11.1与三角形有关的线段(第二课时)
- 格式:ppt
- 大小:974.00 KB
- 文档页数:24
11.1与三角形有关的线段(第二课时)一、内容和内容解析1.内容三角形的高、中线与角平分线,三角形的稳定性2.内容解析三角形的高、中线与角平分线是三角形内部的三条重要线段,也是“图形与几何”必备的知识基础。
既是对前面学过的线段的中点、垂线及角平分线等知识的内化,又为后面学习全等三角形及相似三角形等知识奠定了基础。
理解三角形的高、中线与角平分线的概念到用几何语言精确表述,这是学生在几何学习上的一个深入.基于以上分析,确定本节课的教学重点:理解三角形的高、中线与角平分线的概念,会用工具准确画出三角形的高、中线与角平分线。
二、目标和目标解析1.目标(1)理解三角形的高、中线与角平分线的概念,了解三角形的稳定性。
(2)会用工具准确画出三角形的高、中线与角平分线。
2.目标解析达成目标(1)的标志是:学生通过画图操作理解三角形的高、中线与角平分线的概念,并能用几何语言表述;通过教具展示感受三角形的稳定性。
达成目标(2)的标志是:能在具体的图形中利用工具作出三角形的高线、中线、角平分线。
三、教学问题诊断分析画钝角三角形的高时,有两个垂足落在边的延长线上,对于图形的这种特点学生不太适应,教学时可结合过线段外一点画已知线段的垂线(垂足在线段的延长线上)的知识帮助学生理解。
基于以上分析,确定本节课的教学难点是:画钝角三角形的高。
四、教学过程设计1.质疑展示,操作验证问题1.通过画三角形的中线,你有什么发现?师生活动:学生回答,三角形有三条中线。
追问1.教材中以三角形一条边上的中线为例介绍了三角形的中线,结合作图你能用语言描述三角形中线的定义吗?师生活动:学生通过讨论概括三角形中线的定义,教师加以完善。
设计意图:让学生通过亲自作图,先从形象上认识三角形中线的定义,然后用语言归纳出中线定义,这样做,不仅容易理解定义,同时也培养了他们的语言表达能力。
追问2.除此之外你还有什么发现?师生活动:学生回答,三角形三条中线交于一点追问3.在作图过程中三角形的三条中线都交于一点吗?师生活动:学生交流,提出质疑,教师提供技术帮助,学生亲自操作验证。
与三角形有关的线段(第2课时)教学目标1.掌握三角形中高、中线、角平分线以及重心的概念.2.能画出给定的三角形的高、中线与角平分线.教学重点1.了解三角形的高、中线与角平分线以及重心的概念,会用工具准确画出三角形的高、中线与角平分线.2.了解三角形的三条高、三条中线与三条角平分线分别交于一点.教学难点钝角三角形高的画法.教学准备三角形的木板、教学课件.教学过程知识回顾1.三角形的相关概念:在图中,线段AB,BC,CA是三角形的边.点A,B,C是三角形的顶点.∠A,∠B,∠C是相邻两边组成的角,叫做三角形的内角,简称三角形的角.2.三角形的表示方法:顶点是A,B,C的三角形,记作△ABC,读作“三角形ABC ”.3.三角形按边的相等关系分类:4.三角形的三边关系:(1)三角形两边的和大于第三边.(2)三角形两边的差小于第三边.新知探究一、探究学习【新知】三角形的高如图,从△ABC的顶点A向它所对的边BC所在直线画垂线,垂足为D,所得线段AD叫做△ABC的边BC上的高.【问题】用同样的方法,你能画出△ABC的另两条边上的高吗?【师生活动】学生动手操作,然后汇报结果.【答案】如图,线段BE,CF即为所求.【问题】你能画出直角三角形和钝角三角形的三条高吗?试着说出你的发现.【师生活动】在画钝角三角形的高时,教师给予学生适当的提醒.【答案】【归纳】(1)锐角三角形的三条高都在三角形的内部,且交于三角形内一点.(2)直角三角形的三条高交于直角顶点.(3)钝角三角形的三条高所在的直线交于三角形外一点.【设计意图】通过让学生动手操作画三角形的高,加深学生对概念的理解.【新知】三角形的中线如图,连接△ABC的顶点A和它所对的边BC的中点D,所得线段AD叫做△ABC 的边BC上的中线.【问题】用同样的方法,你能画出△ABC的另两条边上的中线吗?【师生活动】学生画图并相互交流.【答案】如图,线段BE,CF即为所求.【问题】你能画出直角三角形和钝角三角形的三条中线吗?试着说出你的发现.【答案】【新知】三角形的三条中线相交于一点.三角形三条中线的交点叫做三角形的重心.【实践】取一块质地均匀的三角形木板,顶住三条中线的交点,木板会保持平衡,这个平衡点就是这块三角形木板的重心.【师生活动】教师按照实践内容,给学生操作演示如何确定三角形木板的重心.【设计意图】通过“确定三角形木板的重心”的实践,激发学生的学习热情,让学生对三角形的重心有更加深刻的认识.【新知】三角形的角平分线如图,画∠A的平分线AD,交∠A所对的边BC于点D,所得线段AD叫做△ABC的角平分线.【问题】用同样方法,你能画出△ABC的另两个角的角平分线吗?【师生活动】教师引导学生先独立思考,得出自己的结论;再在小组内讨论交流,达成共识.【答案】如图,线段BE,CF即为所求.【问题】你能画出直角三角形和钝角三角形的三条角平分线吗?试着说出你的发现.【答案】【新知】三角形的三条角平分线相交于一点,交点在三角形的内部.【设计意图】从动手实践中获得直观感受,引导学生模拟知识发生、发展的过程,这种体验有利于学生学会学习.二、典例精讲【例1】如图,在△ABC中,AB=AC=8,BC=6,AD,BE分别是边BC,AC上的高,且AD=6.5,求BE的长.【师生活动】学生独立完成后,全班交流.【答案】解:在△ABC 中,AD ,BE 分别是边BC ,AC 上的高,已知AC =8,BC =6,AD =6.5,根据三角形面积公式,得1122BC AD AC BE ⋅=⋅, 即116 6.5822BE ⨯⨯=⨯⨯, 解得398BE =. 【归纳】根据三角形面积公式求高:解决与三角形的高和面积有关的问题时,根据三角形面积公式可求得不同边上的高.【设计意图】通过例1,让学生掌握运用三角形面积公式求高的方法.【例2】如图,CD 是△ABC 的中线,AC =9 cm ,BC =3 cm ,求△ACD 和△BCD 的周长差.【师生活动】学生独立完成后,全班交流.【分析】根据CD 是△ABC 的中线,可得BD =AD ,在△ACD 和△BCD 中,CD 是公共边,所以△ACD 和△BCD 的周长差就是AC 和BC 的差.【答案】解:因为CD 是△ABC 的中线,所以BD =AD ,所以△ACD 和△BCD 的周长差为(AC +CD +AD )-(BC +CD +BD )=AC -BC =9-3=6(cm ).即△ACD 和△BCD 的周长差为6 cm . 【归纳】三角形中线常见的两个应用:(1)根据中线平分对边得两条相等的线段,一般用于求解与三角形的周长有关的问题;(2)根据中线分三角形得面积相等的两部分,用于求解与面积有关的问题. 【设计意图】通过例2,让学生掌握运用三角形中线的相关知识解决三角形周长的问题.【例3】如图,∠1=∠2=∠3=∠4.(1)AD是△_______和△_______的角平分线;(2)试判断∠EAF与∠BAC的关系.【师生活动】学生独立完成,然后教师讲解.【分析】(1)根据∠1=∠2=∠3=∠4,可得∠1+∠2=∠3+∠4,所以AD是△AEF 和△ABC的角平分线;(2)根据∠1=∠2=∠3=∠4,可得∠2+∠3=∠1+∠4,所以∠EAF=12∠BAC.【答案】解:(1)AEF ABC;(2)因为∠1=∠2=∠3=∠4,所以∠2+∠3=12(∠1+∠2+∠3+∠4),即∠EAF=12∠BAC.【归纳】三角形中边角的等量变换——沟通已知与未知的纽带:在判断角之间或线段之间的数量关系时,往往根据已知或隐含的相等关系进行等量变换,从而沟通已知与未知,这也体现了数学中的转化思想.【设计意图】通过例3,让学生学会运用转化思想解决问题.课堂小结板书设计一、三角形的高二、三角形的中线三、三角形的角平分线课后任务完成教材第5页练习1~2题.。
人教版数学八年级上册教案《11-1与三角形有关的线段》(第2课时)一. 教材分析《11-1与三角形有关的线段》是人教版数学八年级上册的教学内容,本节课主要让学生了解三角形的高的概念,掌握三角形高的计算方法,并能够运用三角形的高解决一些实际问题。
教材通过丰富的情境图片和实例,引发学生的思考,培养学生的空间想象能力和抽象思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念,如三角形的边、角等。
同时,学生已经学习了勾股定理,对直角三角形有一定的了解。
但是,学生对于三角形的高的概念可能比较陌生,需要通过实例和练习来逐步理解和掌握。
三. 教学目标1.让学生了解三角形的高的概念,理解三角形高的计算方法。
2.培养学生空间想象能力和抽象思维能力。
3.能够运用三角形的高解决一些实际问题。
四. 教学重难点1.三角形的高的概念。
2.三角形高的计算方法。
3.运用三角形的高解决实际问题。
五. 教学方法采用情境教学法、引导发现法、合作交流法等多种教学方法,激发学生的学习兴趣,引导学生主动探究,培养学生的空间想象能力和抽象思维能力。
六. 教学准备1.教学PPT。
2.三角板。
3.练习题。
七. 教学过程导入(5分钟)教师通过展示一些生活中的图片,如电线、树木等,引导学生观察并思考:这些图片中的线段有什么特点?学生通过观察,发现这些线段都是垂直于某个平面的。
教师引导学生思考:在三角形中,是否存在这样的线段?由此引入三角形的高的概念。
呈现(10分钟)教师通过PPT展示三角形的高的定义,并用三角板演示三角形的高的画法。
同时,教师引导学生思考:如何计算三角形的高?学生通过观察和思考,得出计算三角形高的方法。
操练(10分钟)教师给出一些三角形,让学生独立画出三角形的高,并计算出高的长度。
教师选取一些学生的作品进行展示和讲解,引导学生正确理解和掌握三角形的高的计算方法。
巩固(10分钟)教师给出一些实际问题,让学生运用三角形的高的知识进行解决。
与三角形有关的线段相关知识链接1.线段的中点:如果点M 把线段AB 分成相等的两条线段AM 与BM ,那么点M 叫做线段AB 的中点。
2.角:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边。
3.角的平分线:从一个角的顶点引一条射线,如果把这个角分为两个相等的角,那么这条射线叫做这个角的平分线。
知识点1 三角形的有关概念定义:由不在同一条直线上的三条线段首尾相接所组成的图形叫做三角形。
有关概念及其表示方法:(1) 如图所示,线段AB,AC,BC 叫做△ABC 的三条边。
(2) 点A,B,C 叫做三角形ABC 的三个顶点。
(3) 顶点式A ,B ,C 的三角形,记作“△ABC ”,读作“三角形ABC ”。
数三角形个数的方法:(1) 按图形形成的过程(2) 按大小顺序(3) 可从图中的某一条线段开始沿着一定方向去数(4) 先固定一个顶点,变换另两个顶点来数知识点2 三角形的分类等腰三角形:有两条边相等的三角形叫做等腰三角形,其中相等的两边都叫做腰,另一边叫做底边。
等边三角形:底边与腰相等的等腰三角形叫作等边三角形,即三边都相等的三角形叫做等边三角形。
按边的相等关系分类:三角形⎪⎩⎪⎨⎧⎩⎨⎧等边三角形三角形底边和腰不相等的等腰等腰三角形三边都不相等的三角形 分类示意图如图:按角的大小分类:三角形⎪⎩⎪⎨⎧钝角三角形锐角三角形直角三角形知识点3 三角形的三边关系三边关系的性质:三角形两边的和大于第三边,三角形两边的差小于第三边。
三角形的三边关系反映了任意三角形边的限制关系。
三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段之和大于最长线段的长,则这三条线段可以组成三角形;否则不能组成三角形。
已知三角形两边长,求第三边的取值范围。
知识点4 三角形的高、中线、角平分线三角形的高:从三角形的一个顶点向它的对边所在直线画垂线,顶点和垂足之间的线段叫做三角形的高。
三角形的高的几何表达形式:如图1所示,AD 是△ABC 的BC 边上高,或AD 是△ABC 的高,或AD ⊥BC 于点D ,或∠BDA=∠CDA=90°。
第十一章三角形11.1 与三角形有关的线段第二课时 11.1.2-11.1.3 三角形的“三线”,三角形的稳定性1 教学目标1.1 知识与技能:[1]理解三角形的高、中线与角平分线等概念,并能根据其性质进行简单的推理。
[2]会用工具画三角形的高、中线与角平分线。
[3]了解三角形的三条高、三条中线与三条角平分线分别相交于一点。
[4]理解三角形的稳定性,并能用其解释生活中的实际例子。
1.2过程与方法:[1]通过自己动手,练习并掌握画三角形的“三线”的方法。
[2]通过观察、动手、推理等活动,发现三角形的稳定性和四边形的不稳定性。
1.3 情感态度与价值观:[1]通过细致作图,培养学生的动手能力和识图能力。
[2]通过学习三角形“三线”的表示法以及相关练习,培养学生逻辑思维。
2 教学重点/难点/易考点2.1 教学重点[1]三角形的高、中线与角平分线的定义及其数学语言表达。
[2]三角形的稳定性和四边形的不稳定性。
2.2 教学难点[1]对直角三角形三条高的认识和理解,以及钝角三角形高的画法。
[2]明确高、中线、角分线都是线段而不是直线(特别是高和垂线的区分)。
3 专家建议4 教学方法实验探究——归纳总结——补充讲解——练习提高5 教学用具多媒体,教学用直尺、三角板、量角器,三角形木架,四边形木架,斜钉一根木条的四边形木架等。
6 教学过程6.1 引入新课【师】同学们好。
上节课我们认识了三角形,并掌握了三角形的三边不等关系。
这节课我们来继续学习和三角形有关的线段,并学习三角形的稳定性。
【板书】第十一章三角形 11.1 与三角形有关的线段第二课时6.2 新知介绍[1]三角形的高【师】下面请同学们准备好三角板和直尺。
大家还记得怎样过直线外一点画已知直线的垂线吗?请大家自己动手做一下,忘记的同学和我一起画。
【板演/PPT】教师演示过直线外一点画垂线的方法。
【师】那如果我们给出一个三角形,过三角形的一个顶点,你能画出它对边的垂线吗?【板演/PPT】教师演示在三角形中画垂线的方法。