求k 的值.6.在①355a a +=,47S =;①243n S n n =+;①42514S S =,5a 是3a 与92的等比中项,这三个条件中任选一个,补充在下面问题中,然后解答补充完整的题目. 已知n S 为等差数列{}n a 的前n 项和,若____. (1)求n a ; (2)记2221n nn b a a +=,求数列{}n b 的前n 项和n T .7.已知{}n a 为等差数列,1a ,2a ,3a 分别是表第一、二、三行中的某一个数,且1a ,2a ,3a 中的任何两个数都不在表的同一列.请从①12a =,①11a =,①13a =的三个条件中选一个填入上表,使满足以上条件的数列{}n a 存在;并在此存在的数列{}n a 中,试解答下列两个问题 (1)求数列{}n a 的通项公式;(2)设数列{}n b 满足12(1)n n n b a +=-,求数列{}n b 的前n 项和n T .8.在①2n S n n =+,①3516a a +=,3542S S +=,①171,56n n a n S a n++==这三个条件中任选一个补充在下面的问题中,并加以解答.设等差数列{}n a 的前n 项和为n S ,数列{}n b 为等比数列,_____,12112,2a ab a b ==.求数列1n n b S ⎧⎫+⎨⎬⎩⎭的前n 项和n T .9.在①2342a a a +=,①22n n S a =-,①425S S =三个条件中任选一个,补充在下面问题中,并解答.在已知等比数列{}n a 的公比0q >前n 项和为n S ,若 _____,数列{}n b 满足11,13n n n b a b b =+=.(1)求数列{}n a ,{}n b 的通项公式;(2)求数列1{}n n n a b b +的前n 项和n T ,并证明13n T <.10.在①131n n S S +=+,①211,2139n n a S a +==-③这三个条件中选择两个,补充在下面问题中,并给出解答.已知数列{}n a 的前n 项和为n S ,满足____,____;又知正项等差数列{}n b 满足12b =,且1b ,21b -,3b 成等比数列.(1)求{}n a 和{}n b 的通项公式; (2)证明:12326n b b b a a a ++⋯+<.11.给出以下三个条件:①数列{}n a 是首项为2,满足142n n S S +=+的数列; ①数列{}n a 是首项为2,满足2132()n n S R λλ+==+∈的数列; ①数列{}n a 是首项为2,满足132n n S a +=-的数列.请从这三个条件中任选一个将下面的题目补充完整,并求解. 设数列{}n a 的前n 项和为n S ,n a 与n S 满足______,记数列21222log log log n n b a a a =++⋯+,21n n n n nc b b ++=,求数列{}n c 的前n 项和n T .12.在①5462a b b =+,①35144()a a b b +=+,①24235b S a b =三个条件中任选一个,补充在下面的问题中,并解答.设{}n a 是公比大于0的等比数列,其前n 项和为n S ,{}n b 是等差数列.已知11a =,32212S S a a -=+,435a b b =+,________.(1)求{}n a 和{}n b 的通项公式;(2)设112233n n n T a b a b a b a b =+++⋯+,求n T .13.在①4S 是2a 与21a 的等差中项;①7a 是33S 与22a 的等比中项;①数列2{}n a 的前5项和为65这三个条件中任选一个,补充在横线中,并解答下面的问题. 已知{}n a 是公差为2的等差数列,其前n 项和为n S ,_______. (1)求n a ;(2)设3()4n n n b a =;是否存在k N ∈,使得278k b >?若存在,求出k 的值;若不存在,说明理由.14.设数列{}n a 的前n 项和为n S ,11a =,____. 给出下列三个条件:条件①:数列{}n a 为等比数列,数列1{}n S a +也为等比数列;条件①:点(n S ,1)n a +在直线1y x =+上;条件①:1121222n n n n a a a na -+++⋯+=.试在上面的三个条件中任选一个,补充在上面的横线上,完成下列两问的解答: (1)求数列{}n a 的通项公式; (2)设21231log log n n n b a a ++=,求数列{}n b 的前n 项和n T .15.在①2351a a a b +=-,①2372a a a =,①315S =这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{}n a 的公差0d >,前n 项和为n S ,若 _______,数列{}n b 满足11b =,213b =,11n n n n a b nb b ++=-.(1)求{}n a 的通项公式; (2)求{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.16.在①53A B =,①122114a a B -=,①535B =这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{}n a 的公差为(0)d d >,等差数列{}n b 的公差为2d .设n A ,n B 分别是数列{}n a ,{}n b 的前n 项和,且13b =,23A =,________.(1)求数列{}n a ,{}n b 的通项公式; (2)设132n a n n n c b b +=+,求数列{}n c 的前n 项和n S .17.①535a b b =+,①387S =①91012a a b b -=+这三个条件中任选一个,补充在下面问题中,并给出解答.设等差数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,________,16a b =,若对于任意*n N ∈都有21n n T b =-,且(n k S S k 为常数),求正整数k 的值.注:如果选择多个条件分别解答,那么按第一个解答计分.18.在①1,n a ,n S 成等差数列,①递增等比数列{}n a 中的项2a ,4a 是方程21090x x -+=的两根,①11a =,120n n a a ++=这三个条件中任选一个,补充在下面的问题中,若问题中的k 存在,求k 的值;若k 不存在,说明理由.已知数列{}n a 和等差数列{}n b 满足 _______,且14b a =,223b a a =-,是否存在(320,)k k k N <<∈使得k T 是数列{}n a 中的项?(n S 为数列{}n a 的前n 项和,n T 为数列{}n b 的前n 项和)注:如果选择多个条件分别解答,按第一个解答计分.19.给出以下三个条件:①34a ,43a ,52a 成等差数列;①对于*n N ∀∈,点(,)n n S 均在函数2x y a =-的图象上,其中a 为常数;①37S =.请从这三个条件中任选一个将下面的题目补充完整,并求解.设{}n a 是一个公比为(0,1)q q q >≠的等比数列,且它的首项11a =,. (1)求数列{}n a 的通项公式;(2)令*22log 1()n n b a n N =+∈,证明数列11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和12n T <.20.在①133a a b +=,①52a =-,①254b S b +=-这三个条件中任选两个,补充在下面的问题中.若问题中的m 存在,求出m 的值;若不存在,请说明理由.等差数列{}n a 的前n 项和为n S ,{}n b 是各项均为正数的等比数列, , ,且12b =,2312b b +=.是否存在大于2的正整数m ,使得14S ,3S ,m S 成等比数列?21.在①2213(0)n n n a a a +-=>,①211390n n n n a a a a -----=,①222n S n n =-+这三个条件中任选一个,补充在下面问题中.已知:数列{}n a 的前n 项和为n S ,且11a =, . (1)求数列{}n a 的通项公式;(2)对大于1的自然数n ,是否存在大于2的自然数m ,使得1a ,n a ,m a 成等比数列.若存在,求m 的最小值;若不存在,说明理由.22.在①21n n S b =-,①14(2)n n b b n --=,①12(2)n n b b n -=+这三个条件中任选一个,补充在下面问题中,若问题中的k 存在,求出k 的值;若k 不存在,说明理由. 已知数列{}n a 为等比数列,123a =,312a a a =,数列{}n b 的首项11b =,其前n 项和为n S , ,是否存在k ,使得对任意*n N ∈,n n k k a b a b 恒成立?23.已知函数()log (k f x x k =为常数,0k >且1)k ≠.(1)在下列条件中选择一个 使数列{}n a 是等比数列,说明理由; ①数列{()}n f a 是首项为2,公比为2的等比数列; ①数列{()}n f a 是首项为4,公差为2的等差数列;①数列{()}n f a 是首项为2,公差为2的等差数列的前n 项和构成的数列.(2)在(1)的条件下,当k =时,设12241n n n a b n +=-,求数列{}n b 的前n 项和n T .24.在①44a b =,①624S =-这两个条件中任选一个,补充在下面问题中,若问题中的正整数k 存在,求k 的值;若k 不存在,请说明理由.设n S 为等差数列{}n a 的前n 项和,{}n b 是等比数列, ,15b a =,39b =-,6243b =.是否存在k ,使得1k k S S ->且1k k S S +<?注:如果选择多个条件分别解答,按第一个解答计分.25.设33M a =-,22N a =,4T a =,给出以下四种排序:①M ,N ,T ;①M ,T ,N ;①N ,T ,M ;①T ,N ,M .从中任选一个,补充在下面的问题中,解答相应的问题. 已知等比数列{}n a 中的各项都为正数,11a =,且___依次成等差数列. (①)求{}n a 的通项公式;(①)设,01,1,1,n n n n na ab a a <⎧⎪=⎨>⎪⎩数列{}n b 的前n 项和为n S ,求满足100n n S b >的最小正整数n .26.已知数列{}n a 的前n 项和为n S ,11a =,1(0n n S pa p +=≠且1p ≠-,*)n N ∈. (1)求{}n a 的通项公式;(2)在①1k a +,3k a +,2k a +①2k a +,1k a +,3k a +这两个条件中任选一个,补充在下面的问题中:对任意的正整数k ,若将1k a +,2k a +,3k a +按______的顺序排列后构成等差数列,求p 的值.27.设*n N ∈,数列{}n a 的前n 项和为n S ,已知12n n n S S a +=++,______.请在①1a ,2a ,5a 成等比数列,①69a =,①535S =这三个条件中任选一个补充在上面题干中,并解答下面问题. (1)求数列{}n a 的通项公式;(2)若数列{}n b满足1(1)n a n n n b a +=+-,求数列{}n b 的前2n 项的和2n T .28.已知公差不为0的等差数列的首项12a =,前n 项和为n S ,且 ______(①1a ,2a ,4a 成等比数列;①(3)2n n n S +=;①926a =任选一个条件填入上空). 设3n a n b =,nn n a c b =,数列{}n c 的前n 项和为n T ,试判断n T 与13的大小.注:如果选择多个条件分别解答,按第一个解答计分.29.在①2a ,3a ,44a -成等差数列;①1S ,22S +,3S 成等差数列;①12n n a S +=+中任选一个,补充在下列的问题中,并解答.在各项均为正数等比数列{}n a 中,前n 项和为n S ,已知12a =,且 . (1)求数列{}n a 的通项公式; (2)数列{}n b的通项公式nn b =,*n N ∈,求数列{}n b 的前n 项和n T .30.在①36S a =,①420S =,①14724a a a ++=这三个条件中任选一个,补充在下面问题中,并解答.(注:如果选择多个条件分别解答,则按第一个解答给分) 已知等差数列{}n a 的前n 项和为n S ,满足36a =,____. (1)求{}n a 的通项公式;(2)设2n a n n b a =+,求{}n b 的前n 项和n T .31.已知{}n a 是等差数列,{}n b 是等比数列,15b a =,23b =,581b =-. (1)求数列{}n b 的通项公式:(2)设数列{}n a 的前n 项和为n S ,在①132b b a +=,①44a b =这两个条件中任选一个,补充在题干条件中,是否存在k ,使得1k k S S +>且21k k S S ++>?若问题中的k 存在,求k 的值;着k 不存在,说明理由.32.已知等差数列{}n a 的公差为d ,前n 项和为n S ,315S =,0n a >,1d >,且______从“①21a -为11a -与31a +的等比中项”,“①等比数列{}n b 的公比12q =,12b a =,33b a =”这两个条件中,选择一个补充在上面问题中的划线部分,使得符合条件的数列{}n a 存在并作答.(1)求数列{}n a 的通项公式; (2)设数列11{}n n a a +的前n 项和为n T ,求n T .33.在①312S =,①2123a a -=,①824a =这三个条件中任选一个,补充在下面问题中并作答.已知{}n a 是公差不为0的等差数列,其前n 项和为n S ,__,且1a ,2a ,4a 成等比数列. (1)求数列{}n a 的通项公式;(2)设数列{}n b 是各项均为正数的等比数列,且21b a =,44b a =,求数列{}n n a b +的前n 项和n T .34.在①4516a a +=;①39S =;①2(n S n r r =+为常数)这3个条件中选择1个条件,补全下列试题后完成解答(选择多个条件并分别解答的按第1个评分).设等差数列{}n a 的前n 项和为n S ,若数列{}n a 的各项均为正整数,且满足公差1d >,______. (1)求数列{}n a 的通项公式;(2)令21n a n b =+,求数列{}n b 的前n 项的和.35.已知{}n a 为等差数列,各项为正的等比数列{}n b 的前n 项和为n S ,且1122a b ==,2810a a +=,_____.在①1()n n S b R λλ=-∈;①43212a S S S =-+;①2()n a n b R λλ=∈.这三个条件中任选其中一个,补充在上面的横线上,并完成下面问题的解答(如果选择多个条件解答,则按选择第一个解答计分). (1)求数列{}n a 和{}n b 的通项公式; (2)求数列{}n n a b +的前n 项和n T .36.在①5CA CB =-,①ABC ∆的面积为-一个,补充在下面问题中,并解决该问题:在ABC ∆中,角A ,B ,C 所对各边分别为a ,b ,c , 已知sin sin 1sin sin sin sin A CB C A B+=++,_______,且1b =.(1)求ABC ∆的周长;(2)已知数列{}n a 为公差不为0的等差数列,数列{}n b 为等比数列,1cos 1a A =,且11b a =,23b a =,37b a =.若数列{}n c 的前n 项和为n S ,且113c =,111n n n n n a c b a a -+=-.2n . 证明:116n S <. 注:在横线上填上所选条件的序号,如果选择多个条件分别解答,按第一个解答计分.新高考题型:解答题开放性问题(条件3选1)《数列》答案解析1.已知公差不为0的等差数列{}n a 的首项12a =,前n 项和是n S ,且____(①1a ,3a ,7a 成等比数列,①(3)2n n n S +=,①816a =,任选一个条件填入上空),设12n n n b a -=,求数列{}n b 的前n 项和n T .解:设等差数列{}n a 的公差为d ,选①:由1a ,3a ,7a 成等比数列得22111(6)(2)a a d a d +=+, 化简得20d dd =≠,11n d a n ∴=∴=+,于是1(1)2n n b n -=+,∴21213242(1)2n n T n -=+++⋯++,232223242(1)2n n T n =+++⋯++,相减得:212222(1)22n n n n T n n --=+++⋯+-+=-,∴2n n T n =;选①:()()()13122,122n n n n n n n n a S S n -+-+=-=-=+时,1n =时,12a =,符合上式,1n a n ∴=+,下同①; 选①:81281a a d -==-,22(1)2n a n n ∴=+-=, ∴2n n b n =,231222322n n T n =⨯+⨯+⨯+⋯+, 234121222322n n T n -=⨯+⨯+⨯+⋯+,相减得2311122222222n n n n n T n n +++-=+++⋯+-=--,∴1(1)22n n T n +=-+.2.在①35a =,2526a a b +=;①22b =,3433a a b +=;①39S =,4528a a b +=,这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{}n a 的公差为(1)d d >,前n 项和为n S ,等比数列{}n b 的公比为q ,且11a b =,d q =, 22b =,3433a a b += .(1)求数列{}n a ,{}n b 的通项公式. (2)记nn na cb =,求数列{}nc 的前n 项和n T . 解: 选择①(1)35a =,2526a a b +=,11a b =,d q =,111251256a d d a d a d +=⎧>∴⎨+=⎩,解得112a d =⎧⎨=⎩或1256512a d ⎧=⎪⎪⎨⎪=⎪⎩(舍去),∴112b q =⎧⎨=⎩,1(1)21n n d n αα∴=+--=-,1112n n n b b q --==,(2)n n n a c b =,11211(21)()22n n n n c n ---∴==-⨯, 2211111135()(23)()(21)()2222n n n T n n --∴=+⨯+⨯+⋯+-⨯+-⨯,∴2311111113()5()(23)()(21)()222222n n n T n n -=+⨯+⨯+⋯+-⨯+-⨯, ∴12111[1()]11111112212[()()](21)()12(21)()3(23)()1222222212n n n n nn T n n n ---=+++⋯+--⨯=+⨯--⨯=-+⨯-,∴116(23)()2n n T n -=-+⨯.选择①22b =,3433a a b +=;(1)设11a b t ==,1d q =>,由22b =,3433a a b +=,可得2tq =,2253t d tq +=, 又d q =,解得2d q ==,1t =, 可得12(1)21n a n n =+-=-;12n n b -=; (2)11(21)()2n n n n a c n b -==-, 前n 项和11111135(21)()242n n T n -=+++⋯+-, 11111135(21)()22482n n T n =+++⋯+-, 两式相减可得21111111()(21)()22422n n n T n -=++++⋯+--,111121(1)()1212n n n --=+---, 化简可得116(23)()2n n T n -=-+.选择①39S ∴=,4528a a b +=,11a b =,d q =,1d >,∴1113278a d a d a d +=⎧⎨+=⎩,解得112a d =⎧⎨=⎩或121838a d ⎧=⎪⎪⎨⎪=⎪⎩(舍去),1(1)21n a a n d n ∴=+-=-,1112n n n b b q --==.(2)11211(21)()22n n n n n n a n c c n b ---=∴==-⨯, 2211111135()(23)()(21)()2222n n n T n n --∴=+⨯+⨯+⋯+-⨯+-⨯,∴2311111113()5()(23)()(21)()222222n n n T n n -=+⨯+⨯+⋯+-⨯+-⨯, ∴12111[1()]11111112212[()()](21)()12(21)()3(23)()1222222212m n n n nn T n n n ---=+++⋯+--⨯=+⨯--⨯=-+⨯-,∴116(23)()2n n T n -=-+⨯.3.在等差数列{}n a 中,已知612a =,1836a =. (1)求数列{}n a 的通项公式n a ; (2)若____,求数列{}n b 的前n 项和n S . 在①14n n n b a a +=,①(1)n n n b a =-,①2n a n n b a =这三个条件中任选一个补充在第(2)问中,并对其求解.解:(1)由题意,设等差数列{}n a 的公差为d ,则 115121736a d a d +=⎧⎨+=⎩,解得122a d =⎧⎨=⎩, 2(1)22n a n n ∴=+-⨯=,*n N ∈.(2)方案一:选条件① 由(1)知,144122(1)(1)n n n b a a n n n n +===++, 12n n S b b b =++⋯+1111223(1)n n =++⋯+⨯⨯+ 1111112231n n =-+-+⋯+-+ 111n =-+ 1nn =+. 方案二:选条件①由(1)知,(1)(1)2n n n n b a n =-=-,122468(1)2n n n S b b b n ∴=++⋯+=-+-+-⋯+-,()i 当n 为偶数时, 12n n S b b b =++⋯+2468(1)2n n =-+-+-⋯+-,(24)(68)[2(1)2]n n =-++-++⋯+--+222=++⋯+22n =⨯ n =,()ii 当n 为奇数时,1n -为偶数, 12n n S b b b =++⋯+2468(1)2n n =-+-+-⋯+-,(24)(68)[2(2)2(1)]2n n n =-++-++⋯+--+--2222n =++⋯+-1222n n -=⨯- 1n =--,,,1,.n n n S n n ⎧∴=⎨--⎩为偶数为奇数;方案三:选条件①由(1)知,222224n a n n n n b a n n ===,1231224446424n n n S b b b n ∴=++⋯+=⨯+⨯+⨯+⋯+⨯, 231424442(1)424n n n S n n +=⨯+⨯+⋯+-⨯+⨯,两式相减,可得123132424242424n n n S n +-=⨯+⨯+⨯+⋯+⨯-⨯ 12118(1444)24n n n -+=⨯+++⋯+-⨯11482414nn n +-=⨯-⨯-12(13)8433n n +-=-.12(31)8499n n n S +-∴=+. 4.在①414S =-,①515S =-,①615S =-三个条件中任选两个,补充到下面问题中,并解答.已知等差数列{}n a 的前n 项和为n S ,满足: ①① ,*n N ∈. (1)求n S 的最小值; (2)设数列671{}n n a a ++的前n 项和n T ,证明:1n T <.解:(1)①若选择①①; 由题知:6650a S S =-=, 又因为15535()5152a a S a +===-,所以33a =-. 所以6333d a a =-=,解得1d =. 所以6(6)6n a a n n =+-=-.所以125670a a a a a <<⋯<<=<<⋯, 所以6515n S S S ==- ①若选择①①;由题知:5541a S S =-=-, 又因为15535()5152a a S a +===-, 所以33a =-.所以5322d a a =-=,1d =. 所以3(3)6n a a n d n =+-=-. 所以125670a a a a a <<⋯<<=<<⋯, 所以6515n S S S ==- ①若选择①①; 由题知:1666()152a a S +==-,所以161255a a a d +=+=- 由题知:1444()142a a S +==-,所以141237a a a d +=+=-所以15a =-,1d =. 所以6n a n =-.所以125670a a a a a <<⋯<<=<<⋯, 所以6515n S S S ==-. 证明(2)因为6n a n =-, 所以671111(1)1n n a a n n n n ++==-++ 所以11111111122311n T n n n =-+-+⋯+-=-<++. 5.从条件①2(1)n n S n a =+,(2)n a n =,①0n a >,22nn n a a S +=中任选一个,补充到下面问题中,并给出解答.已知数列{}n a 的前n 项和为n S ,11a =,_____.若1a ,k a ,2k S +成等比数列,求k 的值. 解:选择①2(1)n n S n a =+,112(2)n n S n a ++∴=+,相减可得:112(2)(1)n n n a n a n a ++=+-+,∴11n na a n n+=+, ∴111n a a n ==,可得:n a n =. 2(2)(12)(2)(3)22k k k k k S ++++++∴==. 1a ,k a ,2k S +成等比数列,∴212kk a a S +=,2(2)(3)2k k k ++∴=,*k N ∈,解得6k =.选择(2)n a n =,1n n S S -=-=,0n S >1=,∴数列是等差数列,首项为1,公差为1.∴11n n =+-=,解得2n S n =.2n ∴时,221(1)21n n n a S S n n n -=-=--=-.2(2)(123)(2)(2)2k k k S k k ++++∴==++1a ,k a ,2k S +成等比数列,∴212kk a a S +=,22(21)(2)k k ∴-=+,*k N ∈,解得3k =. 选择①0n a >,22n n n a a S +=,∴21112n n n a a S ++++=,相减可得:221112n n n n n a a a a a ++++--=,化为:11()(1)0n n n n a a a a +++--=, 可得:11n n a a +-=,∴数列{}n a 是首项与公差都为1的等差数列,11n a n n ∴=+-=.(1)2n n n S +∴=, 1a ,k a ,2k S +成等比数列,∴212kk a a S +=,2(2)(12)2k k k +++∴=,*k N ∈,解得6k =.6.在①355a a +=,47S =;①243n S n n =+;①42514S S =,5a 是3a 与92的等比中项,这三个条件中任选一个,补充在下面问题中,然后解答补充完整的题目. 已知n S 为等差数列{}n a 的前n 项和,若____. (1)求n a ; (2)记2221n nn b a a +=,求数列{}n b 的前n 项和n T . 解:(1)选择条件①:设等差数列{}n a 的公差为d , 则11265,4347,2a d a d +=⎧⎪⎨⨯+=⎪⎩解得11,1,2a d =⎧⎪⎨=⎪⎩ ∴12n n a +=,*n N ∈; 选择条件①:243n S n n =+,∴当2n 时,2214443(1)3(1)22n n n a S S n n n n n -=-=+--+-=+即1(2)2n n a n +=, 当1n =时,21113114a S +⨯===,也适合上式,∴12n n a +=,*n N ∈; 选择条件①:设等差数列{}n a 的公差为d , 则112115(46)14(2),9(4)(2),2a d a d a d a d ⨯+=+⎧⎪⎨+=+⎪⎩, 解得11a =,12d =,或10a =,0d =,不合题意,舍去, ∴12n n a +=,*n N ∈; (2)由(1)可知,22214112()(21)(23)2123n n n b a a n n n n +===-++++,∴121111112()35572123n n T b b b n n =++⋯+=-+-+⋯+-++ 1142()32369nn n =-=++. 7.已知{}n a 为等差数列,1a ,2a ,3a 分别是表第一、二、三行中的某一个数,且1a ,2a ,3a 中的任何两个数都不在表的同一列.请从①12a =,①11a =,①13a =的三个条件中选一个填入上表,使满足以上条件的数列{}n a 存在;并在此存在的数列{}n a 中,试解答下列两个问题 (1)求数列{}n a 的通项公式;(2)设数列{}n b 满足12(1)n n n b a +=-,求数列{}n b 的前n 项和n T .解:(1)若选择条件①12a =,则放在第一行的任何一列,满足条件的等差数列{}n a 都不存在,若选择条件①11a =,则放在第一行的第二列,结合条件可得11a =,24a =,37a =,则32n a n =-,则*n N ∈,若选择条件①13a =,则放在第一行的任何一列,结满足条件的等差数列{}n a 都不存在, 综上可得32n a n =-,则*n N ∈, (2)由(1)知,12(1)(32)n n b n +=--, 当n 为偶数时,22222212312341n n n n T b b b b a a a a a a -∴=+++⋯+=-+-+⋯+-,1212343411()()()()()()n n n n a a a a a a a a a a a a --=+-++-+⋯+-+,2123(132)933()3222n n n a a a a n n +-=-+++⋯+=-⨯=-+,当n 为奇数时,22219393(1)(1)(32)22222n n n T T b n n n n n -=+=--+-+-=--,2293,22932,22n n n n T n n n ⎧-+⎪⎪∴=⎨⎪--⎪⎩为偶数为奇数 8.在①2n S n n =+,①3516a a +=,3542S S +=,①171,56n n a n S a n++==这三个条件中任选一个补充在下面的问题中,并加以解答.设等差数列{}n a 的前n 项和为n S ,数列{}n b 为等比数列,_____,12112,2a ab a b ==.求数列1n n b S ⎧⎫+⎨⎬⎩⎭的前n 项和n T . 解:选①:当1n =时,112a S ==,当2n 时,12n n n a S S n -=-=,又1n =满足2n a n =,所以2n a n =.设{}n b 的公比为q ,又因为12121122,4,,2a a a ab a b ====由,得12b =,2q =,所以2n n b =; 由数列{}n b 的前n 项和为11222212n n ++-=--,又可知211111(1)1n S n n n n n n ===-+++, 数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为1111111122311n n n -+-+⋯+-=-++,故11112212111n n n T n n ++=-+-=--++. 选①:设公差为d ,由1353512616,16,42,81342,a d a a S S a d +=⎧+=+=⎨+=⎩得解得12,2,a d =⎧⎨=⎩所以22,n n a n S n n ==+.设{}n b 的公比为q ,又因为12121122,4,,2a a a ab a b ====由,得12b =,2q =,所以2n n b =.由数列{}n b 的前n 项和为11222212n n ++-=--,又可知211111(1)1n S n n n n n n ===-+++,数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为1111111122311n n n -+-+⋯+-=-++,故11112212111n n n T n n ++=-+-=--++. 选①: 由11111,,,11n n n n n n a a a a an a a n a n n n n +++====+得所以即,74172856S a a ===,所以12a =,所以22,n n a n S n n ==+.设{}n b 的公比为q ,又因为12121122,4,,2a a a ab a b ====由,得12,2,2n n b q b ===所以. 由数列{}n b 的前n 项和为11222212n n ++-=--,又可知211111(1)1n S n n n n n n ===-+++, 数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为1111111122311n n n -+-+⋯+-=-++, 故11112212111n n n T n n ++=-+-=--++. 9.在①2342a a a +=,①22n n S a =-,①425S S =三个条件中任选一个,补充在下面问题中,并解答.在已知等比数列{}n a 的公比0q >前n 项和为n S ,若 _____,数列{}n b 满足11,13n n n b a b b =+=.(1)求数列{}n a ,{}n b 的通项公式;(2)求数列1{}n n n a b b +的前n 项和n T ,并证明13n T <. 解:(1)若选择①2342a a a +=,可得231112a q a q a q +=,化为220q q --=,解得2(1q =-舍去),又因为1n n n a b b +=,113b =,解得12a =,所以2n n a =,11112n n n b a ==++; 选择①22n n S a =-,可得11122a S a ==-,解得12a =,又122222a a S a +==-,解得24a =,可得2q =,又因为1n n n a b b +=,113b =,解得12a =,所以2n n a =,11112n nn b a ==++; 选择①425S S =,可得4211(1)(1)511a q a q q q--=--,即215q +=,解得2q =,又因为1n n n a b b +=,113b =,解得12a =,所以2n n a =,11112n n n b a ==++; (2)证明:111211(21)(21)2121n n n n n n n n a b b +++==-++++, 2231111111111()()()212121212121321n n n n T ++=-+-+⋯+-=-+++++++, 由11021n +>+,可得13n T <. 10.在①131n n S S +=+,①211,2139n n a S a +==-③这三个条件中选择两个,补充在下面问题中,并给出解答.已知数列{}n a 的前n 项和为n S ,满足____,____;又知正项等差数列{}n b 满足12b =,且1b ,21b -,3b 成等比数列.(1)求{}n a 和{}n b 的通项公式; (2)证明:12326n b b b a a a ++⋯+<. 解:选择①①:(1)解:由131n n S S +=+⇒当2n 时,有131n n S S -=+,两式相减得:13n n a a +=,即113n n a a +=,2n .又当1n =时,有2112313()S S a a =+=+,又219a =,113a ∴=,2113a a =也适合,所以数列{}n a 是首项、公比均为13的等比数列,所以1()3n n a =;设正项等差数列{}n b 的公差为d ,12b =,且1b ,21b -,3b 成等比数列,2213(1)b b b ∴-=,即2(21)2(22)d d +-=+,解得:3d =或1d =-(舍),23(1)31n b n n ∴=+-=-,故1()3n n a =,31n b n =-.(2)证明:由(1)可得311()3n n b a -=,∴1211[1()]313927[1()]1262726127n n n b b b a a a -++⋯+==-<-. 选择:①①:(1)解:由1213n n S a +=-⇒当2n 时,1213n n S a -=-,两式相减得:1233n n n a a a +=-+,即113n n a a +=,2n .又当1n =时,有1212132S a a =-=,又219a =,113a ∴=,2113a a =也适合,所以数列{}n a 是首项、公比均为13的等比数列,所以1()3n n a =;设正项等差数列{}n b 的公差为d ,12b =,且1b ,21b -,3b 成等比数列,2213(1)b b b ∴-=,即2(21)2(22)d d +-=+,解得:3d =或1d =-(舍),23(1)31n b n n ∴=+-=-,故1()3n n a =,31n b n =-.(2)证明:由(1)可得311()3n n b a -=,∴1211[1()]313927[1()]1262726127n n n b b b a a a -++⋯+==-<-. 11.给出以下三个条件:①数列{}n a 是首项为2,满足142n n S S +=+的数列; ①数列{}n a 是首项为2,满足2132()n n S R λλ+==+∈的数列; ①数列{}n a 是首项为2,满足132n n S a +=-的数列.请从这三个条件中任选一个将下面的题目补充完整,并求解. 设数列{}n a 的前n 项和为n S ,n a 与n S 满足______,记数列21222log log log n n b a a a =++⋯+,21n n n n nc b b ++=,求数列{}n c 的前n 项和n T .解:选①,由已知142n n S S +=+⋯①, 当2n 时,142n n S S -=+⋯①,①-①可得14n n a a +=,当1n =时,2142S S =+可得28a =,满足214a a =.∴数列{}n a 是首项为2,公比为4的等比数列.即可得212n n a -=.221222log log log 13(21)n n b a a a n n =++⋯+=++⋯+-=2221(1)111(1)(1)1n n n n n n n c b b n n n n n n +++====-+++. ∴数列{}n c 的前n 项和1111111()1223111n nT n n n n =-+-+⋯+-=-=+++. 选①,由已知2132n n S λ+==+⋯①211.32n n S λ--==+⋯①, ①-①可得21212132232n n n n a +--=-=. 当1n =时,12a =满足212n n a -=.∴数列{}n a 是首项为2,公比为4的等比数列,即可得212n n a -=.221222log log log 13(21)n n b a a a n n =++⋯+=++⋯+-=2221(1)111(1)(1)1n n n n n n n c b b n n n n n n +++====-+++. ∴数列{}n c 的前n 项和1111111()1223111n nT n n n n =-+-+⋯+-=-=+++. 选①,由已知132n n S a +=-⋯①, 当2n 时,12n n S S -=-⋯①, ①-①可得14n n a a +=,当1n =时,可得28a =,满足214a a =.∴数列{}n a 是首项为2,公比为4的等比数列.即可得212n n a -=.221222log log log 13(21)n n b a a a n n =++⋯+=++⋯+-=2221(1)111(1)(1)1n n n n n n n c b b n n n n n n +++====-+++.∴数列{}n c 的前n 项和1111111()1223111n nT n n n n =-+-+⋯+-=-=+++. 12.在①5462a b b =+,①35144()a a b b +=+,①24235b S a b =三个条件中任选一个,补充在下面的问题中,并解答.设{}n a 是公比大于0的等比数列,其前n 项和为n S ,{}n b 是等差数列.已知11a =,32212S S a a -=+,435a b b =+,________.(1)求{}n a 和{}n b 的通项公式;(2)设112233n n n T a b a b a b a b =+++⋯+,求n T . 解:方案一:选条件①:(1)设等比数列{}n a 的公比为q .11a =,32212S S a a -=+,220q q ∴--= 解得2q =或1q =-,0q >,2q ∴=,∴12n n a -=.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2分)设等差数列{}n b 的公差为435d a b b =+,5462a b b =+,∴113431316b d b d +=⎧⎨+=⎩ 解得111b d =⎧⎨=⎩,n b n ∴=.∴12,n n n a b n -==⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(5分)(2)由(1)可知:12,n n n a b n -==,012111221222(1)22n n n n n T a b a b a b n n --∴=++⋯+=⨯+⨯+⋯+-⨯+⨯,∴12121222(1)22n n n T n n -=⨯+⨯+⋯+-⨯+⨯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(7分)∴1211212222221212nn nn n n n T n n n ---=+++⋯+-⨯=-⨯=--⨯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯-(9分)∴(1)21n n T n =-+.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(10分)方案二:选条件①:(1)设等比数列{}n a 的公比为q .11a =,32212S S a a -=+,220q q ∴--=. 解得2q =或1q =-, 0q >,2q ∴=,∴12n n a -=.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2分)设等差数列{}n b 的公差为d ,435a b b =+,135141344()235b d a a b b b d +=⎧+=+∴⎨+=⎩ 解得111b d =⎧⎨=⎩,n b n ∴=.∴12,n n n a b n -==.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(5分)(2)同方案一(2). 方案三:选条件①(1)设等比数列{}n a 的公比为q .11a =,32212S S a a -=+,220q q ∴--=,解得2q =或1q =-, 0q >,2q ∴=,∴12n n a -=⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(2分)设等差数列{}n b 的公差为d . 435a b b =+,4235S a b =,∴11340b d b d +=⎧⎨-=⎩解得111b d =⎧⎨=⎩,n b n ∴=,∴12,n n n a b n -==.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯(5分)(2)同方案一(2).13.在①4S 是2a 与21a 的等差中项;①7a 是33S 与22a 的等比中项;①数列2{}n a 的前5项和为65这三个条件中任选一个,补充在横线中,并解答下面的问题. 已知{}n a 是公差为2的等差数列,其前n 项和为n S ,_______. (1)求n a ;(2)设3()4n n n b a =;是否存在k N ∈,使得278k b >?若存在,求出k 的值;若不存在,说明理由.解:(1){}n a 是公差d 为2的等差数列,若选①4S 是2a 与21a 的等差中项,可得42212S a a =+, 即有112(46)221a d a d +=+,即为16918a d ==,解得13a =; 若①7a 是33S 与22a 的等比中项,可得2732213a S a =,即21111(62)(332)(212)3a a a +⨯=+⨯+⨯, 即2111(12)(2)(42)a a a +=++, 解得13a =;若选①数列2{}n a 的前5项和为65,可得241065a a a ++⋯+=, 即1115(13579)52555065a d a d a +++++=+=+=, 解得13a =;综上可得32(1)21n a n n =+-=+,*n N ∈;(2)33()(21)()44n n n n b a n ==+,由1133523(23)()(21)()()4444n n nn n n b b n n ++--=+-+=,当1n =,2时,可得10n n b b +->,即321b b b >>;当3n ,*n N ∈时,可得10n n b b +-<,即345b b b >>>⋯, 则n b 的最大项为318964b =, 由18927648<, 可得不存在k N ∈,使得278k b >. 14.设数列{}n a 的前n 项和为n S ,11a =,____. 给出下列三个条件:条件①:数列{}n a 为等比数列,数列1{}n S a +也为等比数列;条件①:点(n S ,1)n a +在直线1y x =+上;条件①:1121222n n n n a a a na -+++⋯+=.试在上面的三个条件中任选一个,补充在上面的横线上,完成下列两问的解答: (1)求数列{}n a 的通项公式; (2)设21231log log n n n b a a ++=,求数列{}n b 的前n 项和n T .解:选条件①: (1)数列1{}n S a +为等比数列,2211131()()()S a S a S a ∴+=++,即2121123(2)2(2)a a a a a a +=++.设等比数列{}n a 的公比为q ,22(2)2(2)q q q ∴+=++,解得2q =或0q =(舍),1112n n n a a q --∴==;(2)由(1)知:12n n a -=,212311111()log log (2)22n n n b a a n n n n ++∴===-++,111111111111311323[()()()()()]()2132435111221242(1)(2)n n T n n n n n n n n +∴=-+-+-+⋯+-+-=--=--++++++. 选条件①:(1)点(n S ,1)n a +在直线1y x =+,11n n a S +∴=+,又11(2,)n n a S n n N -=+∈,两式相减有:12n n a a +=,又11a =,2112a S =+=,也适合上式,故数列{}n a 为首项是1,公比是2的等比数列.1112n n n a a q --∴==;(2)由(1)知:12n n a -=,212311111()log log (2)22n n n b a a n n n n ++∴===-++,111111111111311323[()()()()()]()2132435111221242(1)(2)n n T n n n n n n n n +∴=-+-+-+⋯+-+-=--=--++++++. 选条件①:(1)1121222n n n n a a a na -+++⋯+=,12121222(1)(2)n n n n a a a n a n ---∴++⋯+=-. 由两式相减可得:122(1)n n n a na n a +=--,即12n n a a +=,又11a =,2112a S =+=,也适合上式,故数列{}n a 为首项是1,公比是2的等比数列. 1112n n n a a q --∴==;(2)由(1)知:12n n a -=,212311111()log log (2)22n n n b a a n n n n ++∴===-++,111111111111311323[()()()()()]()2132435111221242(1)(2)n n T n n n n n n n n +∴=-+-+-+⋯+-+-=--=--++++++.15.在①2351a a a b +=-,①2372a a a =,①315S =这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{}n a 的公差0d >,前n 项和为n S ,若 _______,数列{}n b 满足11b =,213b =,11n n n n a b nb b ++=-.(1)求{}n a 的通项公式; (2)求{}n b 的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分. 解:若选①:(1)11n n n n a b nb b ++=-,∴当1n =时,1212a b b b =-,11b =,213b =,12a ∴=.又2351a a a b +=-,3d ∴=,31n a n ∴=-;(2)由(1)知:11(31)n n n n b nb b ++-=-,即13n n nb nb +=,113n n b b +∴=.又11b =,所以数列{}n b 是以1为首项,以13为公比的等比数列,11()3n n b -∴=,11()33(13)1213nn n T --==--. 若选①:(1)11n n n n a b nb b ++=-,∴当1n =时,1212a b b b =-,11b =,213b =,12a ∴=.又2372a a a =,(2)(22)2(26)d d d ∴++=+,0d >,3d ∴=, 31n a n ∴=-;(2)由(1)知:11(31)n n n n b nb b ++-=-,即13n n nb nb +=,113n n b b +∴=.又11b =,所以数列{}n b 是以1为首项,以13为公比的等比数列,11()3n n b -∴=,11()33(13)1213nn n T --==--. 若选①:(1)11n n n n a b nb b ++=-,∴当1n =时,1212a b b b =-,11b =,213b =,12a ∴=.又315S =,3d ∴=, 31n a n ∴=-;(2)由(1)知:11(31)n n n n b nb b ++-=-,即13n n nb nb +=,113n n b b +∴=.又11b =,所以数列{}n b 是以1为首项,以13为公比的等比数列,11()3n n b -∴=,11()33(13)1213nn n T --==--. 16.在①53A B =,①122114a a B -=,①535B =这三个条件中任选一个,补充在下面问题中,并解答.已知等差数列{}n a 的公差为(0)d d >,等差数列{}n b 的公差为2d .设n A ,n B 分别是数列{}n a ,{}n b 的前n 项和,且13b =,23A =,________.(1)求数列{}n a ,{}n b 的通项公式; (2)设132n a n n n c b b +=+,求数列{}n c 的前n 项和n S . 解:方案一:选条件① (1)由题意,可知数列{}n a ,{}n b 都是等差数列,且23A =,53A B =,∴112351096a d a d d +=⎧⎨+=+⎩,解得111a d =⎧⎨=⎩,11(1)n a n n ∴=+-=,*n N ∈, 321(1)21n b n n =+-=+,*n N ∈,综上所述,可得n a n =,21n b n =+. (2)由(1)知, 331122()(21)(23)22123n n n c n n n n =+=+-++++,12n n S c c c ∴=++⋯+2311311311[2()][2()][2()]23525722123n n n =+-++-+⋯++-++23111111(222)[()()()]235572123n n n =++⋯++-+-+⋯+-++2(12)311()122323n n -=+--+13(2)223n n n ++=-+. 方案二:选条件① (1)由题意,可知数列{}n a ,{}n b 都是等差数列,且21221143,A a aB =-=,∴111114232a a d d ⎪⎨-=⎪+⨯+⎩, 整理,得()()1111231,4621a d a a a d d d d +==⎧⎧⎨⎨+=+=⎩⎩解得,11(1)n a n n ∴=+-=,*n N ∈, 321(1)21n b n n =+-=+,*n N ∈,综上所述,可得n a n =,21n b n =+. (2)同方案一第(2)小题解题过程. 方案三:选条件① (1)由题意,可知数列{}n a ,{}n b 都是等差数列,且23A =,535B =, ∴11231,541352352a d a d d +=⎧=⎧⎪⎨⎨⨯=⨯+⨯=⎩⎪⎩解得, 11(1)n a n n ∴=+-=,*n N ∈, 321(1)21n b n n =+-=+,*n N ∈,综上所述,可得n a n =,21n b n =+. (2)同方案一第(2)小题解题过程.17.①535a b b =+,①387S =①91012a a b b -=+这三个条件中任选一个,补充在下面问题中,并给出解答.设等差数列{}n a 的前n 项和为n S ,数列{}n b 的前n 项和为n T ,________,16a b =,若对于任意*n N ∈都有21n n T b =-,且(n k S S k 为常数),求正整数k 的值. 注:如果选择多个条件分别解答,那么按第一个解答计分.解:由21n n T b =-,可得1n =时,11b =;2n 时,1121n n T b --=-,相减可得122n n n b b b -=-,1n n -由此可得{}n b 为首项为1,公比为2的等比数列,故12n n b -=, ①当535a b b =+,1632a b ==,541620a =+=, 设{}n a 的公差为d ,则20324d =+,解得3d =-,所以323(1)353n a n n =--=-.因为当11n 时,0n a >,当11n >时,0n a <, 所以当11n =时,n S 取得最大值, 因此正整数k 的值为11.①当387S =时,132a =,2387a =,设{}n a 的公差为d ,则3(32)87d +=,解得3d =-,所以323(1)353n a n n =--=-.因为当11n 时,0n a >,当11n >时,0n a <, 所以当11n =时,n S 取得最大值, 因此正整数k 的值为11.①当91012a a b b -=+时,132a =,9103a a -=, 设{}n a 的公差为d ,则3d =-,所以323(1)353n a n n =--=-.因为当11n 时,0n a >,当11n >时,0n a <, 所以当11n =时,n S 取得最大值, 因此正整数k 的值为11.18.在①1,n a ,n S 成等差数列,①递增等比数列{}n a 中的项2a ,4a 是方程21090x x -+=的两根,①11a =,120n n a a ++=这三个条件中任选一个,补充在下面的问题中,若问题中的k 存在,求k 的值;若k 不存在,说明理由.已知数列{}n a 和等差数列{}n b 满足 _______,且14b a =,223b a a =-,是否存在(320,)k k k N <<∈使得k T 是数列{}n a 中的项?(n S 为数列{}n a 的前n 项和,n T 为数列{}n b 的前n 项和)。
专题4.1 数列的概念与简单表示法知识储备知识点一数列及其有关概念思考1数列1,2,3与数列3,2,1是同一个数列吗?【答案】不是.顺序不一样.思考2根据你对于数列的定义的理解,看看能不能回答下面的问题:(1)按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,……,排在第n位的数称为这个数列的第n项.(2) 数列的一般形式可以写成a1,a2,…,a n,…,简记为{a n}.思考3数列的记法和集合有些相似,那么数列与集合的区别在哪儿?【答案】数列中的数讲究顺序,集合中的元素具有无序性;数列中可以出现相同的数,集合中的元素具有互异性.知识点二通项公式思考1数列1,2,3,4,…的第100项是多少?你是如何猜的?【答案】100.由前四项与它们的序号相同,猜第n项a n=n,从而第100项应为100.思考2上例中的a n=n当序号n取不同的值,就可得到不同的项,所以可以把a n=n当作数列1,2,3,4,…的项的通用公式,这个公式就叫通项公式.你能把通项公式推广到一般数列吗?【答案】如果数列{a n}的第n项a n与序号n之间的关系可以用一个式子a n=f(n)来表示,那么这个公式叫做这个数列的通项公式.思考3数列的通项公式a n=f(n)与函数解析式y=f(x)有什么异同?【答案】如图,数列可以看成以正整数集N*(或它的有限子集{1,2,3,…,n})为定义域的函数a n=f(n)当自变量按照从小到大的顺序依次取值时所对应的一列函数值.不同之处是定义域,数列中的n必须是从1开始且连续的正整数,函数的定义域可以是任意非空数集.知识点三数列的分类(1)按项数分类,项数有限的数列叫做有穷数列,项数无限的数列叫做无穷数列.(2)按项的增减趋势分类,从第二项起,每一项都大于它的前一项的数列叫做递增数列;从第二项起,每一项都小于它的前一项的数列叫做递减数列;各项相等的数列叫做常数列;从第二项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列. 知识点四 递推公式思考1 (1)已知数列{a n }的首项a 1=1,且有a n =3a n -1+2(n >1),则a 4=________. (2) 已知数列{a n }中,a 1=a 2=1,且有a n +2=a n +a n +1(n ∈N *),则a 4=________. 【答案】(1)53 (2)3思考2 上例是一种给出数列的方法,叫递推公式.你能概括一下什么叫递推公式吗?【答案】如果数列{a n }的第1项或前几项已知,并且数列{a n }的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个式子来表示,那么这个式子就叫做这个数列的递推公式.思考3 我们已经知道通项公式和递推公式都能给出数列.那么通项公式和递推公式有什么不同? 【答案】通项公式和递推公式都是给出数列的方法.已知数列的通项公式,可以直接求出任意一项;已知递推公式,要求某一项,则必须依次求出该项前面所有的项. 知识点五 数列的表示方法思考1 以数列2,4,6,8,10,12,…为例,你能用几种方法表示这个数列? 【答案】(1)解析法、列表法、图象法.数列可以用通项公式、图象、列表等方法来表示. (2)对数列2,4,6,8,10,12,…可用以下几种方法表示: ①通项公式法:a n =2n .②递推公式法:⎩⎪⎨⎪⎧a 1=2,a n +1=a n +2,n ∈N *.③列表法:④图象法:思考2 归纳一下数列的表示方法.【答案】数列的表示方法有通项公式法、图象法、列表法、递推公式法.能力检测注意事项:本试卷满分100分,考试时间45分钟,试题共16题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、单选题1.下列说法正确的是( )A .数列1,3,5,7与数集{1,3,5,7}是一样的B .数列1,2,3与数列3,2,1是相同的C .数列11n ⎧⎫+⎨⎬⎩⎭是递增数列 D .数列()11nn ⎧⎫-⎪⎪+⎨⎬⎪⎪⎩⎭是摆动数列【答案】D【解析】数列是有序的,而数集是无序的,所以A ,B 不正确;选项C 中的数列是递减数列;选项D 中的数列是摆动数列. 2.已知数列12,23,34,…,1n n +,则0.96是该数列的( ) A .第20项 B .第22项 C .第24项 D .第26项【答案】C 【解析】由1nn +=0.96,解得n =24. 3.在数列1,1,2,3,5,8,x,21,34,55中,x 等于( ) A .11 B .12 C .13 D .14 【答案】C【解析】观察数列可知,后一项是前两项的和,故x =5+8=13.4.已知数列{a n }的通项公式a n =log (n +1)(n +2),则它的前30项之积是( ) A.15B .5C .6D .231log 3log 325+【答案】B【解析】a1·a2·a3·…·a30=log23×log34×log45×…×log3132=log232=log225=5. 5.已知递减数列{a n}中,a n=kn(k为常数),则实数k的取值范围是() A.R B.(0,+∞)C.(-∞,0) D.(-∞,0]【答案】C【解析】a n+1-a n=k(n+1)-kn=k<0.6.数列{a n}中,a n=-n2+11n,则此数列最大项是()A.第4项B.第6项C.第5项D.第5项和第6项【答案】D【解析】a n=-n2+11n=-2112n⎛⎫-⎪⎝⎭+1214,∵n∈N+,∴当n=5或n=6时,a n取最大值.故选D.7.我国古代数学名著《九章算术》中,有已知长方形面积求一边的算法,其方法的前两步为:第一步:构造数列1,12,13,14,…,1n.①第二步:将数列①的各项乘n,得到数列(记为)a1,a2,a3,…,a n.则n≥2时,a1a2+a2a3+…+a n-1a n=()A.n2B.(n-1)2 C.n(n-1) D.n(n+1)【答案】C【解析】由题意得a k=nk.k≥2时,a k-1a k=2211(1)1nnk k k k⎛⎫=-⎪--⎝⎭.∴n≥2时,a1a2+a2a3+…+a n-1a n=n21111112231n n⎡⎤⎛⎫⎛⎫⎛⎫-+-++-⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎝⎭⎣⎦=n211n⎛⎫-⎪⎝⎭=n(n-1).故选C.8.由1,3,5,…,2n-1,…构成数列{a n},数列{b n}满足b1=2,当n≥2时,b n=a b n-1,则b6的值是()A.9 B.17C.33 D.65【答案】C【解析】∵b n=a b n-1,∴b2=a b1=a2=3,b3=a b2=a3=5,b4=a b3=a5=9,b5=a b4=a9=17,b6=a b5=a17=33.二、多选题9.(多选)一个无穷数列{a n }的前三项是1,2,3,下列可以作为其通项公式的是( ) A .a n =nB .a n =n 3-6n 2-12n -6C .a n =12n 2-12n +1 D .a n =26611n n -+ 【答案】AD【解析】对于A ,若a n =n ,则a 1=1,a 2=2,a 3=3,符合题意;对于B ,若a n =n 3-6n 2-12n +6,则a 1=-11,不符合题意;对于C ,若a n =12n 2-12n +1,当n =3时,a 3=4≠3,不符合题意;对于D ,若a n =26611n n -+,则a 1=1,a 2=2,a 3=3,符合题意.故选A 、D. 10.(多选)数列{F n }:1,1,2,3,5,8,13,21,34,…称为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入的,故又称为“兔子数列”.该数列从第三项开始,每项等于其前相邻两项之和.记数列{F n }的前n 项和为S n ,则下列结论正确的是( ) A .S 5=F 7-1 B .S 5=S 6-1 C .S 2 019=F 2 021-1 D .S 2 019=F 2 020-1【答案】AC【解析】根据题意有F n =F n -1+F n -2(n ≥3),所以S 3=F 1+F 2+F 3=1+F 1+F 2+F 3-1=F 3+F 2+F 3-1=F 4+F 3-1=F 5-1,S 4=F 4+S 3=F 4+F 5-1=F 6-1,S 5=F 5+S 4=F 5+F 6-1=F 7-1,…,所以S 2 019=F 2 021-1.故选A 、C.11.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( ) A .0,2,n n a n ⎧=⎨⎩为奇数为偶数B .1(1)1n n a -=-+C .2sin 2n n a π= D .cos(1)1n a n π=-+【答案】BD【解析】因为数列{}n a 的前4项为2,0,2,0, 选项A :不符合题设;选项B :01(1)12,a =-+=12(1)10,a =-+=23(1)12,a =-+=34(1)10a =-+=,符合题设;选项C :,12sin2,2a π==22sin 0,a π==332sin22a π==-不符合题设; 选项D :1cos 012,a =+=2cos 10,a π=+=3cos 212,a π=+=4cos310a π=+=,符合题设.故选:BD.12.“太极生两仪,两仪生四象,四象生八卦……”大衍数列,来源于《乾坤谱》中对《易传》“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,是中华传统文化中隐藏着的世界数学史上第一道数列题.大衍数列中的每一项都代表太极衍生过程中,曾经经历过的两仪数量总和,从第一项起依次为0,2,4,8,12,18,24,32,40,50,…….记大衍数列为{}n a ,其前n 项和为*,n S n ∈N ,则( )A .20220a =B .357202111115051011a a a a ++++=C .232156S =D .246489800a a a a ++++=【答案】BCD【解析】根据数列前10项依次是0,2,4,8,12,18,24,32,40,50,,则奇数项为:2112-,2312-,2512-,2712-,2912-,,偶数项为:222,242,262,282,2102,,所以通项公式为221,(2,(2n n n a n n ⎧-⎪⎪=⎨⎪⎪⎩为奇数)为偶数),对于A , 22020020==2a ,故A 错误;对于B ,35720211111a a a a ++++22222222=++++31517120211----1111224466820202022⎛⎫=++++⎪⨯⨯⨯⨯⎝⎭111111*********20202505100222202211⎛⎫=⨯-+-++-=-= ⎪⎝⎭,故B 正确; 对于C ,()()2313232422S a a a a a a =++++++222212323122+++-=,由()()22221211236n n n n +++++=,所以()()2323231461112215626S ++⎛⎫=-= ⎪⎝⎭,故C 正确;对于D ,24648a a a a ++++()222221242922421224=⨯+⨯+⨯++⨯=++()()242412241298006+⨯+=⋅=,故D 正确.故选:BCD三、填空题13.已知数列{a n }的通项公式a n =19-2n ,则使a n >0成立的最大正整数n 的值为________. 【答案】9【解析】由a n =19-2n >0,得n <192.∵n ∈N *,∴n ≤9.14.已知数列{a n }的通项公式a n =1nn +,则a n ·a n +1·a n +2=________. 【答案】3n n + 【解析】a n ·a n +1·a n +2=1n n +·12n n ++·23n n ++=3n n +. 15.数列{a n }的前n 项和为S n ,若S n +S n -1=2n -1(n ≥2),且S 2=3,则a 1+a 3的值为________. 【答案】-1【解析】∵S n +S n -1=2n -1(n ≥2),令n =2, 得S 2+S 1=3,由S 2=3得a 1=S 1=0, 令n =3,得S 3+S 2=5,所以S 3=2,则a 3=S 3-S 2=-1,所以a 1+a 3=0+(-1)=-1.16.如图(1)是第七届国际数学教育大会(简称ICME7)的会徽图案,会徽的主体图案是由如图(2)的一连串直角三角形演化而成的,其中OA 1=A 1A 2=A 2A 3=…=A 7A 8=1,如果把图(2)中的直角三角形继续作下去,记OA 1,OA 2,…,OA n ,…的长度构成数列{a n },则此数列的通项公式为a n =________.【解析】因为OA 1=1,OA 2,OA 3…,OA n ,…,所以a 1=1,a 2,a 3…,a n . 四、解答题17.已知数列{}n a 的前n 项和2321n S n n =-+,(1)求数列{}n a 的通项公式; (2)求数列{}n a 的前多少项和最大.【解析】(1)当1n =时,11321132a S ==-+=;当2n ≥时,()()()22132132111n n n a S S n n n n -⎡⎤=-=-+----+⎣⎦332n =-;所以:32,1332,2n n a n n =⎧=⎨-≥⎩;(2)因为()22321321n S n n n n =-+=--+()216257n =--+;所以前16项的和最大.18.在数列{}n a 中,2293n a n n =-++.(1)-107是不是该数列中的某一项?若是,其为第几项? (2)求数列中的最大项.【解析】(1)令22107,293107,291100n a n n n n =--++=---=,解得10n =或112n =-(舍去).所以10107a =- (2)229105293248n a n n n ⎛⎫=-++=--+ ⎪⎝⎭, 由于*n ∈N ,所以最大项为213a = 19.数列{a n }满足a 1= 1 ,a n +1 +2a n a n +1- a n =0. (1)写出数列的前5项;(2)由(1)写出数列{a n }的一个通项公式;(3)实数199是否为这个数列中的一项?若是,应为第几项? 【答案】(1)见解析(2)121n a n =-(3)50【解析】(1)由已知可得11a =,213a =,315a =,417a =,519a =.(2)由(1)可得数列的每一项的分子均为1,分母分别为1,3,5,7,9,…,所以它的一个通项公式为121n a n =-. (3)令119921n =-,解得50n =,故199是这个数列的第50项.20.已知数列2299291n n n ⎧⎫-+⎨⎬-⎩⎭. (1)求这个数列的第10项; (2)98101是不是该数列中的项,为什么? (3)求证:数列中的各项都在区间(0,1)内;(4)在区间1233⎛⎫ ⎪⎝⎭,内有无数列中的项?若有,是第几项?若没有,说明理由.【解析】(1)设a n =f (n )=2299291n n n -+-=(31)(32)(31)(31)n n n n ---+=3231n n -+.令n =10,得第10项a 10=f (10)=2831. (2)令3231n n -+=98101,得9n =300. 此方程无正整数解,所以98101不是该数列中的项. (3)证明:∵a n =3231n n -+=1-331n +, 且n ∈N *,∴0<1-331n +<1, ∴0<a n <1.∴数列中的各项都在区间(0,1)内. (4)令13<a n =3231n n -+<23, ∴3196,9662,n n n n +<-⎧⎨-<+⎩∴7,68,3n n ⎧>⎪⎪⎨⎪<⎪⎩∴当且仅当n =2时,上式成立,故在区间1233⎛⎫⎪⎝⎭,内有数列中的项,且只有一项为a 2=47. 21.已知函数f (x )=x -1x.数列{a n }满足f (a n )=-2n ,且a n >0.求数列{a n }的通项公式. 【解析】∵f (x )=x -1x,∴f (a n )=a n -1n a ,∵f (a n )=-2n .∴a n -1na =-2n ,即2n a +2na n -1=0. ∴a n =-n.∵a n >0,∴a n-n .22.已知数列{a n }的通项公式为a n =22n n (n ∈N *),则这个数列是否存在最大项?若存在,请求出最大项;若不存在,请说明理由.【解析】存在最大项.理由:a 1=12,a 2=2222=1,a 3=2332=98,a 4=2442=1,a 5=2552=2532,….∵当n≥3时,221122(1)2(1)22nnnna n na n n++++=⨯==1211n⎛⎫+⎪⎝⎭2<1,∴a n+1<a n,即n≥3时,{a n}是递减数列.又∵a1<a3,a2<a3,∴a n≤a3=9 8 .∴当n=3时,a3=98为这个数列的最大项.。
欢迎阅读《数列》练习题姓名_________班级___________一、选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.等差数列-2,0,2,…的第15项为( ) A .11 2 B .12 2 C .13 2 D .14 22.若在数列{a n }中,a 1=1,a n +1=a 2n -1(n ∈N *),则a 1+a 2+a 3+a 4+a 5=( ) A .-1 B .1 C .0 D .23.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…,按此规律进行下去,6小时后细胞存活的个数是( )A .33个B .65个C .66个D .129个4.设S n 为等差数列{a n }的前n 项和,若S 8=30,S 4=7,则a 4的值等于( ) A.14 B.94 C.134 D.1745.设f (x )是定义在R 上的恒不为零的函数,且对任意的实数x 、y ∈R ,都有f (x )·f (y )=f (x +y ),若a 1=12,a n =f (n )(n ∈N *),则数列{a n }的前n 项和S n 的取值范围为( )A .[12,2)B .[12,2]C .[12,1)D .[12,1]6.小正方形按照如图所示的规律排列:每个图中的小正方形的个数构成一个数列{a n },有以下结论:①a 5=15;②数列{a n }是一个等差数列;③数列{a n }是一个等比数列;④数列的递推公式为:a n +1=a n +n +1(n ∈N *).其中正确的命题序号为( )A .①②B .①③C .①④D .①7.已知数列{a n }满足a 1=0,a n +1=a n -33a n +1(n ∈N *),则a 20=( )A .0B .- 3 C. 3D.328.数列{a n }满足递推公式a n =3a n -1+3n -1(n ≥2),又a 1=5,则使得{a n +λ3n}为等差数列的实数λ=( )A .2B .5C .-12D.129.在等差数列{a n }中,a 10<0,a 11>0,且a 11>|a 10|,则{a n }的前n 项和S n 中最大的负数为( )A.S17 B.S18 C.S19D.S2010.将数列{3n-1}按“第n组有n个数”的规则分组如下:(1),(3,9),(27,81,243),…,则第100组中的第一个数是( )A.34 950 B.35 000 C.35 010D.35 050二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)11.设等差数列{a n}的前n项和为S n,若S9=72,则a2+a4+a9=________.12.设数列{a n}中,a1=2,a n+1=a n+n+1,则通项a n=________..)100项2,0,n2n1232n-1<3.18.(本小题满分8分)已知数列{a n}的前n项和为S n,且a n+S n=1(n∈N*).(1)求数列{a n}的通项公式;(2)若数列{b n}满足b n=3+log4a n,设T n=|b1|+|b2|+…+|b n|,求T n.19.(本小题满分10分)已知单调递增的等比数列{a n}满足a2+a3+a4=28,且a3+2是a2,a4的等差中项.(1)求数列{a n}的通项公式;(2)若b n =n n a log a 21,S n =b 1+b 2+…+b n ,对任意正整数n ,S n +(n +m )a n +1<0恒成立,试求m 的取值范围.参考答案选择题答案题号 12345678910答案C A B C C C B C C A填空题答案第11题 24第12题第13题 a n =2·3n第14题-7【第15题】S 5=5?a 1+a 5?2=5?a 1+5?2=15,∴a 1=1. ∴d =a 5-a 15-1=5-15-1=1.∴a n =1+(n -1)×1=n . ∴1a n a n +1=1n ?n +1?.设{1a n a n +1}的前n 项和为T n ,则T 100=11×2+12×3+…+1100×101 =1-12+12-13+…+1100-1101 =1-1101=100101. 【第16题】(1)设{a n }的公差为d .由题意,a 211=a 1a 13,即(a 1+10d )2=a 1(a 1+12d ).于是d (2a 1+25d )=0.又a 1=25,所以d =0(舍去),d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =n 2(a 1+a 3n -2)=n2(-6n +56)=-3n 2+28n .【第17题】(1)∵{a n }是递减的等比数列, ∴数列{a n }的公比q 是正数. 又∵{a 1,a 2,a 3}{-4,-3,-2,0,1,2,3,4},∴a 1=4,a 2=2,a 3=1.∴q =a 2a 1=24=12.∴a n =a 1q n -1=82n .(2)由已知得b n =12])1(1[8+--n n ,当n =2k (k ∈N *)时,b n =0,当n =2k -1(k ∈N *)时,b n =a n . 即b n =⎩⎨⎧0,?n =2k ,k ∈N *?,a n ,?n =2k -1,k ∈N *?.∴b 1+b 2+b 3+…+b 2n -2+b 2n -1T n T n n ⎪⎩≥+-)7(,460112n n n 【第19题】(1)n n 2a =(2)∵b n =2n ·log 12 2n =-n ·2n ,∴-S n =1×2+2×22+3×23+…+n ×2n ,① -2S n =1×22+2×23+3×24+…+(n -1)×2n +n ×2n +1.②①-②,得S n =2+22+23+…+2n -n ·2n +1=21)21(2--n -n ·2n +1=2n +1-n ·2n +1-2.∵S n +(n +m )a n +1<0,∴2n +1-n ·2n +1-2+n ·2n +1+m ·2n +1<0对任意正整数n 恒成立. ∴m ·2n +1<2-2n +1对任意正整数n 恒成立,即m <12n -1恒成立.∵12n -1>-1,∴m ≤-1,即m 的取值范围是(-∞,-1].。
一、等差数列1、数列的概念:数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n })的特殊函数,数列的通项公式也就是相应函数的解析式。
例1.根据数列前4项,写出它的通项公式: (1)1,3,5,7……;(2)2212-,2313-,2414-,2515-;(3)11*2-,12*3,13*4-,14*5。
解析:(1)n a =21n -; (2)n a = 2(1)11n n +-+; (3)n a = (1)(1)n n n -+。
点评:每一项序号与这一项的对应关系可看成是一个序号到另一个数集的对应关系,这对考生的归纳推理能力有较高的要求。
如(1)已知*2()156n na n N n =∈+,则在数列{}n a 的最大项为__ ;(2)数列}{n a 的通项为1+=bn ana n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为___;(3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围;2、等差数列的判断方法:定义法1(n n a a d d +-=为常数)或11(2)n n n n a a a a n +--=-≥。
例2.设S n 是数列{a n }的前n 项和,且S n =n 2,则{a n }是( )A.等比数列,但不是等差数列B.等差数列,但不是等比数列C.等差数列,而且也是等比数列D.既非等比数列又非等差数列 答案:B ; 解法一:a n =⎩⎨⎧≥-==⇒⎩⎨⎧≥-=-)2( 12)1( 1)2( )1( 11n n n a n S S n S n n n∴a n =2n -1(n ∈N )又a n +1-a n =2为常数,12121-+=+n n a a n n ≠常数 ∴{a n }是等差数列,但不是等比数列.解法二:如果一个数列的和是一个没有常数项的关于n 的二次函数,则这个数列一定是等差数列。
高考数学复习专题九考点23《数列的概念与简单表示法》练习题(含答案)1.已知数列{}n a 的通项公式为2n a n kn =-,且{}n a 单调递增,则实数k 的取值范围是( ) A.(,2]-∞B.(,2)-∞C.(,3]-∞D.(,3)-∞2.22,24,…,则162( ) A.第8项B.第9项C.第10项D.第11项3.已知在数列{}n a 中,11a =,123n n a a +=+,则n a 等于( ) A.123n -+B.123n ++C.123n --D.123n +-4.数列{}n a 中,12a =,m n m n a a a +=.若155121022k k k a a a ++++++=-,则k =( )A.2B.3C.4D.55.已知数列{}n a 满足32111232n n a a a a n ++++=-,则n a =( ) A.112n-B.312n - C.12nD.2nn 6.已知数列{}n a 的前n 项和为()*n S n ∈N ,且2n S n λ=+.若数列{}n a 为递增数列,则实数λ的取值范围为( ) A.(,1)-∞B.(,2)-∞C.(,3)-∞D.(,4)-∞7.《周髀算经》是中国古代重要的数学著作,其记载的“日月历法”曰:“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁,…,生数皆终,万物复苏,天以更远作纪历”,某老年公寓住有20位老人,他们的年龄(都为正整数)之和恰好为一遂,其中年长者已是奔百之龄(年龄介于90~100),其余19人的年龄依次相差一岁,则年龄最小者的年龄为( ) A.65B.66C.67D.688.已知数列{}n a 的前n 项和为112321 ,,0,3,2,1(3)22n n n n n n a aS a a a a n a a +--∈===⋅=++N .若100m a =,则m =( )A.50B.51C.100D.1019.若数列{}n a 满足12211,1,n n n a a a a a ++===+,则称数列{}n a 为斐波那契数列.1680年卡西尼发现了斐波那契数列的一个重要性质:211(1)(2)n n n na a a n -+-=-≥.在斐波那契数列{}n a 中,若k 满足22111(21)(21)999kki i i i i i a a i a ++==--≤-∑∑,给出下列结论:①k 可以是任意奇数;②k 可以是任意正偶数:③若k 是奇数,则k 的最大值是999;④若k 是偶数,则k 的最大值是500.其中正确结论的序号是( )A.①④B.②③C.①②D.③④10.已知集合{}{}1*21*3,,1333,n n A x x n B x x n --==∈==++++∈N N ∣∣.将A B ⋃的所有元素从小到大排列构成数列{}n c ,其前n 项和为n T ,则下列命题中真命题的个数为( ) ①202320222021c c c =+; ②{}2212n n c c --是等比数列;③使503n T >成立的n 的最小值为100; ④112ni ic =<∑恒成立. A.4B.3C.2D.111.在斐波那契数列{}n a 中,11a =,21a =,()122n n n a a a n --=+>.已知n S 为该数列的前n 项和,若2020S m =,则2022a =_____________.12.已知数列{}n a 中,11a =,()*12n n a a n +=∈N ,则数列{}n a 的通项公式为n a =___________.13.数列{}n a 满足2(1)31n n n a a n ++-=-,前16项和为540,则1=a ___________. 14.已知数列{}n a 满足12a =,且31122(2)234n n a a a a a n n-++++=-≥,则{}n a 的通项公式为_______________.15.已知正项数列{}n a 的前n 项和为n S ,11a =,2211n n n S a S λ++=-,其中λ为常数.(1)证明:12n n S S λ+=+.(2)是否存在实数λ,使得数列{}n a 为等比数列?若存在,求出λ;若不存在,请说明理由.参考答案1.答案:D解析:∵数列{}n a 中()2*n a n kn n =-∈N ,且{}n a 单调递增,10n n a a +∴->对于*n ∈N 恒成立,即()22(1)(1)210n k n n kn n k +-+--=+->对于*n ∈N 恒成立. 21k n ∴<+对于*n ∈N 恒成立,即3k <.故选D.2.答案:B22(2),3(2),4(2),…,由此可归纳该数列的通项公式为()*(2)n n ∈N .又9162(2),所以1629项.故选B.3.答案:D解析:由123n n a a +=+,得()1323n n a a ++=+,且134a +=,则{}3n a +是以4为首项,2为公比的等比数列,则1342n n a -+=⨯,所以123n n a +=-. 4.答案:C解析:因为数列{}n a 中,m n m n a a a +=,令1m =,则112n n n a a a a +==,所以数列{}n a 是首项为2,公比为2的等比数列,则11122k k k a a ++=⋅=.所以()()1011101111210122212212k k k k k k k a a a a +++++++-+++==-=--,则1111552222k k ++-=-,所以4k =,故选C. 5.答案:D 解析:32111232n n a a a a n ++++=-①,当2n 时,31211112312n n a a a a n --++++=--②,则①-②得,1111222n n n n a n -=-=,故(2)2n n n a n =.当1n =时,112a =,也符合2n n na =,故选D. 6.答案:B解析:当1n =时,111a S λ==+;当2n 时,221(1)21n n n a S S n n n λλ-==+---=--.则120n n a a --=>,所以当2n 时,数列{}n a 为递增数列.若数列{}n a 为递增数列,只需21a a >,即31λ>+,所以2λ<.故选B.7.答案:B解析:设年龄最小者的年龄为n ,年龄最大者的年龄为([90,100])m m ∈,所以(1)(18)1520n n n m ++++++=,所以191349n m +=,所以134919m n =-,所以90134919100n -,所以14565661919n ,因为年龄为正整数,所以66n =,故选B.8.答案:D 解析:因为3412122a a a a ⋅=++,所以45a =,同理可得564,7a a ==.令2(3)2nn n a b n a -=+,则11n n b b +=,因为31b =,所以3452 1,2n n n b b b b a a -======+,则有21202(1)2 2 , 32(1)21k k a k k a k k -=+-=-=+-=+,故(1)n n a n =+-.若(1)100m m a m =+-=,则101m =.故选D. 9.答案:B解析:由211(1)(2)n n n na a a n -+-=-≥可得212111(21)(21)1357(1)(21)kkk i i i i i i a ai a k +++==-⋅--=-+-++--∑∑.若k 为偶数,则22111(21)(21)1357(21)kki i i i i i a a i a k k ++==---=-+-+--=-∑∑,此时22111(21)(21)999kki i i i i i a a i a ++==--≤-∑∑,即999k -≤,k 无最大值,所以②正确,④错误;若k 为奇数,则22111(21)(21)1357(21)kki i i i i i a a i a k k ++==---=-+-++-=∑∑,此时22111(21)(21)999k ki i i i i i a a i a ++==--≤-∑∑,即999k ≤,此时k 的最大值为999,所以①错误,③正确.故选B. 10.答案:B解析:设1*3,n n a n -=∈N ,则数列{}n a 是首项为1、公比为3的等比数列,其前n 项和213113332n n n B --=++++=.因为111a B ==,且当2n ≥时,131332n n n --<<, 所以把A B ⋃的所有元素从小到大排列为122334455,,,,,,,,,B a B a B a B a B ,所以212131,32n n n n n n c B c a -+-====.对于①,1221213131322n n nn n n c c c +-+--+=+==,取1011n =,有202320222021c c c =+,故①正确.对于②,因为2213123212n nn n c c ---=-⨯=是常数,所以{}2212n n c c -- 是以1为首项、1为公比的等比数列,故②正确.对于③,易知49503a =,则数列{}n c 的前98项和()()98235012349T a a a B B B B =++++++++()234912350234950B B B B a a a B B B B =++++++++=++++()5123505014931073333224-=⨯+++-=<,前99项和515050509998999850310731531093424T T c T B --⨯-=+=+=+=>,故使得503n T >成立的n 的最小值为99,故③错误.对于④,因为当2n ≥时,0n n B a >>,所以11113n n n B a -<=, 所以2121122311111111111112122333333nn nn i i n n c B B B a a a -=+⎛⎫⎫⎛⎛⎫⎛⎫=+++++++<+++++++=-< ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝⎭⎭∑,又因为21211112n n i i i i c c -==<<∑∑,所以112ni ic =<∑恒成立,故④正确.11.答案:1m +解析:由已知,得123a a a +=,234a a a +=,…,202020212022a a a +=,以上各式相加,得1234202020222a a a a a a +++++=,即220202022a S a +=.又21a =,2020S m =,所以20221a m =+.12.答案:12n -解析:易知0n a ≠,由()*12n n a a n +=∈N ,可得12n na a +=, 所以当2n ≥时,12nn a a -=, 所以()113211221122222n n n n n n n a a a a a a a a a a -----=⨯⨯⨯⨯=⨯⨯⨯⨯=个, 所以()122n n a n -=≥. 因为当1n =时也满足上式,所以数列{}n a 的通项公式为()1*2n n a n -=∈N . 13.答案:7解析:令()2n k k *=∈N ,则有()22261k k a a k k *++=-∈N , 2468101214165,171,942=,a a a a a a a a ∴+=+=+=+,∴前16项的所有偶数项和 517294192S =+++=偶,∴前16项的所有奇数项和 54092448S =-=奇,令()21n k k *=-∈N ,则有()212164k k a a k k *+--=-∈N .()()()211315375k a a a a a a a a +∴-=-+-+-+ ()2121281464k k a a k +-+-=++++-=()(264)(31)2k k k k k *+-=-∈N ,()211(31)k a k k a k *+∴=-+∈N ,31517192,10,24,44a a a a a a a ∴=+=+=+=+ 1111131151,70,102,140a a a a a a a =+=+=+,∴前16项的所有奇数项和13 S a a =+++奇151182102444701021408a a a =+++++++=+392448=. 17a ∴=.14.答案:1n a n =+解析:依题意数列{}n a 满足12a =,且31122234n n a a a a a n-++++=-①. 当2n =时,1222a a =-,23a =, 3112122341n n n a a aa a a n n -++++++=-+②, ②-①得11n n n a a a n +=-+,121n n a n a ++=+ 则()112n n a n n a n-+=≥, 所以13211221132112n n n n n a a a a n n a a n a a a a n n ---+=⋅⋅⋅⋅⋅=⋅⋅⋅⋅=+-, 1a ,2a 都符合上式.所以{}n a 的通项公式为1n a n =+. 故答案为:1n a n =+. 15.答案:(1)见解析 (2)存在,1λ=.解析:(1)11n n n a S S ++=-,2211n n n S a S λ++=-,()2211n n n n S S S S λ++∴=--,()1120n n n S S S λ++∴--=.0n a >,10n S +∴>,120n n S S λ+∴--=,12n n S S λ+∴=+.(2)12n n S S λ+=+, 122n n S S n λ-∴=+≥(), 两式相减,得1(22)n n a a n +≥=. 212S S λ=+,即2112a a a λ+=+, 21a λ∴=+,由20a >,得1λ>-.若{}n a 是等比数列,则2132a a a =,即22(1)(1)λλ+=+,得1λ=. 经检验,1λ=符合题意.故存在1λ=,使得数列{}n a 为等比数列.。
课时同步练4.1 数列的概念与简单表示法(1)一、单选题1.已知数列{}n a 中,2n+5,则3a =( ) A .13 B .12 C .11 D .10【答案】C【解析】由已知得2×3+5=11. 故选C .2.有下面四个结论:①数列的通项公式是唯一的;②每个数列都有通项公式;③数列可以看作一个定义在正整数集上的函数;④数列的图象是坐标平面上有限或无限个离散的点.其中真命题的个数为( ) A .0个B .1个C .2个D .3个 【答案】B【解析】对①,数列1,1,1,1,--其通项公式1(1)n n a +=-,也可以是3(1)n n a +=-,故①错误; 对②,数列的项与n 具备一定的规律性,才可求出数列的通项公式,所以有的数列是无通项公式的,故②错误;对③,数列可以看作一个定义在正整数集上或正整数集的子集上的函数,故③错误; 对④,由数列的定义知命题正确.故选B.3.已知数列-1,0,19,18,…,22n n -,…中,则572是其( ) A .第14项 B .第12项 C .第10项 D .第8项【答案】B 【解析】令22n n-=572,化为:5n 2﹣72n +144=0, 解得n =12,或n =125(舍去). 故选B .4.数列{}n a 的通项公式()*2n a n n =∈N不满足下列递推公式的是( ) A .()122n n a a n -=+ B .()1223n n n a a a n --=-C .()()()11222n n n n a a a a n ---=-D .()122n n a a n -= 【答案】D【解析】将2n a n =代入四个选项得:A. 22(1)2n n =-+ 成立;B. 222(1)2(2)n n n =⨯--- 成立;C. ()2222(1)2(1)][2n n n n -=--- 成立;D. 222n n =⨯ 不恒成立。
数列基础知识点和方法归纳1. 等差数列的定义与性质定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ⇔=+前n 项和()()11122n n a a n n n S na d +-==+ 性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2;(3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121m m m m a S b T --= (5){}n a 为等差数列2n S an bn ⇔=+(a b ,为常数,是关于n 的常数项为0的二次函数)n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项,即:当100a d ><,,解不等式组100n n a a +≥⎧⎨≤⎩可得n S 达到最大值时的n 值.当100a d <>,,由10n n a a +≤⎧⎨≥⎩可得n S 达到最小值时的n 值.(6)项数为偶数n 2的等差数列{}n a ,有),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n Snd S S =-奇偶,1+=n na a S S 偶奇. (7)项数为奇数12-n 的等差数列{}n a ,有)()12(12为中间项n n n a a n S -=-,n a S S =-偶奇,1-=n n S S 偶奇. 2. 等比数列的定义与性质定义:1n na q a +=(q 为常数,0q ≠),11n n a a q -=. 等比中项:x G y 、、成等比数列2G xy ⇒=,或G =前n 项和:()11(1)1(1)1n n na q S a q q q =⎧⎪=-⎨≠⎪-⎩(要注意!)性质:{}n a 是等比数列(1)若m n p q +=+,则mn p q a a a a =·· (2)232n n n n n S S S S S --,,……仍为等比数列,公比为n q . 注意:由n S 求n a 时应注意什么?1n =时,11a S =; 2n ≥时,1n n n a S S -=-. 3.求数列通项公式的常用方法 (1)求差(商)法如:数列{}n a ,12211125222n n a a a n +++=+……,求na解 1n =时,112152a =⨯+,∴114a = ①2n ≥时,12121111215222n n a a a n --+++=-+…… ②①—②得:122n n a =,∴12n n a +=,∴114(1)2(2)n n n a n +=⎧=⎨≥⎩[练习]数列{}n a 满足111543n n n S S a a +++==,,求n a注意到11n n n a S S ++=-,代入得14n nS S +=;又14S =,∴{}n S 是等比数列,4n n S = 2n ≥时,1134n n n n a S S --=-==……· (2)叠乘法如:数列{}n a 中,1131n n a na a n +==+,,求n a解 3212112123n n a a a n a a a n --=·……·……,∴11n a a n=又13a =,∴3n a n =. (3)等差型递推公式由110()n n a a f n a a --==,,求n a ,用迭加法2n ≥时,21321(2)(3)()n n a a f a a f a a f n --=⎫⎪-=⎪⎬⎪⎪-=⎭…………两边相加得1(2)(3)()n a a f f f n -=+++……∴0(2)(3)()n a a f f f n =++++……[练习]数列{}n a 中,()111132n n n a a a n --==+≥,,求n a (()1312nn a =-)(4)等比型递推公式1n n a ca d -=+(c d 、为常数,010c c d ≠≠≠,,)可转化为等比数列,设()()111n n n n a x c a x a ca c x --+=+⇒=+- 令(1)c x d -=,∴1d x c =-,∴1n d a c ⎧⎫+⎨⎬-⎩⎭是首项为11d a c c +-,为公比的等比数列 ∴1111n n d d a a c c c -⎛⎫+=+ ⎪--⎝⎭·,∴1111n n d d a a c c c -⎛⎫=+- ⎪--⎝⎭ (5)倒数法 如:11212nn n a a a a +==+,,求n a 由已知得:1211122n n n na a a a ++==+,∴11112n n a a +-= ∴1n a ⎧⎫⎨⎬⎩⎭为等差数列,111a =,公差为12,∴()()11111122n n n a =+-=+·, ∴21n a n =+( 附:公式法、利用{1(2)1(1)n n S S n S n n a --≥==、累加法、累乘法.构造等差或等比1n n a pa q +=+或1()n n a pa f n +=+、待定系数法、对数变换法、迭代法、数学归纳法、换元法)4. 求数列前n 项和的常用方法(1) 裂项法把数列各项拆成两项或多项之和,使之出现成对互为相反数的项. 如:{}n a 是公差为d 的等差数列,求111nk k k a a =+∑解:由()()11111110k k k k k k d a a a a d d a a ++⎛⎫==-≠ ⎪+⎝⎭·∴11111223111*********nnk k k k k k n n a a d a a d a a a a a a ==+++⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-+-++-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦∑∑……11111n d a a +⎛⎫=- ⎪⎝⎭[练习]求和:111112123123n+++++++++++ (121)n n a S n ===-+…………, (2)错位相减法若{}n a 为等差数列,{}n b 为等比数列,求数列{}n n a b (差比数列)前n 项和,可由n n S qS -,求n S ,其中q 为{}n b 的公比.如:2311234n n S x x x nx -=+++++……①()23412341n n n x S x x x x n x nx -=+++++-+·……②①—②()2111n n n x S x x x nx --=++++-……1x ≠时,()()2111nnnx nxS x x -=---,1x =时,()11232n n n S n +=++++=…… (3)倒序相加法把数列的各项顺序倒写,再与原来顺序的数列相加.121121n n n n n n S a a a a S a a a a --=++++⎫⎬=++++⎭…………相加()()()12112n n n n S a a a a a a -=++++++……[练习]已知22()1x f x x =+,则111(1)(2)(3)(4)234f f f f f f f ⎛⎫⎛⎫⎛⎫++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭由2222222111()111111x x x f x f x x x x x ⎛⎫ ⎪⎛⎫⎝⎭+=+=+= ⎪+++⎝⎭⎛⎫+ ⎪⎝⎭∴原式11111(1)(2)(3)(4)111323422f f f f f f f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=++++++=+++= ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦二、等差等比数列复习题一、 选择题1、如果一个数列既是等差数列,又是等比数列,则此数列 ( )(A )为常数数列 (B )为非零的常数数列 (C )存在且唯一 (D )不存在2.、在等差数列{}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为 ( )(A )13+=n a n (B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a 3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则ycx a +的值为 ( )(A )21(B )2- (C )2 (D ) 不确定 4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项,y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( )(A )成等差数列不成等比数列 (B )成等比数列不成等差数列(C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列5、已知数列{}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为 ( )(A )22-=n a n (B )28-=n a n (C )12-=n n a (D )n n a n -=26、已知))((4)(2z y y x x z --=-,则( ) (A )z y x ,,成等差数列 (B )z y x ,,成等比数列 (C )z y x 1,1,1成等差数列 (D )zy x 1,1,1成等比数列 7、数列{}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有( )①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列⑤可能既是等差数列,又是等比数列(A )4 (B )3 (C )2 (D )1 8、数列1⋯,1617,815,413,21,前n 项和为 ( ) (A )1212+-n n (B )212112+-+n n (C )1212+--n n n(D )212112+--+n n n 9、若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足5524-+=n n B A n n ,则135135b b a a ++的值为 ( ) (A )97 (B )78 (C )2019 (D )8710、已知数列{}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为( ) (A )56 (B )58 (C )62 (D )60 11、已知数列{}n a 的通项公式5+=n a n 为, 从{}n a 中依次取出第3,9,27,…3n , …项,按原来的顺序排成一个新的数列,则此数列的前n 项和为 ( )(A )2)133(+n n (B )53+n(C )23103-+n n (D )231031-++n n二、填空题13、各项都是正数的等比数列{}n a ,公比1≠q 875,,a a a ,成等差数列,则公比q =14、已知等差数列{}na ,公差0≠d ,1751,,a a a 成等比数列,则18621751a a a a a a ++++= 15、已知数列{}n a 满足n n a S 411+=,则n a = 16、在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为二、 解答题17、已知数列{}n a 是公差d 不为零的等差数列,数列{}n b a 是公比为q 的等比数列,46,10,1321===b b b ,求公比q 及n b 。
4.3.1 等比数列的概念(第一课时)(同步练习)一、选择题1.等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =( )A .12B .-12C .2D .-22.(2021年保定期末)设递增等比数列{a n }的公比为q ,且a 1=3,3a 1,2a 2,a 3成等差数列,则q =( )A .3B .1或3C .2D .2或33.已知数列a ,a(1-a),a(1-a)2,…是等比数列,则实数a 的取值范围是( )A .a ≠1B .a ≠0或a ≠1C .a ≠0D .a ≠0且a ≠14.(2021年成都期末)已知等比数列{a n }的公比为正数,且a 2·a 6=9a 4,a 2=1,则a 1的值为( )A .3B .-3C .-13D .135.(2022年哈尔滨四模)在等比数列{a n }中,a 1=1,a 3-a 2=2,则a 5=( )A .16B .-1C .-16或-1D .16或16.(多选)设{a n }是等比数列,则下列结论中正确的是( )A.若a 1=1,a 5=4,则a 3=2B.若a 1+a 3>0,则a 2+a 4>0C.若a 2>a 1,则a 3>a 2D.若a 2>a 1>0,则a 1+a 3>2a 27.(2022年白山期末)等比数列{a n }的公比q 为整数,且a 1+a 4=9,a 2·a 3=8,则a 2+a 4+a 10a 1+a 3+a 9=( )A .2B .3C .-2D .-38.(多选)(2021年常州期末)已知等比数列{a n }的公比q =-12,等差数列{b n }的首项b 1=18,若a 8>b 8且a 9>b 9,则以下结论正确的有( )A .a 8>a 9B .a 8·a 9<0C .b 9>b 8D .b 10<09.各项都是正数的等比数列{a n }的公比q ≠1且a 2,12a 3,a 1成等差数列,则a 3+a 4a 4+a 5的值为( )A .1-52B .5+12C .5-12D .5+12或5-12二、填空题10.等比数列{a n }为单调递增数列,设其前n 项和为S n ,若a 2=2,a 1+a 3=5,则a 5的值为________11.在等比数列{a n }中,a 2=2,a 3=33,则a 1a 7=________12.(2022年凉山模拟)已知公差大于零的等差数列{a n }中,a 2,a 8,a 12依次成等比数列,则a 12a 2的值是________13.若x 1,x 2是函数f(x)=x 3-mx 2+nx(m>0,n>0)的两个不同的零点,且x 1,x 2,-3这三个数适当排列后可以成等差数列,也可以适当排列后成等比数列,则m =________,n =________三、解答题14.已知等比数列{a n }中,a 3+a 6=36,a 4+a 7=18,a n =12,求n.15.(2021年上海期末)已知数列{a n }满足a 1=56,a n +1=13a n +13(n ∈N *).(1)求证:数列⎩⎨⎧⎭⎬⎫a n -12是等比数列;(2)求数列{a n }的通项公式.参考答案及解析:一、选择题1.C 解析:∵等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,∴⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 1q 2+a 1q 4=40,解得q =2. 2.A 解析:由数列{a n }为等比数列,且a 1=3,3a 1,2a 2,a 3成等差数列,得4a 2=3a 1+a 3,即12q =9+3q 2,∴q 2-4q +3=0,解得q =1或q =3.又∵数列{a n }是递增等比数列,∴q =3. 3.D 解析:∵等比数列的每一项都不能为零,∴依题意得a ≠0且a ≠1.4.D 解析:因为等比数列{a n }中,a 2·a 6=9a 4,a 2=1,所以⎩⎪⎨⎪⎧a 1q 5=9a 1q 3,a 1q =1,由于q>0,所以解方程组得⎩⎪⎨⎪⎧q =3,a 1=13. 5.D 解析:根据题意,设等比数列{a n }的公比为q ,若a 1=1,a 3-a 2=2,则有q 2-q =2,解得q =2或-1.若q =2,则a 5=a 1q 4=16;若q =-1,则a 5=a 1q 4=1.故a 5=16或1.6.AD 解析:由等比数列的性质,可得a 23=a 1·a 5=4,由于奇数项的符号相同,可得a 3=2,因此A 正确;若a 1+a 3>0,则a 2+a 4=q(a 1+a 3),其正负由q 确定,因此B 不正确;若a 2>a 1,则a 1(q -1)>0,于是a 3-a 2=a 1q(q -1),其正负由q 确定,因此C 不正确;若a 2>a 1>0,则a 1q>a 1>0,可得a 1>0,q>1,所以1+q 2>2q ,则a 1(1+q 2)>2a 1q ,即a 1+a 3>2a 2,因此D 正确.故选AD .7.A 解析:因为等比数列{a n }的公比q 为整数,且a 1+a 4=9,a 2·a 3=a 1·a 4=8,所以a 1=1,a 4=8, 所以q =2,则a 2+a 4+a 10a 1+a 3+a 9=q(a 1+a 3+a 9)a 1+a 3+a 9=q =2.故选A .8.BD 解析:因为等比数列{a n }的公比q =-12,所以a 8·a 9<0,B 正确;设等差数列{b n }的公差为d ,所以a 1·⎝⎛⎭⎫-127>18+7d ,a 1·⎝⎛⎭⎫-128>18+8d ,显然a 1≠0,若a 1>0,则18+7d <0,即d <0,所以b 9-b 8=d <0,b 10=18+9d =18+7d +2d <0,a 8<a 9.若a 1<0,则18+8d <0,即d <0,所以b 9-b 8=d <0,b 10=18+9d =18+8d +d <0,a 8>a 9,所以A 无法确定,C 错误,D 正确.故选BD .9.C 解析:∵a 2,12a 3,a 1成等差数列,∴a 3=a 2+a 1.∵{a n }是公比为q 的等比数列,∴a 1q 2=a 1q +a 1,∴q 2-q -1=0.∵q >0,∴q =5+12,∴a 3+a 4a 4+a 5=a 1q 2+a 1q 3a 1q 3+a 1q 4=a 1q 2(1+q)a 1q 3(1+q)=1q =5-12.二、填空题10.答案:16 解析:设等比数列{}a n 的公比为q ,由题意可得a 1+a 3=2q +2q =5,整理得2q 2-5q +2=0,解得q =2或q =12.因为等比数列{a n }为单调递增数列,则q>1,∴q =2,因此a 5=a 2q 3=2×23=16.11.答案:89 解析:数列{a n }的公比为q =a 3a 2=332,故a 1a 7=a 1a 1q 6=1q 6=89.12.答案:49 解析:设数列{a n }的公差为d ,则有d>0.因为a 2,a 8,a 12依次成等比数列,所以a 28=a 2·a 12⇒(a 1+7d)2=(a 1+d)(a 1+11d)⇒19d 2=-a 1d.因为d>0,所以a 1=-19d ,因此a 12a 2=a 1+11d a 1+d =-8d -18d =49.13.答案:152,9 解析:由题意,x 1,x 2为方程x 2-mx +n =0的两根,x 1+x 2=m ,x 1x 2=n ,由m>0,n>0得x 1>0,x 2>0,不妨设x 1<x 2,x 1,x 2,-3这三个数适当排列后可以成等差数列,则x 1必是中间项,所以2x 1=x 2-3.又x 1,x 2,-3这三个数适当排列后成等比数列,则-3必是中间项,所以x 1·x 2=9,解得x 1=32,x 2=6,所以m =x 1+x 2=152,n =x 1x 2=9. 三、解答题14.解:设等比数列{a n }的公比为q ,因为a 3+a 6=36,a 4+a 7=18,所以a 4+a 7a 3+a 6=a 1q 3+a 1q 6a 1q 2+a 1q 5=a 1q 3(1+q 3)a 1q 2(1+q 3)=q =12,故a 3+a 6=a 1q 2+a 1q 5=14a 1+132a 1=36,解得a 1=27,故a n =27×⎝⎛⎭⎫12n -1=28-n .令28-n =12=2-1,解得n =9.15.(1)证明:∵a n +1=13a n +13(n ∈N *),∴a n +1-12a n -12=13a n +13-12a n -12=13a n -16a n -12=13⎝⎛⎭⎫a n -12a n -12=13,因此数列⎩⎨⎧⎭⎬⎫a n -12是等比数列.(2)解:由于a 1-12=56-12=13,∴数列⎩⎨⎧⎭⎬⎫a n -12是以13为首项、13为公比的等比数列,∴a n -12=13×⎝⎛⎭⎫13n -1=13n ,因此a n =12+13n .。
一、数列的概念选择题1.已知数列{}n a 的通项公式为2n a n n λ=-(R λ∈),若{}n a 为单调递增数列,则实数λ的取值范围是( ) A .(),3-∞B .(),2-∞C .(),1-∞D .(),0-∞2.对于实数,[]x x 表示不超过x 的最大整数.已知正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈,其中n S 为数列{}n a 的前n 项和,则[][][]1240S S S +++=( )A .135B .141C .149D .1553.已知数列{}n a 前n 项和为n S ,且满足*112(N 3)33n n n n S S S S n n --+≤+∈≥+,,则( )A .63243a a a ≤-B .2736+a a a a ≤+C .7662)4(a a a a ≥--D .2367a a a a +≥+4.已知数列,21,n -21是这个数列的( )A .第10项B .第11项C .第12项D .第21项5.数列{}n a 满足111n na a +=-,12a =,则2a 的值为( ) A .1B .-1C .13D .13-6.在数列{}n a 中,已知11a =,25a =,()*21n n n a a a n N ++=-∈,则5a 等于( )A .4-B .5-C .4D .57.在数列{}n a 中,()1111,1(2)nn n a a n a --==+≥,则5a 等于A .32B .53 C .85D .238.数列1,3,6,10,…的一个通项公式是( )A .()21n a n n =-- B .21n a n =-C .()12n n n a +=D .()12n n n a -=9.已知数列{}n a 满足12a =,111n na a +=-,则2018a =( ). A .2B .12 C .1-D .12-10.数列{}n a 的前n 项和记为n S ,()*11N ,2n n n a a a n n ++=-∈≥,12018a =,22017a =,则100S =( )A .2016B .2017C .2018D .201911.数列{}n a 前n 项和为n S ,若21n n S a =+,则72019a S +的值为( ) A .2B .1C .0D .1-12.已知数列{}n a 的首项为1,第2项为3,前n 项和为n S ,当整数1n >时,1112()nnn S S S S 恒成立,则15S 等于( )A .210B .211C .224D .22513.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .174B .184C .188D .16014.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .184B .174C .188D .16015.设n a 表示421167n n +的个位数字,则数列{}n a 的第38项至第69项之和383969a a a ++⋅⋅⋅+=( )A .180B .160C .150D .14016.已知数列{}n a 的前n 项和2n S n n =+,则4a 的值为( ) A .4B .6C .8D .1017.已知数列{}n a 满足:113a =,1(1)21n n n a na n ++-=+,*n N ∈,则下列说法正确的是( ) A .1n n a a +≥ B .1n n a a +≤C .数列{}n a 的最小项为3a 和4aD .数列{}n a 的最大项为3a 和4a18.数列{}:1,1,2,3,5,8,13,21,34,...,n F 成为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列从第三项开始,每项等于其前两相邻两项之和,记该数{}n F 的前n 项和为n S ,则下列结论正确的是( )A .201920212S F =+B .201920211S F =-C .201920202S F =+D .201920201S F =-19.已知数列{}n a 的前n 项和为n S ,已知13n n S +=,则34a a +=( )A .81B .243C .324D .21620.在数列{}n a 中,114a =-,111(1)n n a n a -=->,则2019a 的值为( ) A .45B .14-C .5D .以上都不对二、多选题21.已知数列{}n a :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68S a = B .733S =C .135********a a a a a ++++= D .2222123202020202021a a a a a a ++++=22.设数列{}n a 满足1102a <<,()1ln 2n n n a a a +=+-对任意的*n N ∈恒成立,则下列说法正确的是( ) A .2112a << B .{}n a 是递增数列 C .2020312a <<D .2020314a << 23.若不等式1(1)(1)2n na n+--<+对于任意正整数n 恒成立,则实数a 的可能取值为( ) A .2- B .1- C .1 D .224.若数列{}n a 满足112,02121,12n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,则数列{}n a 中的项的值可能为( ) A .15B .25C .45D .6525.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n n F n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==C .()1122n nF n ⎡⎤⎛⎛+-⎥=- ⎥⎝⎭⎝⎭⎦ D .()1122n n F n ⎡⎤⎛⎛⎥=+ ⎥⎝⎭⎝⎭⎦26.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .911a a = C .当9n =或10时,n S 取得最大值D .613S S =27.在等差数列{}n a 中,公差0d ≠,前n 项和为n S ,则( ) A .4619a a a a >B .130S >,140S <,则78a a >C .若915S S =,则n S 中的最大值是12SD .若2n S n n a =-+,则0a =28.等差数列{}n a 的前n 项和记为n S ,若10a >,717S S =,则( ) A .0d < B .120a > C .13n S S ≤D .当且仅当0nS <时,26n ≥29.设{}n a 是等差数列,n S 是其前n 项和,且56678,S S S S S <=>,则下列结论正确的是( ) A .0d < B .70a =C .95S S >D .67n S S S 与均为的最大值30.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =D .当8n ≥时,0n a <31.设d 为正项等差数列{}n a 的公差,若0d >,32a =,则( ) A .244a a ⋅<B .224154a a +≥C .15111a a +> D .1524a a a a ⋅>⋅32.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( ) A .45n a n =-B .23n a n =+C .223n S n n =-D .24n S n n =+33.设等差数列{}n a 的前n 项和为n S ,若39S =,47a =,则( )A .2n S n =B .223n S n n =-C .21n a n =-D .35n a n =-34.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .2437d -<<- C .S n <0时,n 的最小值为13 D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项 35.等差数列{}n a 的前n 项和为n S ,若90a <,100a >,则下列结论正确的是( ) A .109S S >B .170S <C .1819S S >D .190S >【参考答案】***试卷处理标记,请不要删除一、数列的概念选择题 1.A 解析:A 【分析】由已知得121n n a a n λ+-=+-,根据{}n a 为递增数列,所以有10n n a a +->,建立关于λ的不等式,解之可得λ的取值范围.【详解】由已知得221(1)(1)21n n a a n n n n n λλλ+-=+-+-+=+-,因为{}n a 为递增数列,所以有10n n a a +->,即210n λ+->恒成立, 所以21n λ<+,所以只需()min 21n λ<+,即2113λ<⨯+=, 所以3λ<, 故选:A. 【点睛】本题考查数列的函数性质:递增性,根据已知得出10n n a a +->是解决此类问题的关键,属于基础题.2.D解析:D 【分析】利用已知数列的前n 项和求其n S 得通项,再求[]n S 【详解】解:由于正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈,所以当1n =时,得11a =, 当2n ≥时,111111[()]22n n n n n n n S a S S a S S --⎛⎫=+=-+ ⎪-⎝⎭ 所以111n n n n S S S S ---=-,所以2=n S n ,因为各项为正项,所以=n S 因为[][][]1234851,1,[]1,[][]2S S S S S S =======,[]05911[][]3S S S ====,[]161724[][]4S S S ==== ,[]252635[][]5S S S ==== ,[]363740[][]6S S S ====.所以[][][]1240S S S +++=13+25+37+49+511+65=155⨯⨯⨯⨯⨯⨯,故选:D 【点睛】此题考查了数列的已知前n 项和求通项,考查了分析问题解决问题的能力,属于中档题.3.C解析:C 【分析】由条件可得出11n n n n a a a a -+-≤-,然后可得3243546576a a a a a a a a a a -≤-≤-≤-≤-,即可推出选项C 正确.【详解】因为*112(N 3)33n n n n S S S S n n --+≤+∈≥+,,所以12133n n n n S S S S -+-≤--,所以113n n n n a a a a +-≤++ 所以11n n n n a a a a -+-≤-,所以3243546576a a a a a a a a a a -≤-≤-≤-≤-所以()6232435465764a a a a a a a a a a a a -=-+-+-+-≤- 故选:C 【点睛】本题主要考查的是数列的前n 项和n S 与n a 的关系,解答的关键是由条件得到11n n n n a a a a -+-≤-,属于中档题.4.B解析:B 【分析】根据题中所给的通项公式,令2121n -=,求得n =11,得到结果. 【详解】令2121n -=,解得n =11是这个数列的第11项. 故选:B. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有判断数列的项,属于基础题目.5.B解析:B 【分析】根据数列的递推公式,代入计算可得选项. 【详解】 因为111n n a a +=-,12a =,所以21111112a a ===---, 故选:B. 【点睛】本题考查由数列递推式求数列中的项,属于基础题.6.B解析:B 【分析】根据已知递推条件()*21n n n a a a n N ++=-∈即可求得5a【详解】由()*21n n n a a a n N++=-∈知:3214a a a 4321a a a 5435a a a故选:B 【点睛】本题考查了利用数列的递推关系求项,属于简单题7.D解析:D 【解析】分析:已知1a 逐一求解2345122323a a a a ====,,,. 详解:已知1a 逐一求解2345122323a a a a ====,,,.故选D 点睛:对于含有()1n-的数列,我们看作摆动数列,往往逐一列举出来观察前面有限项的规律.8.C【分析】首先根据已知条件得到410a =,再依次判断选项即可得到答案. 【详解】由题知:410a =,对选项A ,()2444113a =--=,故A 错误;对选项B ,244115a =-=,故B 错误;对选项C ,()4441102a ⨯+==,C 正确; 对选项D ,()444162a ⨯-==,故D 错误. 故选:C 【点睛】本题主要考查数列的通项公式,属于简单题.9.B解析:B 【分析】利用递推关系可得数列{}n a 是以3为周期的周期数列,从而可得2018a . 【详解】 在数列{}n a 中,111n na a +=-,且12a =, 211112a a ∴=-=, 3211121a a =-=-=- , ()41311112a a a =-=--== ∴数列{}n a 是以3为周期的周期数列,201867232=⨯+,2018212a a ∴==.故选:B 【点睛】本题考查了由数列的递推关系式研究数列的性质,考查了数列的周期性,属于基础题.10.A【分析】根据题意,由数列的递推公式求出数列的前8项,分析可得数列{}n a 是周期为6的数列,且1234560a a a a a a +++++=,进而可得1001234S a a a a =+++,计算即可得答案. 【详解】解:因为12018a =,22017a =,()*11N ,2n n n a a a n n +-=-∈≥,则321201720181a a a =-=-=-, 432(1)20172018a a a =-=--=-, 543(2018)(1)2017a a a =-=---=-, 654(2017)(2018)1a a a =-=---=, 76511(2017)2018a a a a =-=--==,8762201812017a a a a =-=-==,…,所以数列{}n a 是周期数列,周期为6, 因为12560a a a a ++⋅⋅⋅++=,所以()100125697989910016S a a a a a a a a =++⋅⋅⋅++++++12342016a a a a =+++=.故选:A . 【点睛】本题考查数列的递推公式的应用,关键是分析数列各项变化的规律,属于基础题.11.A解析:A 【分析】根据21n n S a =+,求出1a ,2a ,3a ,4a ,⋯⋯,寻找规律,即可求得答案. 【详解】21n n S a =+当1n =,1121a a =+,解得:11a = 当2n =,122221a a a +=+,解得:21a =- 当3n =,32132221a a a a ++=+,解得:31a = 当4n =,4321422221a a a a a +++=+,解得:41a =-⋯⋯当n 奇数时,1n a = 当n 偶数时,1n a =-∴71a =,20191S =故720192a S += 故选:A. 【点睛】本题主要考查了根据递推公式求数列值,解题关键是掌握数列的基础知识,考查了分析能力和计算能力,属于中档题.12.D解析:D 【分析】利用已知条件转化推出1122n n a a a +-==,说明数列是等差数列,然后求解数列的和即可. 【详解】 解:结合1112()nnn S S S S 可知,11122n n n S S S a +-+-=,得到1122n n a a a +-==,故数列{}n a 为首项为1,公差为2的等差数列,则12(1)21n a n n =+-=-,所以1529a =,所以11515()15(291)1522522a a S ++===, 故选:D . 【点睛】本题考查数列的递推关系式的应用,考查数列求和,是基本知识的考查.13.A解析:A 【分析】根据已知条件求得11n n n a a -=--,利用累加法求得19a . 【详解】 依题意:3,4,6,9,13,18,24,1,2,3,4,5,6,所以11n n n a a -=--(2n ≥),且13a =,所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()12213n n =-+-++++()()()11113322n n n n -+--=+=+.所以19191831742a ⨯=+=. 故选:A 【点睛】本小题主要考查累加法,属于中档题.14.B解析:B 【分析】根据高阶等差数列的知识,结合累加法求得数列的通项公式,由此求得19a . 【详解】3,4,6,9,13,18,24,1,2,3,4,5,6,所以()1112,3n n a a n n a --=-≥=,所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()1213n n =-+-+++()()()11113322n n n n -+⋅--=+=+.所以19191831742a ⨯=+=. 故选:B 【点睛】本小题主要考查数列新定义,考查累加法,属于基础题.15.B解析:B 【分析】根据题意可得n a 为421167n n +的个位数为27n n +的个位数,而2n 的个位是以2,4,8,6为周期,7n 的个位数是以7,9,3,1为周期,即可求和. 【详解】由n a 为421167n n +的个位数, 可得n a 为27n n +的个位数, 而2n 的个位是以2,4,8,6为周期,7n 的个位数是以7,9,3,1为周期,所以27n n +的个位数是以9,3,1,7为周期, 即421167n n +的个位数是以9,3,1,7为周期, 第38项至第69项共32项,共8个周期, 所以383969a a a ++⋅⋅⋅+=8(9317)160⨯+++=. 故选:B16.C解析:C 【分析】利用443a S S =-计算.由已知22443(44)(33)8a S S =-=+-+=.故选:C .17.C解析:C 【分析】令n n b na =,由已知得121n n b b n +-=+运用累加法得2+12n b n =,从而可得12+n a n n=,作差得()()()+13+4+1n n a n n a n n -=-,从而可得12345>>n a a a a a a =<<<,由此可得选项. 【详解】令n n b na =,则121n n b b n +-=+,又113a =,所以113b =,213b b -=,325b b -=, ,121n n b b n --=-, 所以累加得()()213+2113++122nn n b n --==,所以2+1212+n nb n an n n n===, 所以()()()()+13+41212+1+++1+1n n n n a a n n n n n n -⎛⎫-=-= ⎪⎝⎭,所以当3n <时,+1n n a a <,当3n =时,+1n n a a =,即34a a =,当>3n 时,+1>n n a a , 即12345>>n a a a a a a =<<<,所以数列{}n a 的最小项为3a 和4a ,故选:C. 【点睛】本题考查构造新数列,运用累加法求数列的通项,以及运用作差法判断差的正负得出数列的增减性,属于中档题.18.B解析:B 【分析】利用迭代法可得21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,可得21n n F S +=+,代入2019n =即可求解.【详解】由题意可得该数列从第三项开始,每项等于其前两相邻两项之和, 则211112n n n n n n n n n n F F F F F F F F F F ++----=+=++=+++1211232n n n n n n n n n F F F F F F F F F -------=+++=++++=123211n n n n F F F F F F ---=+++++++,所以21n n F S +=+,令2019n =,可得201920211S F =-,故选:B关键点点睛:本题的关键点是理解数列新定义的含义得出21n n n F F F ++=+,利用迭代法得出21123211n n n n n n n F F F F F F F F F ++---=+=+++++++,进而得出21n n F S +=+.19.D解析:D 【分析】利用项和关系,1n n n a S S -=-代入即得解. 【详解】利用项和关系,1332443=54=162n n n a S S a S S a S S -=-∴=-=-,34216a a ∴+=故选:D 【点睛】本题考查了数列的项和关系,考查了学生转化与划归,数学运算能力,属于基础题.20.A解析:A 【分析】根据递推式可得{}n a 为一个周期为3的数列,求{}n a 中一个周期内的项,利用周期性即可求2019a 的值 【详解】由114a =-,111(1)n n a n a -=->知21115a a =-= 321415a a =-= 4131114a a a =-=-= 故数列{}n a 是周期为3的数列,而2019可被3整除 ∴2019345a a == 故选:A 【点睛】本题主要考查递推数列,考查数列的周期性,考查合情推理,属于基础题二、多选题【分析】根据题意写出,,,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】对A ,,,故A 不正确; 对B ,,故B 正确; 对C ,由,,解析:BCD 【分析】根据题意写出8a ,6S ,7S ,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】对A ,821a =,620S =,故A 不正确; 对B ,761333S S =+=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,…,202120222020a a a =-,可得135********a a a a a +++⋅⋅⋅+=,故C 正确;对D ,该数列总有21n n n a a a ++=+,2121a a a =,则()222312321a a a a a a a a =-=-, ()233423423a a a a a a a a =-=-,…,()220182018201920172018201920172018a a a a a a a a =-=-, 22019a =2019202020192018a a a a -,220202020202120202019a a a a a =-, 故2222123202*********a a a a a a +++⋅⋅⋅+=,故D 正确.故选:BCD 【点睛】关键点睛:解答本题的关键是对CD 的判断,即要善于利用21n n n a a a ++=+对所给式子进行变形.22.ABD 【分析】构造函数,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】 由, 设, 则,所以当时,,即在上为单调递增函数,所以函数在为单调递增函数, 即, 即, 所以 ,解析:ABD 【分析】构造函数()()ln 2f x x x =+-,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】由()1ln 2n n n a a a +=+-,1102a << 设()()ln 2f x x x =+-, 则()11122xf x x x-'=-=--, 所以当01x <<时,0f x ,即()f x 在0,1上为单调递增函数, 所以函数在10,2⎛⎫ ⎪⎝⎭为单调递增函数,即()()102f f x f ⎛⎫<< ⎪⎝⎭,即()131ln 2ln ln 1222f x <<<+<+=, 所以()112f x << , 即11(2)2n a n <<≥, 所以2112a <<,2020112a <<,故A 正确;C 不正确; 由()f x 在0,1上为单调递增函数,112n a <<,所以{}n a 是递增数列,故B 正确; 2112a <<,所以 23132131113ln(2)ln ln 222234a a a e =+->+>+=+> 因此20202020333144a a a ∴<><>,故D 正确 故选:ABD 【点睛】本题考查了数列性质的综合应用,属于难题.23.ABC【分析】根据不等式对于任意正整数n 恒成立,即当n 为奇数时有恒成立,当n 为偶数时有恒成立,分别计算,即可得解. 【详解】根据不等式对于任意正整数n 恒成立, 当n 为奇数时有:恒成立, 由递减解析:ABC 【分析】根据不等式1(1)(1)2n na n +--<+对于任意正整数n 恒成立,即当n 为奇数时有12+a n-<恒成立,当n 为偶数时有12a n<-恒成立,分别计算,即可得解. 【详解】根据不等式1(1)(1)2n na n +--<+对于任意正整数n 恒成立, 当n 为奇数时有:12+a n-<恒成立,由12+n 递减,且1223n<+≤,所以2a -≤,即2a ≥-, 当n 为偶数时有:12a n<-恒成立, 由12n -第增,且31222n ≤-<, 所以32a <, 综上可得:322a -≤<, 故选:ABC . 【点睛】本题考查了不等式的恒成立问题,考查了分类讨论思想,有一定的计算量,属于中当题.24.ABC 【分析】利用数列满足的递推关系及,依次取代入计算,能得到数列是周期为4的周期数列,得项的所有可能值,判断选项即得结果. 【详解】数列满足,,依次取代入计算得,,,,,因此继续下去会循环解析:ABC 【分析】利用数列{}n a 满足的递推关系及135a =,依次取1,2,3,4n =代入计算2345,,,a a a a ,能得到数列{}n a 是周期为4的周期数列,得项的所有可能值,判断选项即得结果. 【详解】数列{}n a 满足112,02121,12n n n n n a a a a a +⎧≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,依次取1,2,3,4,...n =代入计算得,211215a a =-=,32225a a ==,43425a a ==,5413215a a a =-==,因此继续下去会循环,数列{}n a 是周期为4的周期数列,所有可能取值为:1234,,,5555. 故选:ABC. 【点睛】本题考查了数列的递推公式的应用和周期数列,属于基础题.25.BC 【分析】根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】解:斐波那契数列为1,1,2,3,5,8,13,21,……, 显然,,,,,所以且,即B 满足条件; 由, 所以 所以数列解析:BC 【分析】根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】解:斐波那契数列为1,1,2,3,5,8,13,21,……,显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,,()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且()()11,21F F ==,即B 满足条件;由()()()11,2F n F n F n n +=+-≥,所以()()()()11F n n F n n ⎤+-=--⎥⎣⎦所以数列()()1F n n ⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭是以12+为首项,12+为公比的等比数列, 所以()()1nF n n +-=⎝⎭11515()n F F n n -+=++, 令1nn n F b-=⎝⎭,则11n n b +=+,所以1n n b b +=-, 所以nb ⎧⎪⎨⎪⎪⎩⎭的等比数列,所以1n n b -+,所以()1115n n n nF n --⎤⎤⎛⎫+⎥⎥=+=- ⎪ ⎪⎥⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦; 即C 满足条件; 故选:BC 【点睛】考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要求由较高的逻辑思维能力,属于中档题.26.ABD 【分析】由题意利用等差数列的通项公式、求和公式可得,结合等差数列的性质,逐一判断即可得出结论. 【详解】∵等差数列的前项和为,, ∴,解得, 故,故A 正确;∵,,故有,故B 正确; 该数解析:ABD 【分析】由题意利用等差数列的通项公式、求和公式可得19a d =-,结合等差数列的性质,逐一判断即可得出结论. 【详解】∵等差数列{}n a 的前n 项和为n S ,1385a a S +=, ∴()111875282a a d a d ⨯++=+,解得19a d =-, 故10190a a d =+=,故A 正确;∵918a a d d d =+=-=,11110a a d d =+=,故有911a a =,故B 正确; 该数列的前n 项和()21119222n n n n S na d d d n -=+=-⋅ ,它的最值,还跟d 的值有关,故C 错误; 由于61656392S a d d ⨯=+=-,131131213392S a d d ⨯=+=-,故613S S =,故D 正确, 故选:ABD. 【点睛】思路点睛:利用等差数列的通项公式以及前n 项和公式进行化简,直接根据性质判断结果.27.AD 【分析】对于,作差后利用等差数列的通项公式运算可得答案;对于,根据等差数列的前项和公式得到和, 进而可得,由此可知,故不正确; 对于,由得到,,然后分类讨论的符号可得答案; 对于,由求出及解析:AD 【分析】对于A ,作差后利用等差数列的通项公式运算可得答案;对于B ,根据等差数列的前n 项和公式得到70a >和780a a +<, 进而可得80a <,由此可知78||||a a <,故B 不正确;对于C ,由915S S =得到,12130a a +=,然后分类讨论d 的符号可得答案; 对于D ,由n S 求出n a 及1a ,根据数列{}n a 为等差数列可求得0a =. 【详解】对于A ,因为46191111(3)(5)(8)a a a a a d a d a a d -=++-+215d =,且0d ≠,所以24619150a a a a d -=>,所以4619a a a a >,故A 正确;对于B ,因为130S >,140S <,所以77713()1302a a a +=>,即70a >,787814()7()02a a a a +=+<,即780a a +<,因为70a >,所以80a <,所以7878||||0a a a a -=+<,即78||||a a <,故B 不正确;对于C ,因为915S S =,所以101114150a a a a ++++=,所以12133()0a a +=,即12130a a +=,当0d >时,等差数列{}n a 递增,则12130,0a a <>,所以n S 中的最小值是12S ,无最大值;当0d <时,等差数列{}n a 递减,则12130,0a a ><,所以n S 中的最大值是12S ,无最小值,故C 不正确;对于D ,若2n S n n a =-+,则11a S a ==,2n ≥时,221(1)(1)n n n a S S n n a n n a -=-=-+--+--22n =-,因为数列{}n a 为等差数列,所以12120a a =⨯-==,故D 正确. 故选:AD 【点睛】关键点点睛:熟练掌握等差数列的通项公式、前n 项和公式是解题关键.28.AB 【分析】根据等差数列的性质及可分析出结果. 【详解】 因为等差数列中, 所以, 又, 所以,所以,,故AB 正确,C 错误; 因为,故D 错误, 故选:AB 【点睛】关键点睛:本题突破口在于由解析:AB 【分析】根据等差数列的性质及717S S =可分析出结果. 【详解】因为等差数列中717S S =, 所以89161712135()0a a a a a a ++++=+=,又10a >,所以12130,0a a ><,所以0d <,12n S S ≤,故AB 正确,C 错误; 因为125251325()2502a a S a +==<,故D 错误, 故选:AB【点睛】关键点睛:本题突破口在于由717S S =得到12130a a +=,结合10a >,进而得到12130,0a a ><,考查学生逻辑推理能力.29.ABD【分析】由,判断,再依次判断选项.【详解】因为,,,所以数列是递减数列,故,AB 正确;,所以,故C 不正确;由以上可知数列是单调递减数列,因为可知,的最大值,故D 正确.故选:AB解析:ABD【分析】由1n n n S S a --=()2n ≥,判断6780,0,0a a a >=<,再依次判断选项.【详解】因为5665600S S S S a <⇒->⇒>,677670S S S S a =⇒-==,788780S S S S a >⇒-=<,所以数列{}n a 是递减数列,故0d <,AB 正确; ()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确;由以上可知数列{}n a 是单调递减数列,因为6780,0,0a a a >=<可知,67n S S S 与均为的最大值,故D 正确.故选:ABD【点睛】本题考查等差数列的前n 项和的最值,重点考查等差数列的性质,属于基础题型.30.AD【分析】利用等差数列的通项公式可以求,,即可求公差,然后根据等差数列的性质判断四个选项是否正确.【详解】因为,所以 ,因为,所以,所以等差数列公差,所以是递减数列,故最大,选项A解析:AD【分析】利用等差数列的通项公式可以求70a >,80a <,即可求公差0d <,然后根据等差数列的性质判断四个选项是否正确.【详解】因为67S S <,所以7670S S a -=> ,因为78S S >,所以8780S S a -=<,所以等差数列{}n a 公差870d a a =-<,所以{}n a 是递减数列,故1a 最大,选项A 正确;选项B 不正确;10345678910770S S a a a a a a a a -=++++++=>,所以310S S ≠,故选项C 不正确;当8n ≥时,80n a a ≤<,即0n a <,故选项D 正确;故选:AD【点睛】本题主要考查了等差数列的性质和前n 项和n S ,属于基础题.31.ABC【分析】由已知求得公差的范围:,把各选项中的项全部用表示,并根据判断各选项.【详解】由题知,只需,,A 正确;,B 正确;,C 正确;,所以,D 错误.【点睛】本题考查等差数列的性解析:ABC【分析】由已知求得公差d 的范围:01d <<,把各选项中的项全部用d 表示,并根据01d <<判断各选项.由题知,只需1220010a d d d =->⎧⇒<<⎨>⎩, ()()2242244a a d d d ⋅=-⋅+=-<,A 正确;()()2222415223644a a d d d d +=-++=-+>≥,B 正确; 21511111122221a a d d d+=+=>-+-,C 正确; ()()()()2152422222230a a a a d d d d d ⋅-⋅=-⋅+--⋅+=-<,所以1524a a a a ⋅<⋅,D 错误.【点睛】本题考查等差数列的性质,解题方法是由已知确定d 的范围,由通项公式写出各项(用d 表示)后,可判断.32.AC【分析】由求出,再由可得公差为,从而可求得其通项公式和前项和公式【详解】由题可知,,即,所以等差数列的公差,所以,.故选:AC.【点睛】本题考查等差数列,考查运算求解能力.解析:AC【分析】由535S =求出37a =,再由411a =可得公差为434d a a =-=,从而可求得其通项公式和前n 项和公式【详解】由题可知,53535S a ==,即37a =,所以等差数列{}n a 的公差434d a a =-=, 所以()4445n a a n d n =+-=-,()2451232n n n S n n --==-. 故选:AC.【点睛】本题考查等差数列,考查运算求解能力. 33.AC【分析】利用等差数列的前项和公式、通项公式列出方程组,求出,,由此能求出与.等差数列的前项和为.,,,解得,,.故选:AC .【点睛】本题考查等差数列的通项公式求和公解析:AC【分析】利用等差数列{}n a 的前n 项和公式、通项公式列出方程组,求出11a =,2d =,由此能求出n a 与n S .【详解】等差数列{}n a 的前n 项和为n S .39S =,47a =, ∴31413239237S a d a a d ⨯⎧=+=⎪⎨⎪=+=⎩, 解得11a =,2d =,1(1)221n a n n ∴+-⨯=-=.()21212n n n S n +-== 故选:AC .【点睛】本题考查等差数列的通项公式求和公式的应用,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.34.ABCD【分析】S12>0,a7<0,利用等差数列的求和公式及其性质可得:a6+a7>0,a6>0.再利用a3=a1+2d =12,可得<d <﹣3.a1>0.利用S13=13a7<0.可得Sn <0解析:ABCD【分析】S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得247-<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确.【详解】∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0,又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13. 数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0. 对于:7≤n ≤12时,n nS a <0.S n >0,但是随着n 的增大而减小;a n <0, 但是随着n 的增大而减小,可得:n nS a <0,但是随着n 的增大而增大. ∴n =7时,n nS a 取得最小值. 综上可得:ABCD 都正确.故选:ABCD .【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.35.ABD【分析】先根据题意可知前9项的和最小,判断出正确;根据题意可知数列为递减数列,则,又,进而可知,判断出不正确;利用等差中项的性质和求和公式可知,,故正确.【详解】根据题意可知数列为递增解析:ABD【分析】先根据题意可知前9项的和最小,判断出A 正确;根据题意可知数列为递减数列,则190a >,又181919S S a =-,进而可知1516S S >,判断出C 不正确;利用等差中项的性质和求和公式可知()01179179172171722a a a S a <+⨯⨯===,()1191019101921919022a a a S a +⨯⨯===>,故BD 正确. 【详解】根据题意可知数列为递增数列,90a <,100a >, ∴前9项的和最小,故A 正确; ()11791791721717022a a a S a +⨯⨯===<,故B 正确; ()1191019101921919022a a a S a +⨯⨯===>,故D 正确; 190a >,181919S S a ∴=-,1819S S ∴<,故C 不正确. 故选:ABD .【点睛】本题考查等差数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.。