多元Logistic_回归分析解析
- 格式:ppt
- 大小:486.00 KB
- 文档页数:67
Logistic回归分析报告结果解读分析Logistic回归常用于分析二分类因变量(如存活和死亡、患病和未患病等)与多个自变量的关系。
比较常用的情形是分析危险因素与是否发生某疾病相关联。
例如,若探讨胃癌的危险因素,可以选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群有不同的临床表现和生活方式等,因变量就为有或无胃癌,即“是”或“否”,为二分类变量,自变量包括年龄、性别、饮食习惯、是否幽门螺杆菌感染等。
自变量既可以是连续变量,也可以为分类变量。
通过Logistic回归分析,就可以大致了解胃癌的危险因素。
Logistic回归与多元线性回归有很多相同之处,但最大的区别就在于他们的因变量不同。
多元线性回归的因变量为连续变量;Logistic回归的因变量为二分类变量或多分类变量,但二分类变量更常用,也更加容易解释。
1.Logistic回归的用法一般而言,Logistic回归有两大用途,首先是寻找危险因素,如上文的例子,找出与胃癌相关的危险因素;其次是用于预测,我们可以根据建立的Logistic回归模型,预测在不同的自变量情况下,发生某病或某种情况的概率(包括风险评分的建立)。
2.用Logistic回归估计危险度所谓相对危险度(risk ratio,RR)是用来描述某一因素不同状态发生疾病(或其它结局)危险程度的比值。
Logistic回归给出的OR(odds ratio)值与相对危险度类似,常用来表示相对于某一人群,另一人群发生终点事件的风险超出或减少的程度。
如不同性别的胃癌发生危险不同,通过Logistic回归可以求出危险度的具体数值,例如1.7,这样就表示,男性发生胃癌的风险是女性的1.7倍。
这里要注意估计的方向问题,以女性作为参照,男性患胃癌的OR是1.7。
如果以男性作为参照,算出的OR将会是0.588(1/1.7),表示女性发生胃癌的风险是男性的0.588倍,或者说,是男性的58.8%。
撇开了参照组,相对危险度就没有意义了。
二元logistic回归分析1.理论Logistic回归模型:设因变量为Y,自变量为x1,x2,...,xn。
事件发生与不发生的概率比Pi /(1-pi)被称为事件发生比。
后对事件发生比做对数变换,能得到logistic回归的线性模式:ln(pi /(1-pi))=β+β1x1+...βnxn采用最大似然比法或者迭代法对参数的估计,参数通过似然比检验和Wold 检验。
二元logistic回归是指因变量为二分类变量时的回归分析。
在建立回归模型时,目标的取值范围在0-1之间。
常因变量为二分类数据自变量可以是连续型随机变量和分类数据图1数据类型2.重新编码操作步骤首先将数据导入spss中,数据情况如下图所示,首先先对变量进行重新编码处理。
图2数据情况第一步、点击转换、重新编码为相同的变量。
图3数据编码第一步第二步:进入图中变量框后,将需要处理的变量放入变量放入框中,后点击旧值和新值,在旧值中输入原有值,后在新值中输入新值,点击添加、继续。
图4数据编码第二步3.二元logistic回归分析操作步骤第一步:点击分析、回归、二元logistic。
图5二元logistic回归分析第一步第二步:进入图中对话框后将因变量、自变量放入对应变量框中,点击分类、进入定义分类变量框后。
将协变量框中的分类变量放入分类协变量框中(一般情况除二分类或有序分类数据不需哑变量设置),并进行哑变量的设置,点击继续。
图6第二步第三步:点击选项,勾选霍斯默-莱梅肖拟合优度、Exp(B)的置信区间、迭代历史记录。
点击继续、确定。
图7选项勾选4.二元logistic回归分析结果二元logistic回归分析的个案摘要、因变量编码、分类变量编码结果。
图8分类变量编码迭代历史记录、分类表、方程中的变量、未包括在方程中的变量结果。
图9块0:起始块迭代历史记录、模型中的Omnibus检验、模型摘要、霍斯默-莱梅肖检验。
图10块1:方法=输入分类表、方差中的变量结果。
多元logistic回归是一种用于研究多个自变量对因变量影响的统计方法。
通过多元logistic回归分析,我们可以了解自变量对因变量的贡献程度,并确定哪些自变量对因变量有显著影响。
在解读多元logistic回归结果时,需要注意以下几点:
系数解读:在多元logistic回归模型中,每个自变量的系数表示该变量对因变量的贡献程度。
系数的符号表示了影响的方向,正号表示正相关,负号表示负相关。
系数的绝对值表示影响的大小,绝对值越大,影响越大。
OR值解读:在多元logistic回归模型中,每个自变量的OR值表示该变量对因变量发生概率的影响程度。
OR值的范围在0到无穷大之间,值越大表示该自变量对因变量的影响越大。
显著性检验:在多元logistic回归模型中,每个自变量都需要进行显著性检验。
如果某个自变量的p值小于预设的显著性水平(如0.05),则认为该自变量对因变量有显著影响。
模型评估:在多元logistic回归分析结束后,需要对模型进行评估。
常用的评价指标包括模型的拟合优度、预测准确率等。
如果模型的评估结果良好,则认为模型可用于预测或解释实际问题。
总之,多元logistic回归结果解读需要综合考虑系数的符号、绝对值、OR值、显著性检验和模型评估等多个方面。
通过深入了解自变量对因变量的贡献程度和影响方式,可以帮助我们更好地理解数据,并进行科学决策。
掌握多元logistic回归分析,看这篇就够了01. 概念多元 logistics 回归(multinomial logistics regression)又称多分类logistics 回归。
医学研究、社会科学领域中,存在因变量是多项的情况,其中又分为无序(口味:苦、甜、酸、辣;科目:数学、自然、语文、英语)和有序(辣度:微辣、中辣、重辣)两类。
对于这类数据需要用多元 logistics 回归。
多元logistics 回归实际就是多个二元logistics 回归模型描述各类与参考分类相比各因素的作用。
如,对于一个三分类的因变量(口味:酸、甜、辣),可建立两个二元logistics回归模型,分别描述酸味与甜味相比及辣味与酸味相比,各口味的作用。
但在估计这些模型参数时,所有对象是一起估计的,其他参数的意义及模型的筛选等与二元logistics类似。
02.条件因变量:三个及以上分类变量自变量:分类或连续变量协变量:分类变量03.案例及操作【例】为了研究饮食口味偏好的影响因素,分析年龄、婚姻情况、生活态度在饮食口味类型偏好(1=酸、2=甜、3=辣)中的作用,共挑选被试30人,结果见下表,试进行多元logistics回归。
说明:本案例数据纯属编造,结论不具有参考性和科学性,仅供操作训练使用。
⑴ 建立数据文件口味偏好,sav,见下图每个被试有一个口味偏好因变量taste和3个自变量age、married、inactive。
⑵对口味偏好 taste 加权单击【数据】→【加权个案】,打开加权个案对话框,加权口味偏好,见下图(3)选择【分析】→【回归】→【多项logistics】,打开多项logistics回归主对话框,见图。
⌝【因变量】:分类变量,本例选择“taste”⌝【因子】:可选择多个变量作为因子,本例选择“age”、“married”、“inactive”⌝【协变量】:可选择多个变量作为协变量,本例未选择(4)单击【参考类别】按钮,打开参考类别对话框,见图⌝【参考类别】:可选择【第一类别】、【最后类别】或【定制】,本例选择【最后类别】⌝【类别顺序】:可选择【升序】或【降序】(5)单击【模型】按钮,打开模型对话框,见下图:本例主要考察自变量age、married、inactive的主效应,暂不考察它们之间的交互作用,然后点击【继续】;(6)单击【statistics】按钮,打开统计对话框,见图:设置模型的统计量。
Logistic回归分析报告结果解读分析Logistic 回归分析报告结果解读分析Logistic 回归常用于分析二分类因变量(如存活和死亡、患病和未患病等)与多个自变量的关系。
比较常用的情形是分析危险因素与是否发生某疾病相关联。
例如,若探讨胃癌的危险因素,可以选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群有不同的临床表现和生活方式等,因变量就为有或无胃癌,即“是” 或“否”,为二分类变量,自变量包括年龄、性别、饮食习惯、是否幽门螺杆菌感染等。
自变量既可以是连续变量,也可以为分类变量。
通过Logistic 回归分析,就可以大致了解胃癌的危险因素。
Logistic 回归与多元线性回归有很多相同之处,但最大的区别就在于他们的因变量不同。
多元线性回归的因变量为连续变量;Logistic 回归的因变量为二分类变量或多分类变量,但二分类变量更常用,也更加容易解释。
1. Logistic 回归的用法一般而言,Logistic 回归有两大用途,首先是寻找危险因素,如上文的例子,找出与胃癌相关的危险因素;其次是用于预测,我们可以根据建立的Logistic 回归模型,预测在不同的自变量情况下,发生某病或某种情况的概率(包括风险评分的建立)。
2. 用Logistic回归估计危险度所谓相对危险度(risk ratio , RR)是用来描述某一因素不同状态发生疾病(或其它结局)危险程度的比值。
Logistic回归给出的OR(odds ratio)值与相对危险度类似,常用来表示相对于某一人群,另一人群发生终点事件的风险超出或减少的程度。
如不同性别的胃癌发生危险不同,通过Logistic回归可以求出危险度的具体数值,例如1.7,这样就表示,男性发生胃癌的风险是女性的1.7倍。
这里要注意估计的方向问题,以女性作为参照,男性患胃癌的OR 是1.7。
如果以男性作为参照,算出的OR 将会是0.588(1/1.7),表示女性发生胃癌的风险是男性的0.588倍,或者说,是男性的58.8 %。
多元logistics回归分析(研究材料)
多元logistics回归分析是一种用于研究因变量与多个自变量之间关系的统计方法。
在物流领域中,多元logistics回归分析可以用于研究物流企业的营销策略对销售额的影响、物流服务质量对客户满意度的影响等问题。
研究材料通常包括因变量(也称为响应变量)、自变量(也称为预测变量)以及其他可能的控制变量。
因变量通常是研究人员想要预测或解释的重要变量,比如销售额、客户满意度等。
自变量旨在解释因变量的变化,比如不同营销策略、物流服务质量等。
控制变量可以帮助消除其他因素对因变量和自变量之间关系的影响,比如所在地区、企业规模等。
在进行多元logistics回归分析之前,研究人员需要先对研究材料进行预处理,包括数据清洗、变量选择等。
然后,研究人员可以使用适当的统计软件进行回归分析。
回归模型的结果通过检验模型的显著性,查看模型中每个变量的系数,以及解释模型的决定系数来评估模型的表现。
多元logistics回归分析的优点在于可以通过同时考虑多个自变量来预测或解释因变量。
这种方法在物流企业的营销和服务管理方面具有重要的应用,可以帮助企业有效地制定营销策略和提高物流服务质量,提高客户满意度和销售额。
stata多元logistic回归结果解读【实用版】目录一、多元 logistic 回归的概念与原理二、多元 logistic 回归模型的建立三、多元 logistic 回归结果的解读四、实际案例应用与分析五、总结正文一、多元 logistic 回归的概念与原理多元 logistic 回归是一种用于分析多分类变量与二元变量之间关系的统计分析方法。
它可以对多个自变量与因变量之间的关系进行同时分析,适用于研究多个因素对某一现象的影响。
logistic 回归是一种分类回归方法,它将二元变量(如成功/失败、是/否等)与多个自变量之间的关系建模为逻辑斯蒂函数,从而预测因变量的概率。
二、多元 logistic 回归模型的建立在建立多元 logistic 回归模型时,首先需要将数据整理成合适的格式。
模型中,因变量为二元变量(通常用 0 和 1 表示),自变量为多元变量(可以是分类变量或连续变量)。
然后,通过添加截距项,构建多元logistic 回归模型。
在 Stata 软件中,可以使用命令“logit”来实现多元 logistic 回归分析。
三、多元 logistic 回归结果的解读多元 logistic 回归的结果主要包括系数、标准误、z 值、p 值、OR 值等。
其中,系数表示自变量对因变量的影响程度,正系数表示正相关,负系数表示负相关;标准误表示系数的估计误差;z 值表示系数除以标准误的值,用于检验系数的显著性;p 值表示假设检验的结果,一般小于0.05 认为显著;OR 值表示风险比,表示一个自变量对因变量的影响程度。
四、实际案例应用与分析假设我们研究一个城市居民的出行选择行为,希望了解影响居民选择不同交通方式的因素。
我们可以建立一个多元 logistic 回归模型,将居民的出行方式作为因变量(二元变量),交通方式的类型、出行距离、出行时间等因素作为自变量。
通过分析模型结果,我们可以得到各个因素对居民出行选择行为的影响程度,从而制定更有针对性的交通政策。