预热器和分解炉的发展二
- 格式:pdf
- 大小:877.52 KB
- 文档页数:6
2024年质量知识问答题库及答案(一)1.硅酸盐水泥熟料:答:即国际上的波特兰水泥熟料(简称水泥熟料),是一种由主要含CaO x SiO2、AI2O3、Fe2θ3以石灰质原料、粘土质原料、的原料按适当配比,磨成细粉,烧至部分熔融,所得以硅酸钙为主要成份的烧结产物。
2、KH、SM.IM对燃烧的影响?答:在实际生产中KH过高,工艺条件难以满足需要,f-CaO会明显上升,熟料质量反而下降,KH过低,C3S过少熟料质量也会差,SM 过高,硅酸盐矿物多,对熟料的强度有利,但意味着熔剂矿物较少,液相量少,将给燃烧造成困难,SM过低,则对熟料温度不利,且熔剂矿物过多,易结大块炉瘤,结圈等,也不利于燃烧。
IM的高低也应视具体情况而定。
在C3A÷C4AF含量一定时,IM高,意味着C3A量多,C4AF量少,液相粘度增加,C3S形成困难,且熟料的后期强度,抗干缩等影响,相反,IM过低,则C3A量少,C4AF量多,液相粘度降低,这对保护好窑的窑皮不利。
3、生料为什么要控制0.2mm以上的颗粒含量?答:生料细度偏粗:(1)细度大,特别是0.20mm筛余大,颗粒表面积减少了燃烧过程中颗粒之间的接触,同时颗粒表面积小,自由能减少,不易参加反应,致使生料中碳酸钙分解不完全,易造成f-CaO 增加,熟料质量下降。
(2)熟料矿物主要通过固相反应形成的。
固相反应的速度除与原料的矿物性质有关外,在均化程度、燃烧温度和时间相同的前提下,与生料的细度成正比关系,细度愈细,反应速度愈快,反应过程愈易完全。
4、CaCo3颗粒受热分解的五个过程?答:①气流向颗粒表面的传热过程;②热量由表面以传导方式向分解面传递的过程;③碳酸钙在一定的温度下吸收热量,进行分解并放出C02的化学过程;④分解放出的C02,穿过CaO层向表面扩散的传质过程;⑤表面的C02向四周介质气流扩散的过程。
5、分解率高低对熟料燃烧影响?答:预分解技术的出现是水泥燃烧工艺的一次技术飞跃。
(二)、分解炉的工作原理与结构概述分解炉是把生料粉分散悬浮在气流中,使燃料燃烧和碳酸钙分解过程在很短时间(一般1.5~3秒)内发生的装置,是一种高效率的直接燃烧式固相一气相热交换装置。
在分解炉内,由于燃料的燃烧是在激烈的紊流状态下与物料的吸热反应同时进行,燃料的细小颗粒呈一面浮游,一面燃烧,使整个炉内几乎都变成了燃烧区。
所以不能形成可见辉焰,而是处于820~900℃低温无焰燃烧的状态。
水泥烧成过程大致可分为两个阶段:石灰质原料约在900℃时进行分解反应(吸热);在1200~1450℃时进行水泥化合物生成反应(放热、部分熔融)。
根据理论计算,当物料由750℃升高到850℃,分解率由原来的25%提高到85~90%时。
每千克熟料尚须1670千焦的热量。
因此,全燃料的60%左右用于分解炉的燃烧,40%用在窑内燃烧。
近几年来窑外分解技术发展很快,虽然分解炉的结构型式和工作原理不尽相同,它们各有自己的特点,但是从入窑碳酸钙分解率来看,都不相上下,一般都达到85%以上。
由此看来,分解炉的结构型式对于入窑生料碳酸钙分解率的影响是不太大的。
关键在于燃料在生料浓度很高的分解炉内能稳定、完全燃烧,炉内温度分布均匀,并使碳酸钙分解在很短时间内完成。
我国某厂烧煤分解炉的结构示意图3—18。
分解炉由预燃室和炉体两部分组成,预燃室主要起预燃和散料作用,炉体主要起燃料燃烧和碳酸钙分解作用。
在钢板壳体内壁镶砌耐火砖。
由冷却机来的二次空气分成两路进入预燃室。
三级旋风筒下来的预热料,由二次空气从预燃室柱体的中上部带入预燃室。
约四分之一的分解炉用煤粉,从预燃室顶部由少量二次空气带入并着火燃烧,约四分之三左右的煤粉在分解炉锥体的上部位置喂入,以此来提高和调整分解炉的温度,使整个炉内温度分布趋于均匀,担任分解碳酸钙的主力作用。
炉体内的煤粉颗粒,虽被大量的惰性气体CO2和N2所包围,减少了与O2接触的机会,煤粉的燃烧速度就会减慢。
但由于进入预燃室的煤粉不受生料粉的影响,而且在纯空气中燃烧,形成引燃火焰,起到火种的作用,使预燃室出口处有明火存在,对煤粉起着强制着火作用。
分解炉温度的控制目的在于控制分解率分解炉温度的控制目的在于控制分解率。
C1出口温度主要受入窑生料量的影响,其次是预热器排风量及尾煤燃烧情况。
对于前者,控制入窑生料量的稳定是控制热工制度稳定的关键。
我们常说“五稳保一稳”,“五稳”指“入窑生料量、生料成分稳,给煤量、燃煤成分稳,设备运转稳定”,“一稳”指“热工制度稳定”。
在“五稳”中烧成操作可控制的只有入窑生料量和给煤量两个,而给煤量是由入窑生料量的大小来决定。
所以说控制入窑生料量的稳定是控制热工制度稳定的关键。
对于后者,预热器出口CO%与预热器排风量及尾煤燃烧情况的好坏密切相关。
二、压力与气氛制度:压力与气氛是相互联系密不可分的。
例如我们要求窑尾O2%0.7-1.0%,CO%无或者很少,亦即保持窑内的还原或氧化气氛。
在窑头给煤量一定的情况下,要达到上述要求就必须通过调节喷煤管的风量匹配及窑炉风量匹配来达到。
对于分解炉出口要求O2%3.0-4.0%,预热器出口一般要求3.0%左右.根据我在操作和生产调试的经验认为,预热器出口O2%偏下限控制在2.5-3.0%时在烧成上比较易于控制,电耗煤耗方面也比较经济。
前提条件是分解炉炉容合适,尾煤能在分解炉内完全燃烧或只有少量在五级旋风筒内燃烬。
预热器出口O2%2.5-3.0%与3.0-3.5%的区别在于,相同投料量的情况下拉风量不一样,亦即C1出口负压比3.0-3.5%时要小一些。
产生的后果是分解炉内风速降低物料滞留时间延长,炉内煤粉燃烬度提高,旋风筒收尘效率增加。
明显的区别是O2%2.5-3.0%时C1出口温度要比3.0-3.5%时要低5-10度。
三、热平衡制度:“热平衡”比较容易理解,“热量收入=热量支出”,热量收入包括煤粉燃烧产生热、物料化学反应热、熟料回收热等,热量支出包括生料分解吸热、加热空气和物料耗热、胴体散热、熟料和空气带走的热量等。
热平衡牵涉到物料与气流的平衡。
稳定的热工制度反映在热平衡上,收入与支出的各子项也相对稳定。
预分解窑操作要求的特点1. 前言新型干法预分解窑全系统主要包括几个变化和反应过程:一是燃烧,二是各种气、固、液的化学反应,三是传热过程,四是物料的运输过程,五是冷却过程等。
每个过程及其相关的因素皆对窑系统的政常运行造成较大影响。
因此在操作上要求保持发热能力与传热能力平衡与稳定,以保持煅烧能力与预热预分解能力的平衡和稳定,为达到上述目的,操作时必须做到前后兼顾,窑炉协调,需要风、煤、料及窑速的合理配合与稳定,需要热工制度的合理稳定。
2. 预分解窑的用风特点2.1 预分解窑系统的用风特点2.1.1 预热预分解系统由预热器、分解炉及上升管道组成。
其传热过程主要在上升管道内进行,以对流传热为主。
物料通过撒料器,被上升烟气吹散并悬浮在烟气中迅速完成传热过程,而且预热器的悬浮效率由0.4降到0.1时,物料的预热温度就下降39.9℃,既增加废气温度。
因此对于上升管道的风速,要求能吹散并携带物料上升进入预热器,同时风速的大小影响着对流传热系数,风速低达不到要求造成管道水平部位粉尘沉降,极易造成塌料、堵塞;风速过高又造成通风阻力过大。
因此,在上升管道中风速一般为16~20m/s。
2.1.2 预热器的主要作用是收聚物料、实现固气分离,其分离效率和它的进风口风速及筒内截面风速有关,风速也影响着旋风筒的阻力损失。
但不同形式预热器的风速范围是不同的,一般截面风速为3~6 m/s,而入口最佳风速为16~20m/s。
2.1.3 分解炉中,物料、燃料与气体必须充分混和悬浮,完成边燃烧放热,边传热。
边分解过程,达到温度及进分解炉的燃料、物料、空气、烟气动态平衡。
其中物料及燃料的分散、悬浮和混合运动需要合适的风速。
燃料燃烧和物料分解速度也受风速的影响,而物料在炉内的停留时间、煤粉燃尽率及分解炉通风阻力更受风速的直接影响。
2.2 窑内用风的特点窑内用风主要是一次风与二次风。
二次风量受一次风量和系统拉风等影响。
一次风由于窑头煤粉的输送和供给煤粉中的挥发份燃烧所需的氧,以保证煤粉的燃烧需要。
回转窑点火烘窑实施细则一、预热器分解炉和窑的煤粉燃烧的细则,具体说明如下:1. 烘干材料:柴油、煤粉2. 烘干时间:连续烘干144小时左右3. 烘干速率:一般温升速度<25°C /小时,升温初期要求速率慢一些,后期可快些,以控制窑尾温度为准。
4. 本细则仅考虑了回转窑、预热器和分解炉的烘干,三次风管、篦冷机耐火材料投料后利用余热烘干。
二、升温烘窑1、烘窑升温过程温度控制如下表:烘窑后期,如遇大雨、暴雨,可开启辅传连续慢转窑。
2、升温曲线如下:烘窑升温曲线3、具体烘窑操作1) .烘窑操作和要求(1) .点火前将三次风阀门开至40%,点火烘窑开始后,在篦冷机用木材烘烤。
(2) .用火把点燃燃烧器,将油量调至150-3001/min左右,密切注意窑尾温度变化,和遵守烘窑升温曲线的规定,当窑尾温度小于200C时,回转窑要每4小时转1/4转,随着窑尾温度的提高,逐渐增加窑的转动次数。
(3) .进入烘窑后期阶段,可以转入小开度地打开高温风机和后排风机风门,此时, 一级预热器人孔门(四个)则相应关闭。
当C1筒出口温度上升到250C后,不再调节风门大小,维持到烘窑结束。
(4) .在烘烤期间,观察窑头、窑尾密封的运转情况;窑筒体表面温度;托轮的运转情况;窑上、下窜动情况;并进行热态调整。
(5) .在烘烤期间,要密切注意预热器分解炉系统各点温度变化情况,要特别注意窑尾和C1筒出口废气温度,严格控制升温速度,防止水分蒸发过快,衬料爆裂。
(6) .烘烤期间,是检查窑尾系统密封情况的良好时机,发现有冒黑烟处,应及时封堵。
(7) 烘烤结束后,及时排除有关设备内积水,进行设备复位。
(8) .检查如未达到烘干要求,应适当延长烘干时间。
(9) . 待系统烘干结束后,将预热器系统各级旋风筒、上升管道及分解炉顶盖的浇注预留孔封死;将各级排灰阀的平衡杆放下,调整重锤位置,并检查其动作的灵活性。
2) . 烘窑过程注意事项(1) . 在点火初期,由于燃烧不稳定,窑头有时会出现喘气、窜火、“放炮”等现象,因此要注意人身安全,人员不要轻易靠近窑门口。
预热器及分解炉现场操作规程(包括:三次风管、预热器、分解炉及所属设备)一、开车前的准备和检查1、确认预热器内无异物,做投球试验,确认各级预热器下料管道畅通;2、关闭所有的入孔、清扫孔、取样孔等;3、检查翻板阀的平衡重量,可用手轻松地打开阀门,确认阀活动灵活。
4、确认燃烧器处于良好状态(位置适当,保护材料无损坏等);5、检查压缩空气压力,确认空气管路系统不漏风。
6、确认三次风挡板位置,动作是否灵活。
二、运转中的检查及注意事项1、检查各级预热器有无堵塞现象,窑尾烟室及烟道结皮是否严重,发现结皮严重及时清理;2、观察各翻板阀是否灵活;3、及时关闭各捅孔门,检查大气开放口及其他各处是否有漏风现象;4、当发现三级、二级刚开始结皮时(或中控室发现了下述现象后),可通过压缩空气处理之(完全堵塞后鼓风处理无效)。
5、检查三次风管道、分解炉、预热器及管道有无掉砖、过热现象,各膨胀节连接管的伸缩状态是否正常。
6、观察各级空气炮工作情况是否良好,有无不工作或者漏气现象。
7、运转情况下的清堵作业7.1清扫作业前,必须与中控取得联系;7.2清扫作业时,要穿戴防护面罩、放热手套、放热鞋,工作服要整齐并扣好衣扣;7.3清扫作业时,无关人员不得靠近作业现场;工作场所应保持整洁,行走方便;7.4不准轻易打开预热器的检修门;开清扫孔时,注意随时会喷出热气流和热粉尘,因此不得面对气流和粉尘喷出的方向,不得同时敞开两个以上的清扫孔;7.5不要碰到预热器、烟道等壳体,以免烫伤;7.6清扫有吹风的地方时,应先将风关闭,确认没有余压后开始清扫;清扫时,不准上下同时作业。
因为有粉尘和粘结物落到下面作业人员身上的危险,也有粉尘从下面的检修孔或清扫孔喷出的危险;清扫时,不准左右同时作业。
因为有粉尘会从一个清扫孔喷出。
清扫完后,必须将清扫孔关闭;7.7清扫作业时,中控室不准进行与预热器相关的操作,若有必要,事前要与预热器工联系,在保证安全的情况下可以操作。
第二代新型干法水泥生产线核心提示:第二代新型干法水泥技术装备实际上是不断提高产品质量和降低能耗,注重环保与绿色概念,融入现代智能技术,使我国新型干法水泥的技术、装备、资源能源利用效率、节能减排、自动化水平、经济技术指标都得到较大的提高和提升,达到世界领先水平。
所谓第二代新型干法水泥技术和装备是在不改变悬浮预热和预分解这一主要工艺技术特征的基础上的进一步创新。
下面具体介绍了“第二代新型干法水泥”的八大特征技术体系:1、高能效低氮预热预分解及烧成技术以科学的计算机模型和数字化模拟技术建立先进的高能效和低氮燃烧理论,提高悬浮预热、预分解和高温烧成过程的燃烧、传热效率和降低氮氧化物的产生量,生产更高品质、更高等级的水泥熟料,较大幅度降低能耗量和氮氧化物排放量。
2、高效节能料床粉磨技术深入研究料床破碎理论,进一步提升料床粉磨的效能效率,开发适用不同原料、燃料和熟料配比的大型辊磨,提高运行可靠性和不同粉体性能的可控性,特别要满足混凝土对水泥的级配、粒径、粒型和需水性等要求。
3、原料、燃料均化配置技术研究开发适用于不同种类和品位的原材料和燃料的均化配制技术,特别是适用于各种废弃物、城市垃圾作为替代燃料和原料的应用技术,使水泥窑炉在协同处置和资源化利用废弃物时,能确保提高产品质量、降低能耗、物耗、减少排放。
4、数字化智能型控制技术运用模糊逻辑、神经网络理论和模型预测控制技术,将自动化智能化技术融入水泥企业的生产和管理全过程,实现对安全生产、产品质量、物耗能耗、环保排放、物流和成本管理等全方位的智能化管理,整体提升控制力和运营效益。
5、废弃物安全无害化处置和资源化利用技术,充分发挥新型干法水泥窑的优势和特点,重点研究开发协同处置工业废弃物、城市垃圾、污泥的功能与利用技术,在保证水泥正常生产、产品质量和达标排放的前提下,实现废弃物的安全无害化处置和原料燃料替代利用技术,使水泥窑炉具备环保功能,替代燃料的利用率达到40%。
热工设备课后作业答案(复习资料)第二章1、水泥窑的发展历程时什么?与其它回转窑相比,为什么NSP窑在节能、高产方面具有优势?答:一、在流程结构方面:它在SP窑的悬浮预热器与回转窑之间增加一个分解炉,分解炉高效的承担了原来主要在回转窑内进行的大量碳酸钙分解得任务,缩短回转窑,减少占地面积,减少可动部件数,以及降低窑体设备的费用。
二、在热工过程方面:分解炉是预热分解窑系统的第二热源,小部分燃料加入窑头,大部分则加入分解炉,有效地改善整个系统的热力布局,从而大大减轻了窑内耐火材料的热负荷,延长窑龄,另外减少了氮氧化合物(有害物质)的分量,有利于保护环境。
三、在工艺过程方面:将熟料煅烧过程中耗热量最大的碳酸钙分解过程移至分解炉内进行后,燃料燃烧产生的热量能及时高效的传递给预热后的生料,于是燃烧、换热以及碳酸钙分解过程得到优质的熟料。
回转窑的单位容积产量、单机产量得到大幅度的提升,烧成热也因此有所降低,也能利于一些低质燃料。
2、入窑生料的表观分解率与真实分解率的主要差别在什么地方?答:表观分解率是预热生料与旋风筒收集的飞灰两种料综合的分解率,真实分解率仅是预热生料/预热分解系统内遇热分解的真是数据。
3、为什么悬浮预热器系统内气(废气)、固(生料)之间的传热速率极高?为什么旋风预热系统又要分成多级换热单元相串联的形式?答:在管道内悬浮态由于气流速度较大(对流换热系数也因此较大),气、固相间的换热面积大,所以气、固相间的换热速度极快,经过0.02~0.04s的时间就可以达到温度的动态平衡,而且气、固相的换热过程主要发生在固相刚刚加入到气相后的加速段,尤其是加速的初始段,此时再增加气、固相间的接触时间,其意义已经不大,所以此时只有实现气、固相分离进入下一个换热单元,才能起到强化气、固相之间的换热作用。
4、为什么旋风预热系统首先是要求第一级(最上级)旋风筒的气、固分离效率最高,其次是强调最下一级旋风筒的分离效率要高,然后才考虑其他几级旋风筒的分离效率要较高?答:考虑到第一级旋风筒排出的粉尘量对整个系统运行经济性的影响,因为出了一级的生料就出了整个预热器系统而成为飞损的粉尘,从而增加热耗,以及后面吸尘器的负担,因此第一级的重要性最大。