岩体分类与方法
- 格式:ppt
- 大小:1.07 MB
- 文档页数:42
岩体的分类分级与隧道支护及其案例分析J09220210 09土木2班冯博一、岩石开挖分级与围岩工程地质分类的依据开挖分级:开挖分级依据岩石类型、天然湿度下的平均容重、凿岩机钻孔(每米耗时)、坚固系数 f,将岩石划分为Ⅴ~ⅩⅥ级。
其中,对应的坚固系数 f为1.5~ 2,2~ 4, 4~ 6, 6~ 8, 8~ 10, 10~ 12, 12~ 14, 14~ 16,16~ 18,18~ 20, 20~ 25, 25 以上。
这种划分方法主要考虑了岩石的强度和开挖的难易程度,开挖级别越高,强度越大、开挖难度越大,相应的开挖成本也越高。
这实际上是一种工程技术经济分类。
2.2 围岩工程地质分类围岩工程地质分类是从评价地下洞室围岩稳定性的角度出发,为选择地下工程临时和永久支护方案服务的,是地下洞室稳定性研究的基础。
其分类思路是对岩体的质量进行评价,考虑的因素主要是岩体的坚固性、完整性和含水性3 个方面。
国内外有关分类方案不下数十种,目前尚未统一,比较流行的有Q系统和RMR分类法。
“ 六五” 期间,原水电部将“ 水电地下工程围岩分类” 这个课题列入国家科技攻关内容进行了深入的专题研究,积累了宝贵的资料,并吸取国内外众多围岩分类方案的优点,形成了一套较为完善的围岩分类体系。
该体系主要从控制工程岩体稳定性的岩石强度、岩体完整程度、结构面状态、地下水活动程度、主要结构面产状(由结构面走向、倾向和倾角三要素决定)五个方面分别对岩体进行定量评分,根据五项得分总和并考虑围岩强度应力比,将工程岩体划分为Ⅰ~Ⅴ类。
后来,通过各方面的不断探索和完善,逐渐发展成为水利水电行业标准,并在GB 50287—99《水利水电工程地质勘察规范》附录P中列出。
Ⅰ~Ⅴ类围岩特征见表 1。
二、几种隧道围岩类别支护方法1. 浅埋Ⅰ类围岩浅埋Ⅰ类围岩大部分是强风化花岗岩,由于围岩早起压力增长快,处理不当会出现大坍塌,尤其浅埋地段还会产生地表下沉等恶性事故。
工程岩体分类方案中RMR分类引言岩石是地球表面的重要成分,地下工程如隧道、水坝、地下室等都需要对岩体进行分类和评价。
RMR(岩体强度分类系统)是目前国际上比较成熟的岩体分类方法之一。
通过对岩体参数的测量和分析,可以对岩体质量进行评价,为工程设计和施工提供依据。
岩体分类的目的岩体分类的主要目的是为了对不同类型的岩石进行定量化的评估和分类。
这有助于工程师和设计人员更好地了解并理解地下岩体的特性,为工程设计和施工提供参考。
通过对岩体分类的研究,可以更好地预测地下工程的稳定性和安全性,减少施工风险,提高工程质量。
RMR分类的主要内容RMR分类系统是根据岩体参数的测量和分析,将岩体分为若干个不同的等级。
其主要包括以下几个方面的参数:1. 岩体强度:包括岩石的抗压强度、固体硬度等;2. 节理间距和方向:节理的间距、长度和角度对岩石的稳定性有着重要的影响;3. 岩石的地下水:地下水的压力和含水量是岩石稳定性的一大影响因素;4. 岩石的地下应力状态:岩石应力状态的不同会对岩石的稳定性产生不同的影响;5. 岩体的均匀性:岩体结构的均匀性直接影响着岩石的稳定性。
RMR分类的具体方法RMR分类系统主要是根据岩体参数的测定和分析,将岩体分为5个不同等级,分别是I、II、III、IV和V级。
具体的划分标准如下:1. I级:岩体强度高,节理开裂少,长度短,倾角小,水文地质条件较好,地应力状态较小,岩体均匀性好;2. II级:岩体强度中等,节理较多,长度和倾角较大,地下水条件较好,地应力状态略大,岩体均匀性一般;3. III级:岩体强度较低,节理发育,长度和倾角较大,地下水条件一般,地应力状态较大,岩体均匀性差;4. IV级:岩体强度很低,节理发育且较密,长度和倾角较大,地下水条件差,地应力状态很大,岩体均匀性很差;5. V级:岩体强度极低,节理非常发育,长度和倾角极大,地下水条件非常差,地应力状态很大,岩体均匀性极差。
RMR分类系统的应用RMR分类系统可以广泛应用于地下工程的设计与施工中。
一、岩石的分类(一)岩石按成因分类(岩浆岩沉积岩变质岩)1、岩浆岩:花岗岩—花岗斑岩—流纹岩(酸性岩);正长岩—正长斑岩—粗面岩(中酸性岩);闪长岩—闪长玢岩—安山岩(中性岩);辉长岩—辉绿岩—玄武岩(基性岩);橄榄岩(辉岩)—苦橄玢岩—苦橄岩(金伯利岩)—(超基性岩)。
2、沉积岩:碎屑沉积岩(砾岩、砂岩、泥岩、页岩、粘土岩、灰岩、集块岩);化学沉积岩(硅华、遂石岩、石髓岩、泥铁石、灰岩、石钟乳、盐岩、石膏);生物沉积岩(硅藻土、油页岩、白云岩、白垩土、煤碳、磷酸盐岩)。
3、变质岩:片状类(片麻岩、片岩、千枚岩、板岩);块状类(大理岩、石英岩);(二)岩石按坚硬程度分类 [极破碎时可不进行坚硬程度划分]>60(未风化~微风化的花岗岩、闪长岩、辉长岩、片麻岩、石英岩、石英1、坚硬岩fr>30(微风化的坚硬岩;未风化~微砂岩、硅质砾岩、硅质石灰岩等);2、较硬岩60≥fr>15(中风化~强风化的大理岩、板岩、石灰岩、白云岩、钙质砂岩);3、较软岩30≥fr风化的坚硬岩;未风化~微风化的凝灰岩、千枚岩、泥灰岩、砂质泥岩);4、软岩15≥fr >5(强风化的坚硬岩;中风化~强风化的较软岩;未风化~微风化的页岩、泥岩、泥质砂岩);5、极软岩f≤5(全风化;半成岩);r(三)岩体按完整程度分类 [岩体完整性指数K v=(V岩体/V岩石压缩波)2] 1、完整K>0.75,整体状或巨厚层状结构;2、较完整0.75~0.55,块状或厚层状结构、v块状结构;3、较破碎0.55~0.350,裂隙块状或中厚层状结构、镶嵌碎裂结构,中、薄层状结构;4、破碎0.35~0.15,裂隙块状结构、碎裂结构;5、极破碎<0.15,散体状结构。
(四)岩石按风化程度分类 [波速比K v=(V岩体/V岩石压缩波)] [风化系数K f=(f r风化岩石/f r新鲜岩石单轴抗压强度)] [泥岩和半成岩可不进行风化程度划分]1、未风化Kv =0.9~1.0,Kf=0.9~1.0,岩质新鲜,偶见风化痕迹;2、微风化Kv=0.8~0.9,Kf=0.8~0.9,结构基本未变,仅节理面有宣染或略有变色,有少量风化裂隙;3、中等风化Kv =0.6~0.8,Kf=0.4~0.8,结构部分破坏,沿节理面有次生矿物、风化裂隙发育,岩体被切割成岩块。
摘要工程岩体分类是岩石力学研究的一个重要内容。
本文对国内外较具影响力的工程岩体分类方法及相应的岩体质量指标进行了归纳介绍,并对其中个别分类方法的优缺点进行了探讨,最后指出了工程岩体分类在对可利用岩体作出判别、工程优化设计过程中的重要作用,指出了工程岩体分类的指导意义。
关键词:岩体分类;质量指标;工程优化设计第1章诸论工程岩体指各类岩石工程周围的岩体,这些岩石工程包括地下工程、边坡工程及与岩石有关的地面工程,即为工程建筑物地基、围岩或材料的岩体。
而工程岩体分类是指通过岩体的一些简单和容易实测的指标,把地质条件和岩体力学性质参数联系起来,并借鉴已建工程设计、施工和处理等成功与失败方面的经验教训,对岩体进行归类的一种工作方法[ 1 ]。
一个工程项目在可行性研究阶段和初步设计阶段,如果缺少岩体具体而详细的强度和水文地质资料时,工程岩体分类系统就会成为一个很有用的工具。
选择合适的分类系统能帮助我们更好地了解岩体的质量好坏,预测可能出现的岩体力学问题,从而为工程设计、支护衬砌、建筑选型和施工方法选择等提供参数和依据。
从这个角度而言,考虑岩块强度、结构面强度等诸多因素,以工程实用为目的的岩体分类,不仅是岩石力学研究的一个重要内容,而且对实际工程具有重要意义。
从Ritter(1879)谋求将经验方法公式化用于隧洞设计,尤其是决定支护形式开始,岩体分类系统的发展已有100多年历史。
其间,国外许多学者作了大量的研究工作,如早期的太沙基(Terzaghi,1946)、劳弗尔(Lauffer,1958)和迪尔(Deere,1964)等。
20世纪70年代以后,随着岩体工程建设的不断发展,工程岩体分类方法的研究取得了显著的进展,如威克汉姆(Wikham,1972)等提出了RSR 分类法,宾尼奥斯基(Bieniawski,1973)提出了 RMR分类法,巴顿(Barton,1974)等提出了Q系统分类法等。
随后,霍顿(1975)、宾尼奥斯基(1976)、巴顿(1976)和拉特利奇(1978)等分别对各种分类方法进行了一系列的比较研究。
工程岩体质量分类的三种方法
工程岩体质量分类是岩石工程中的一个重要环节。
在工程设计和工程施工中,不同质量等级的岩体需要采取不同的措施。
本文介绍了三种常用的工程岩体质量分类方法。
1. 大地质量法
大地质量法是最常用的岩体质量分类方法之一。
该方法根据岩体的结构、岩性、断裂、节理、褶皱等的分布情况,将岩体分为优、良、中、差四个等级。
其中,优质岩体具有完整的结构、均匀的岩性、少量的裂缝和节理,且裂缝和节理的发育程度较低;良质岩体结构较好,岩性均匀,裂缝和节理发育程度中等;中质岩体结构不太完整,岩性不太均匀,裂缝和节理发育程度较高;差质岩体结构不完整,岩性不均匀,裂缝和节理发育程度很高。
2. Kirsch法
Kirsch法是一种基于岩体中单轴压缩强度的分类方法。
通过实验测定岩体的单轴压缩强度,将岩体分为超硬岩、硬岩、半硬岩、半软岩和软岩等五个等级。
其中,超硬岩的单轴压缩强度大于300MPa,硬岩的单轴压缩强度在150-300MPa之间,半硬岩的单轴压缩强度在75-150MPa之间,半软岩的单轴压缩强度在30-75MPa之间,软岩的单轴压缩强度小于30MPa。
3. RMR法
RMR法是Rock Mass Rating的缩写,是一种基于岩体强度、岩体结构、地应力、地下水等因素的分类方法。
通过实地调查和测量,
将岩体分为六个等级。
其中,RMR等级越高,表示岩体质量越好。
RMR 等级分别为0-20、21-40、41-60、61-80、81-100、101-120。
以上三种工程岩体质量分类方法各有优缺点,需要根据实际情况选择合适的方法进行分类。
岩石、岩体、土的分类一、岩土的分类原则1、岩土分类应与工程目的相一致,按钻探的不同目的采用不同的系统定名。
2、按工程需要以岩土组成为主要定名依据,并结合其成因年代及结构、构造特征综合定名。
二、岩石的分类原则岩石是天然形成的具有一定结构、构造的由一种或多种矿物组成的集合体,岩体是指包括各种结构面的原位岩石的综合体。
岩石作为工程地基和环境可按下列原则分类:1、岩石按成因分为岩浆岩、沉积岩和变质岩。
2、岩石根据强度按(表1)分3、岩石根据风化程度按(表2)分未风化、微风化、中等风化、强风化、全风化岩石。
表2 岩石按风化程度分类4、岩石按软化系数(KR)分为软化岩石(KR≤0.75)和不软化岩石(KR>0.75)。
三、岩体的分类1、岩体根据结构类型分为整体状、块状、层状、碎裂状、散体状结构。
2、岩层厚度可按(表3)分四、岩石和岩体的描述1、岩石的描述包括:成因、年代、名称、颜色、主要矿物含量结构、构造和风化程度。
对沉积岩尚要描述沉积物的颗粒大小、形状、胶结成分和胶结程度;对岩浆岩和变质岩尚要描述矿物结晶大小和结晶程度。
2、岩体的描述应包括成因、年代、岩石名称、颜色、结构面、结构体和岩层厚度等。
(1)结构面的描述应包括:类型、性质、产状组合形式、发育程度、延展程度、闭合程度、粗糙程度、充填情况和充填物性质及充水性质等。
(2)结构体的描述应包括:类型、形状、大小、结构体在围岩中的受力情况等。
五、土的分类原则1、土根据地质成因可分为残积土、坡积土、洪积土、冲积土、淤积土、冰积土和风积土。
土根据有机质含量可分为无机土、有机土、泥炭质土和泥炭。
(表4)2、土按颗粒级配或塑性指数分为碎石土、砂土、粉土和粘性土。
各类土的分类应符合下列规定。
(1)碎石土:粒径大于2mm的颗粒质量超过总质量50%的土。
根据颗粒级配和颗粒形状可细分为漂石、块石、卵石、碎石、圆砾和角砾(表5)。
(2)砂土:粒径大于2mm的颗粒质量不超过总质量50%,且粒径大于0.075mm的颗粒质量超过50%的土。
作为建筑地基的岩土,可分为岩石、碎石土、砂土、粉土、粘性土和人工填土。
1.岩石:1.1应为颗粒间牢固联结,呈整体或具有节理裂隙的岩体。
作为建筑物地基,除应确定岩石的地质名称外,尚应按1.2、1.3条划分其坚硬程度和完整程度。
1.2岩石的坚硬程度应根据岩块的饱和单轴抗压强度f rk按表1.1分为坚硬岩、较硬岩、较软岩、软岩和极软岩。
当缺乏饱和单轴抗压强度资料或不能进行该项试验时,可在现场通过观察定性划分,划分标准可按表1.1-1执行。
岩石的风化程度可分为未风化、微风化、中风化、强风化和全风化。
岩石坚硬程度的划分表1.11.3岩体完整程度应按表1.2划分为完整、较完整、较破碎、破碎和极破碎。
当缺乏试验数据时可按表1.2-1执行。
岩体完整程度划分表1.22. 碎石土:2.1碎石土为粒径大于2mm的颗粒含量超过全重50%的土。
碎石土可按表2.1分为漂石、块石、卵石、碎石、圆砾和角砾。
碎石土的分类表2.12.2碎石土的密实度,可按表2.2分为松散、稍密、中密、密实。
碎石土的密实度表2.22.3砂土为粒径大于2mm的颗粒含量不超过全重50%、粒径大于0.075mm的颗粒超过全重50%的土。
砂土可按表2.3分为砾砂、粗砂、中砂、细砂和粉砂。
砂土的分类表2.32.4砂土的密实度,可按表2.4分为松散、稍密、中密、密实。
砂土的密实度表2.43. 粘性土:3.1粘性土为塑性指数I p大于10的土,可按表3.1分为粘土、粉质粘土。
粘性土的分类表3.13.2粘性土的状态,可按表3.2分为坚硬、硬塑、可塑、软塑、流塑。
粘性土的状态表3.24.粉土为介于砂土与粘性土之间,塑性指数I p≤10且粒径大于0.075mm的颗粒含量不超过全重50%的土。
5. 淤泥为在静水或缓慢的流水环境中沉积,并经生物化学作用形成,其天然含水量大于液限、天然孔隙比大于或等于1.5的粘性土。
当天然含水量大于液限而天然孔隙比小于1.5但大于或等于1.0的粘性土或粉土为淤泥质土。
简述岩体结构分类形式岩体是地球地壳中的固体岩石体。
岩体结构是指岩石内部的构造特征和组成成分的分布方式。
根据岩体内部的结构特征和组成成分的不同,可以将岩体结构分为以下几种形式。
1. 均质结构均质结构是指岩体内部的成分和结构均匀一致,没有明显的层状结构或层理。
这种结构形式常见于均质的火成岩,如花岗岩和玄武岩。
均质结构的岩体具有均匀的密度和颜色,没有明显的层状或层理状的分层特征。
2. 层状结构层状结构是指岩体内部具有明显的层理状结构,即岩石成分和结构在垂直方向上有规律的变化。
这种结构形式常见于沉积岩,如砂岩、泥岩和页岩。
层状结构的岩体具有明显的层理面和层理线,可以通过观察岩体的断面来确定层理的倾向和倾角。
3. 脉状结构脉状结构是指岩体内部存在由岩浆侵入形成的脉状岩体。
这些脉状岩体与周围的母岩有明显的接触面,形状呈脉状或管状。
脉状结构常见于火成岩中的侵入岩体,如花岗岩脉和石英脉。
脉状结构的岩体通常具有与母岩不同的颜色和成分,是勘探和开采矿产资源的重要标志。
4. 断层结构断层结构是指岩体内部存在断层面,即岩石断裂形成的面状结构。
断层面可以是水平的,也可以是倾斜的,常常伴随着断层带的形成。
断层结构常见于构造活动频繁的地区,如地震带和山脉区。
断层结构的岩体具有明显的断层面和断层带,可以通过观察断层面的位移和断层带的形态来研究地壳的构造演化。
5. 空洞结构空洞结构是指岩体内部存在空洞或洞穴的结构形式。
这些空洞或洞穴常常是由溶蚀或溶解作用形成的,常见于溶岩洞、石灰岩洞和石膏洞等溶蚀岩中。
空洞结构的岩体具有明显的洞穴或空腔,可以通过观察洞穴的形态和内部沉积物来研究地下水的流动和地质环境的演化。
岩体结构的分类形式不仅可以帮助地质学家理解岩石的形成和演化过程,还对勘探和开采矿产资源、工程建设和地质灾害防治等方面具有重要意义。
因此,在地质调查和研究中对岩体结构进行分类和描述是非常必要的。
通过对岩体结构的详细观察和分析,可以更好地理解地球的地质历史和地壳演化,为资源开发和环境保护提供科学依据。