汽轮机内效率计算方法
- 格式:docx
- 大小:14.19 KB
- 文档页数:1
汽轮机低压缸效率的在线计算摘要:提出了一种满足工程实用需要的汽轮机低压缸效率的计算方法,为汽轮机效率实时监测及热经济性诊断提供一种实用手段。
算例表明该计算方法完全可以满足电厂运行的精度要求。
关键词:汽轮机;低压缸;效率;在线计算1.引言汽缸效率是表现汽轮机运行状态的重要技术经济指标。
依据热力学理论,汽缸效率定义为缸内实际焓降Δh与理想焓降Δht之比:η=Δh/Δht,各个缸的实际焓降Δh通过可测参数(如温度、压力等)在焓熵图上或计算机软件求得,但是,在对汽轮机低压缸的焓降进行计算时,由于其排汽工作于湿蒸汽区,需要干度及温度或干度及压力两种参数组合才能确定低压缸排汽焓,而低压缸排汽干度(或湿度)目前还难以实现在线测量,排汽的焓值无法通过常规方法得到,使汽轮机组整体实时性能计算、在线效率分析难以实现。
许多科研人员曾针对这个问题作过不少研究,目前广泛使用的是参考文献:[1]给出的一个迭代算法。
在这个算法中,利用已知的机组负荷和排汽压力,估计排汽焓初值,通过机组变工况计算,从末级逐级算到中压缸最前一级,判断该级级前温度是否等于再热蒸汽温度,如不符合计算精度要求,则调整排汽焓值,重复迭代计算,直至满足精度要求为止。
该方法的排汽焓估计值经验随意性较大,程序实现存在困难,计算过程实时性无法保证,不适合于火电机组实时运行优化的工程处理。
本文利用现场实际的可测参数,从工程实用的角度提出了一种低压缸效率的计算方法,算法复杂程度在原来基础上有所减少,计算精度满足工程要求,通过算例计算验证了它的合理性,计算方法可用于汽缸效率实时在线计算。
2.低压缸效率计算由于低压缸排汽是湿蒸汽,其压力和温度是饱和对应关系,因此先参考排汽干度设计值假定一个排汽干度值,再从测点中获得排汽温度,就能求出排汽焓,再应用能量平衡的方法推算出发电机功率,若此功率值与电能表读数接近,则假定值准确,从而便能够求出低压缸效率。
若推算功率值与电能表读数相差较大,则另假定干度值,按此方法进行迭代计算,最终求得低压缸效率。
300MW汽轮机热力计算一、热力参数选择1.类型:N300-16.67/537/537机组形式为亚临界、一次中间再热、两缸两气1.额定功率:Pel=300MW;高压缸排气压力prh=p2=3.8896MPa;中压缸排汽压力p3=p4=0.7979Mpa;凝汽器压力Pc=0.004698Mpa;汽轮机转速n=3000r/min;2.其他参数给水泵出口压力Pfp=凝结水泵出口压力Pcp=机械效率ƞni=发电机效率ƞg=加热器效率ƞh=3、相对内效率的估计根据已有同类机组相关运行数据选择汽轮机的相对内效率:高压缸,ƞriH= ;中压缸,ƞriM= ;低压缸ƞriL=4、损失的估算主汽阀和调节汽阀节流压力损失:Δp0=再热器压损ΔPrh=0.1Prh=中压缸联合气阀节流压力损失ΔP‘rh=0.02 Prh=中低压缸连通管压力损失Δps=0.02ps=低压缸排气阻力损失Δpc=0.04pc=一、汽轮机热力过程线的拟定1、在焓熵图上,根据新蒸汽压力p0= 和新蒸汽温度t= ,可确定汽轮机进气状态点0(主汽阀前),并查的该点的比焓值h0= ,比熵s= ,比体积v=2、在焓熵图上,根据初压p0= 和主汽阀和调节气阀节流压力损失Δp= 以确定调节级级前压力p‘0= p-Δp= ,然后根据p‘和h的交点可以确定调节级级前状态点1,并查的该店的温度t‘0= ,比熵s’= ,比体积v‘=3、在焓熵图上,根据高压缸排气压力prh = 和s= 可以确定高压缸理想出口状态点为2t,并查的该点比焓值hHt = ,温度tHt= ,比体积vH=4、在焓熵图上,根据高压缸排气压力prh = 和再热器压损Δprh= 可以确定热再热压力p’rh =prh-Δprh= ,然后根据p’rh和再热蒸汽温度tth= 确定中压缸进气状态点为3(中压缸联合气阀前),并查的该点的比焓值h’rh = 比熵3‘rh= ,比体积v’rh=5、在焓熵图上,根据热再热压力p’rh = 和中压缸联合气阀节流压力损失Δp’rh= ,可以确定中压缸气阀后压力p’’rh =p’rh-Δp’rh= 然后根据p’’rh与h’rh的交点可以确定中压缸气阀状态点4,并查得该点的温度t’’h = ,比熵s’’rh= 比体积v’’rh=若将中、低压缸的热力过程线分别用直线画出,则进行如下步骤:①在焓熵图上,根据中压缸排气压力ps = 和s’rh= 可以确定中压缸理想出口状态点5t,并查得该点比焓值hmt = ,温度tMt= ,比体积vMt= ,由此可以得到中压缸理想比焓降ΔHt M=h’rh-hmt= ,进而可以确定中压缸实际比焓降ΔHi M=ΔHtM-ƞriM= ,再根据h’rh、ΔHiM和ps可以确定中压缸实际出口状态5,并查得该点比焓值hs = ,温度ts= ,比体积vs= ss=②在焓熵图上,根据中压缸排汽压力Ps= 和中低压缸连通管压力损失Δps = ;可以确定低压缸进气P’s=Ps-Δps= ,然后根据P’s和中压缸排汽比焓hs 可以确定低压缸进气状态点6,并查得该点的温度t’s= ,比熵t’s= ,比体积v’s=③在焓熵图上,根据凝汽器压力pc = 和低压缸排气阻力损失Δpc=可以确定低压缸排气压力p’c =pc+Δpc=④在焓熵图上,根据凝汽器压力pc = 和ss= 可以确定低压缸理想状态出口状态点7t,并查得该点比焓值hct = ,温度tct= ,比体积vct= ,干度x ct = 。
汽轮机组效率及热力系统节能降耗定量分析计算关于修订管理标准的通知汽轮机组主要经济技术指标的计算为了统一汽轮机组主要经济技术指标的计算方法及过程,本章节计算公式选自中华人民共和国电力行业标准DL/T 904—2004《火力发电厂技术经济指标计算方法》和 GB/T 8117—87《电站汽轮机热力性能验收规程》。
1 凝汽式汽轮机组主要经济技术指标计算1. 1汽轮机组热耗率及功率计算a. 非再热机组试验热耗率:G0 HkJ/kWhG HHRfwfwN t式中G0 ─主蒸汽流量,kg/h;G fw ─给水流量,kg/h;H 0─主蒸汽焓值,kJ/kg;Hfw ─给水焓值,kJ/kg;N t ─实测发电机端功率,kW。
修正后(经二类)的热耗率:kJ/kWhHQ HRC Q式中C Q ─主蒸汽压力、主蒸汽温度、汽机背压对热耗的综合修正系数。
修正后的功率:N N t kWpQ式中K Q ─主蒸汽压力、主蒸汽温度、汽机背压对功率的综合修正系数。
b.再热机组试验热耗率::kJ/kWhG 0 H 0G fw H fw G R(H r H 1)G J (H r H J )HRN t式中G R ─高压缸排汽流量,kg/h;G J ─再热减温水流量,kg/h;H r ─再热蒸汽焓值,kJ/kg;关于修订管理标准的通知H1 ─高压缸排汽焓值,kJ/kg;H J ─再热减温水焓值,kJ/kg。
修正后(经二类)的热耗率:kJ/kWhHQ HRC Q式中C Q ─主蒸汽压力、主蒸汽温度、再热蒸汽温度、再热压损、再热减温水流量及汽机背压对热耗的综合修正系数。
修正后的功率:N N t kWpQ式中K Q ─主蒸汽压力、主蒸汽温度、再热蒸汽温度、再热压损、再热减温水流量及汽机背压对功率的综合修正系数。
1. 2汽轮机汽耗率计算a. 试验汽耗率:kg/kWhSR G0N tb. 修正后的汽耗率:SR G ckg/kWh关于修订管理标准的通知pc cp式中G c ─ 修正后的主蒸汽流量, G cG 0 ,kg/h ;p c 、c ─ 设计主蒸汽压力、主蒸汽比容; p 0 、0 ─ 实测主蒸汽压力、主蒸汽比容。
1 汽轮机做功原理公式解释汽轮机能量转换过程中,由于存在各种损失,其理想焓降t H ∆不能全部转换为有用功,所以变为有用功的有效焓降i H ∆,总是小于理想焓降t H ∆,两者之比称为汽轮机的内效率ri η。
即:iri tH H η∆=∆ 汽轮机的内功率i N 正比于蒸汽流量0D (kg/h )与有效焓降i H ∆的乘积,故:0036003600i t rii D H D H N η∆∆==由于存在机械损失,汽轮机轴端功率ax N 为:ax N =03600t ri axi ax D H N ηηη∆=;ax η为机械效率以轴端功率带动发电机时,要考虑发电机效率el η,故发电机出线端功率el N 为:03600t ri ax elel ax el D H N N ηηηη∆==当令axel αηη=时,最后便得到汽轮机带动发电机的出线端功率为:03600t riel D H N ηα∆=2 初温0t 对汽轮机功率i N 的影响当锅炉热耗量Q 不变的条件下,讨论蒸汽初温与汽轮机功率的变化关系: 由功率方程式:036003600()t ri t rii fw D H Q H N h h ηη∆∆==-已知,D :汽轮机进汽量; t H ∆:理想焓降;ri η:内效率; Q :锅炉吸收热量;0()fw Q D h h =-0h :进汽焓值;fw h :出口焓值;可知,由于初温变化引起的功率增量为:00002000000123[]3600()ri t t ri t ri i fw fw fw H H h H QN t t t h h t h h t h h t ηηη∂∆∆∂∆∂∆=∆-∆+∆-∂-∂-∂ 或:000000132111(]i t rii t fw ri N H h t N H t h h t t ηη∆∂∆∂∂=-+∆∆∂-∂∂1:表示因焓降改变所引起功率的变化;tH t ∂∆∂可直接由焓熵(h-s )图查得;或者把蒸汽作为理想气体,用下述公式求得:1200[1()]1k k t p kH RT k p -∆=--12000[1()]1k t t k H H p kRt k p T -∂∆∆=-=∂- 其中,k :绝热系数,对于过热蒸汽k =1.3; R :通用气体常数,R =461.76(J/(kg .K)); 0T :绝对温度(K ),00273T t =+; 2p :排气压力; 0p :初压;2:表示热耗一定,初温(初焓)升高后,蒸汽流量减小引起的功率变化;h t ∂∂可由焓熵(h-s )图查得;对过热蒸汽00p h c T =,p c =h t ∂∂;p c 为定压比热容(J/(kg .K)); 3:表示初温变化时汽轮机效率改变引起的功率变化,它对非再热凝汽式汽轮机不可忽略。
汽轮机效率计算公式汽轮机效率的计算公式呀,这可是个挺专业的话题。
但别担心,我会尽量用简单易懂的方式给您讲明白。
咱们先来说说汽轮机是啥。
想象一下,它就像是一个超级大力士,不停地转动,把热能转化为机械能,为咱们的各种设备提供动力。
那怎么衡量这个大力士干活儿干得好不好呢?这就得靠效率计算公式啦。
汽轮机效率的基本计算公式是:η = (输出功率 / 输入热量)×100% 。
这里面的输出功率,就是汽轮机实际做的有用功;输入热量呢,就是给汽轮机提供的总能量。
比如说,有一个工厂里的汽轮机,它接收了 1000 焦耳的热量,然后转化出来 800 焦耳的有用功。
那它的效率就是(800÷1000)× 100%= 80% 。
这就意味着,这台汽轮机把 80% 的输入能量都有效地利用起来干活儿了,剩下的 20% 可能就因为各种原因浪费掉啦。
我记得之前去一家工厂参观的时候,就碰到了关于汽轮机效率的有趣事儿。
当时我在车间里,听到工程师们在讨论一台新安装的汽轮机效率不太理想的问题。
他们拿着各种仪表的数据,皱着眉头,在本子上不停地计算。
我凑过去看了看,发现他们正在根据实际运行的数据,代入效率计算公式里,试图找出问题所在。
其中一个工程师说:“这输入热量看起来没问题呀,可输出功率咋就这么低呢?”另一个接着说:“是不是哪里有泄漏,导致能量损失了?”大家你一言我一语,讨论得热火朝天。
最后他们发现,原来是有一个管道的连接处密封不严,有一部分蒸汽泄漏出去了,这才导致了效率降低。
经过一番抢修和调整,再次运行的时候,效率果然提高了不少,大家脸上都露出了欣慰的笑容。
所以说呀,这个效率计算公式可不是纸上谈兵,它能实实在在地帮助我们发现问题,提高汽轮机的工作效率。
在实际应用中,计算汽轮机效率可不那么简单。
因为要考虑很多因素,像蒸汽的压力、温度、流量,还有汽轮机内部的各种损失等等。
这就需要我们对汽轮机的工作原理和各种参数有深入的了解。
楼主对效率的理解有误,透平机输出功率N=G.ΔHs.η/3600,这是你需要的公式,这里:
N:kW
G:蒸汽流量,kg/h
ΔHs:等熵焓降,kJ/kg,注意这里是等熵焓降!
η:等熵效率,也称内效率,%,一般也就60~70%,这个效率也就是你所言的那个60%的效率。
再来看看你的蒸汽参数:
1、汽轮机入口过热蒸汽:
压力P=23.5barg,温度T=390C,比焓H=3,218kJ/kg,比熵S= 6.9933 kJ/kg.C;2、汽轮机出口蒸汽:
注意,你既然指定了等熵效率60%,那么你就应该计算和入口蒸汽比熵相等的熵值的蒸汽参数,其温度压力这俩参数你不能都去指定,而需要你计算:
压力P=8barg(压力值你可以指定,这个与背压汽轮机控制出口蒸汽压力的过程是吻合的)
比熵S= 6.9933 kJ/kg.C(比熵一定要和入口蒸汽相等!此点非常重要,这是你计算的基准!)
根据上述两个条件,即指定的压力和比熵,确定最终汽轮机出口蒸汽参数为:温度T=253.22 C,比焓H=2,954kJ/kg,你的计算错在这里!因为你指定了等熵效率60%,那么你就不能再指定出口蒸汽的温度、压力这两个参数了,你应该指定比熵、压力这两个参数,由这俩参数计算比焓,求出焓降:
ΔHs=3218-2954=265 kJ/kg;
因此N=G.ΔHs.η/3600=10000x265x60%/3600=441.7 kW=0.442 MW,拿计算器摁都成,MW消耗蒸汽量(俗称的汽耗)W=10/0.442=22.6 T/MW,一般工厂用汽轮机用蒸汽参数要比楼主给出的蒸汽参数更高,比如5MPa,450C蒸汽,汽耗一般在20T/MW(或者说20kg/kW),你这个汽轮机的数据略高了些,但你的蒸汽参数低啊,经验数据还是差不多的,贵厂的汽轮机发电是不是差不多这个数?呵呵。