算法设计与分析
- 格式:doc
- 大小:146.50 KB
- 文档页数:6
算法设计与分析电子教案一、教案概述本节课的主题是算法设计与分析。
通过本节课的学习,学生将了解算法的定义、算法的设计方法以及算法的分析方法,培养学生的算法设计和分析能力。
二、教学目标1.了解算法的定义和特点;2.掌握算法的设计方法:递归、贪心算法、动态规划、分治法等;3.能够使用算法设计和分析的方法解决实际问题;4.培养学生的算法设计和分析能力。
三、教学内容与教学方法1.算法的定义和特点(10分钟)通过讲解算法的定义和特点,引导学生了解算法的基本概念和要素,同时培养学生的逻辑思维能力。
教学方法为讲解和示例演示。
2.算法的设计方法(20分钟)介绍几种常用的算法设计方法,包括递归、贪心算法、动态规划和分治法。
通过具体的例子演示每种方法的具体应用,并引导学生进行思考和分析。
教学方法为讲解和示例演示。
3.算法的分析方法(30分钟)介绍算法的时间复杂度和空间复杂度的概念,以及常用的算法分析方法。
通过实际问题的例子,引导学生计算算法的时间复杂度和空间复杂度,并进行分析和比较。
教学方法为讲解和示例演示。
4.实际问题的算法设计与分析(30分钟)提供一些实际问题,要求学生利用所学的算法设计和分析的方法进行解决。
教师可以通过小组合作的形式进行实际问题的讨论和解答。
教学方法为小组合作和问题解答。
5.总结与评价(10分钟)教师对本节课的内容进行总结,并评价学生的学习情况和表现。
同时鼓励学生继续加强算法设计和分析的学习和实践。
四、教学资源和评价方式1.教学资源:-电子教案;-计算机及投影仪等教学设备;-教材和参考书。
2.评价方式:-课堂参与度和合作度;-实际问题的解答和分析能力;-课后作业的完成情况和质量。
五、教学中的关键环节和要点1.算法的定义和特点是理解算法的基础,要求学生掌握清晰的逻辑思维和表达能力。
2.算法的设计方法是学生解决实际问题的关键,需要学生理解每种方法的原理和特点,并进行实际问题的应用练习。
3.算法的分析方法是学生评估算法效果和性能的关键,需要学生理解时间复杂度和空间复杂度的概念,能够对给定算法进行分析。
算法设计与分析习题答案算法设计与分析是计算机科学中一个重要的领域,它涉及到算法的创建、优化以及评估。
以下是一些典型的算法设计与分析习题及其答案。
习题1:二分查找算法问题描述:给定一个已排序的整数数组,编写一个函数来查找一个目标值是否存在于数组中。
答案:二分查找算法的基本思想是将数组分成两半,比较中间元素与目标值的大小,如果目标值等于中间元素,则查找成功;如果目标值小于中间元素,则在左半部分继续查找;如果目标值大于中间元素,则在右半部分继续查找。
这个过程会不断重复,直到找到目标值或搜索范围为空。
```pythondef binary_search(arr, target):low, high = 0, len(arr) - 1while low <= high:mid = (low + high) // 2if arr[mid] == target:return Trueelif arr[mid] < target:low = mid + 1else:high = mid - 1return False```习题2:归并排序算法问题描述:给定一个无序数组,使用归并排序算法对其进行排序。
答案:归并排序是一种分治算法,它将数组分成两半,分别对这两半进行排序,然后将排序好的两半合并成一个有序数组。
```pythondef merge_sort(arr):if len(arr) > 1:mid = len(arr) // 2left_half = arr[:mid]right_half = arr[mid:]merge_sort(left_half)merge_sort(right_half)i = j = k = 0while i < len(left_half) and j < len(right_half): if left_half[i] < right_half[j]:arr[k] = left_half[i]i += 1else:arr[k] = right_half[j]j += 1k += 1while i < len(left_half):arr[k] = left_half[i]i += 1k += 1while j < len(right_half):arr[k] = right_half[j]j += 1k += 1arr = [38, 27, 43, 3, 9, 82, 10]merge_sort(arr)print("Sorted array is:", arr)```习题3:动态规划求解最长公共子序列问题问题描述:给定两个序列,找到它们的最长公共子序列。
电大计算机本科_算法设计与分析
算法设计与分析是计算机科学和数学领域的重要课程。
它涉及到一系
列算法设计、分析和实现的方面,涉及到算法流程、语法、数据结构等多
方面。
在算法设计与分析这门课程中,学生首先要学习怎么设计一个算法,
怎么从实际问题中提取算法,怎么分析算法复杂度,怎么评价算法效率。
接下来要学习算法,基本排序算法和选择算法,分治算法,贪婪算法,动
态规划,回溯算法,朴素贝叶斯,马尔科夫链等等各种算法。
学生还要熟
悉现代算法建模工具(如Matlab、SAS、C++),熟悉算法的优化技巧,
掌握算法的编码实现方法,并研究其实际应用。
本课程可以使学生充分发挥自己的能力,培养学生的算法设计能力,
提高实践能力,掌握算法的基本原理及运用,把握算法分析及其优化技术。
它不仅帮助学生提高数学思维能力,同时也有助于他们在计算机编程方面
的能力。
学习算法设计与分析有助于学生全面掌握算法设计这一重要组成
部分,也可以拓展学生的应用领域,使学生更具有竞争力。
学习算法设计与分析也有其困难之处,首先是算法编程比较抽象,学
生需要有较强的理论功底和数学能力。
计算机算法的设计与分析计算机算法的设计和分析随着计算机技术的不断发展,算法成为了关键的核心技术之一。
算法的设计和分析是指通过一系列的步骤和方法来解决计算机问题的过程。
本文将详细介绍计算机算法的设计和分析。
一、算法设计的步骤:1. 理解和定义问题:首先需要明确所要解决的问题,并对其进行深入的理解,确定问题的输入和输出。
2. 分析问题:对问题进行分析,确定问题的规模、特点和约束条件,以及可能存在的问题解决思路和方法。
3. 设计算法:根据问题的性质和特点,选择合适的算法设计方法,从而得到解决问题的具体算法。
常见的算法设计方法包括贪心算法、分治算法、动态规划算法等。
4. 实现算法:将步骤3中设计的算法转化为计算机程序,并确保程序的正确性和可靠性。
5. 调试和测试算法:对实现的算法进行调试和测试,包括样本测试、边界测试、异常输入测试等,以验证算法的正确性和效率。
二、算法分析的步骤:1. 理解算法的效率:算法的效率是指算法解决问题所需的时间和空间资源。
理解算法的时间复杂度和空间复杂度是进行算法分析的基础。
2. 计算时间复杂度:时间复杂度用来表示算法解决问题所需的时间量级。
常用的时间复杂度包括常数时间O(1)、对数时间O(logn)、线性时间O(n)、平方时间O(n^2)等。
3. 计算空间复杂度:空间复杂度用来表示算法解决问题所需的空间资源量级。
常用的空间复杂度包括常数空间O(1)、线性空间O(n)、指数空间O(2^n)等。
4. 分析算法的最坏情况和平均情况:算法的最坏情况时间复杂度和平均情况时间复杂度是进行算法分析的关键指标。
最坏情况时间复杂度表示在最不利条件下算法所需的时间量级,平均情况时间复杂度表示在一般情况下算法所需的时间量级。
5. 比较算法的优劣:通过对不同算法的时间复杂度和空间复杂度进行分析,可以对算法的优劣进行比较,从而选择合适的算法。
三、常见的算法设计与分析方法:1. 贪心算法:贪心算法通过每一步的选择来寻求最优解,并且这些选择并不依赖于其他选择。
算法设计与分析黄丽韵版(1)用计算机求解问题的步骤:1、问题分析2、数学模型建立3、算法设计与选择4、算法指标5、算法分析6、算法实现7、程序调试8、结果整理文档编制(2)算法定义:算法是指在解决问题时,按照某种机械步骤一定可以得到问题结果的处理过程(3)算法的三要素1、操作2、控制结构3、数据结构算法具有以下5个属性:有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。
确定性:算法中每一条指令必须有确切的含义。
不存在二义性。
只有一个入口和一个出可行性:一个算法是可行的就是算法描述的操作是可以通过已经实现的基本运算执行有限次来实现的。
输入:一个算法有零个或多个输入,这些输入取自于某个特定对象的集合。
输出:一个算法有一个或多个输出,这些输出同输入有着某些特定关系的量。
算法设计的质量指标:正确性:算法应满足具体问题的需求;可读性:算法应该好读,以有利于读者对程序的理解:健壮性:算法应具有容错处理,当输入为非法数据时,算法应对其作出反应,而不是产生莫名其妙的输出结果。
效率与存储量需求:效率指的是算法执行的时间;存储量需求指算法执行过程中所需要的最大存储空间。
一般这两者与问题的规模有关。
经常采用的算法主要有迭代法、分而治之法、贪婪法、动态规划法、回溯法、分支限界法迭代法也称“辗转法”,是一种不断用变量的旧值递推出新值的解决问题的方法。
迭代法也称“辗转法”,是一种不断用变量的旧值递推出新值的解决问题的方利用迭代算法解决问题,需要做好以下三个方面的工作:一、确定迭代模型。
在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量。
二、建立迭代关系式。
所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系)。
迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成。
三、对迭代过程进行控制。
在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题。
算法设计与分析算法是计算机科学中的核心概念,它是解决问题的一系列步骤和规则的有序集合。
在计算机科学的发展中,算法设计和分析扮演着至关重要的角色。
本文将探讨算法设计和分析的相关概念、技术和重要性。
一、算法设计的基本原则在设计算法时,需要遵循一些基本原则来确保其正确性和有效性:1. 正确性:算法设计应确保能够正确地解决给定的问题,即输出与预期结果一致。
2. 可读性:设计的算法应具有清晰的结构和逻辑,易于理解和维护。
3. 高效性:算法应尽可能地减少时间和空间复杂度,以提高执行效率。
4. 可扩展性:算法应具备良好的扩展性,能够适应问题规模的变化和增长。
5. 可靠性:设计的算法应具备稳定性和鲁棒性,对不同的输入都能给出正确的结果。
二、常见的算法设计技术1. 枚举法:按照规定的顺序逐个尝试所有可能的解,直到找到满足条件的解。
2. 递归法:通过将一个大问题分解成若干个小问题,并通过递归地解决小问题,最终解决整个问题。
3. 贪心算法:在每个阶段选择最优解,以期望通过一系列局部最优解达到全局最优解。
4. 分治算法:将一个大问题划分成多个相互独立的子问题,逐个解决子问题,并将解合并得到整体解。
5. 动态规划:通过将一个大问题分解成多个小问题,并存储已解决子问题的结果,避免重复计算。
三、算法分析的重要性算法分析可以评估算法的效率和性能。
通过算法分析,可以:1. 预测算法在不同规模问题上的表现,帮助选择合适的算法解决具体问题。
2. 比较不同算法在同一问题上的性能,从而选择最优的算法。
3. 评估算法在不同硬件环境和数据集上的表现,选择最适合的算法实现。
四、常见的算法分析方法1. 时间复杂度:衡量算法所需执行时间的增长率,常用的时间复杂度有O(1)、O(log n)、O(n)、O(n log n)和O(n^2)等。
2. 空间复杂度:衡量算法所需占用存储空间的增长率,常用的空间复杂度有O(1)、O(n)和O(n^2)等。
3. 最坏情况分析:对算法在最不利情况下的性能进行分析,可以避免算法性能不稳定的问题。
算法分析与设计在计算机科学领域,算法是解决问题的一种方法或步骤。
对于任何给定的问题,可能有许多不同的算法可用于解决。
算法的效率直接影响着计算机程序的性能,在实践中,我们通常需要进行算法分析和设计来确保程序的高效性和可靠性。
算法分析算法分析是用来评估算法性能的过程。
主要关注的是算法的效率和资源消耗。
常见的算法分析方法包括时间复杂度和空间复杂度。
时间复杂度时间复杂度描述了算法运行时间随输入规模增加而增加的趋势。
通常用大O符号表示,比如O(n)、O(log n)等。
时间复杂度越低,算法执行速度越快。
空间复杂度空间复杂度描述了算法在运行过程中所需的内存空间大小。
同样用大O符号表示。
空间复杂度越低,算法消耗的内存越少。
算法设计算法设计是指为了解决特定问题而创造新的算法的过程。
常见的算法设计方法包括贪心算法、分治法、动态规划等。
贪心算法贪心算法是一种在每一步选择当前状态下最优解的算法。
虽然贪心算法并不总是能得到全局最优解,但它的简单性和高效性使其在实际应用中很受欢迎。
分治法分治法将复杂问题分解为子问题来求解,然后将子问题的解合并起来得到原问题的解。
典型的应用有归并排序和快速排序等。
动态规划动态规划是一种将问题分解为重叠子问题、并存储子问题解的方法。
通过利用已解决的子问题来解决更大规模的问题,动态规划能够显著提高算法的效率。
结语算法分析和设计是计算机科学中至关重要的一部分,它帮助我们理解算法的效率和性能,并指导我们选择合适的算法来解决问题。
通过不断学习和实践,我们可以不断提升自己在算法领域的能力,为创造更高效、更可靠的计算机程序做出贡献。
实验一找最大和最小元素与归并分类算法实现(用分治法)一、实验目的1.掌握能用分治法求解的问题应满足的条件;2.加深对分治法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。
二、实验内容1、找最大和最小元素输入n 个数,找出最大和最小数的问题。
2、归并分类将一个含有n个元素的集合,按非降的次序分类(排序)。
三、实验要求(1)用分治法求解问题(2)上机实现所设计的算法;四、实验过程设计(算法设计过程)1、找最大和最小元素采用分治法,将数组不断划分,进行递归。
递归结束的条件为划分到最后若为一个元素则max和min都是这个元素,若为两个取大值赋给max,小值给min。
否则就继续进行划分,找到两个子问题的最大和最小值后,比较这两个最大值和最小值找到解。
2、归并分类使用分治的策略来将一个待排序的数组分成两个子数组,然后递归地对子数组进行排序,最后将排序好的子数组合并成一个有序的数组。
在合并过程中,比较两个子数组的首个元素,将较小的元素放入辅助数组,并指针向后移动,直到将所有元素都合并到辅助数组中。
五、源代码1、找最大和最小元素#include<iostream>using namespace std;void MAXMIN(int num[], int left, int right, int& fmax, int& fmin); int main() {int n;int left=0, right;int fmax, fmin;int num[100];cout<<"请输入数字个数:";cin >> n;right = n-1;cout << "输入数字:";for (int i = 0; i < n; i++) {cin >> num[i];}MAXMIN(num, left, right, fmax, fmin);cout << "最大值为:";cout << fmax << endl;cout << "最小值为:";cout << fmin << endl;return 0;}void MAXMIN(int num[], int left, int right, int& fmax, int& fmin) { int mid;int lmax, lmin;int rmax, rmin;if (left == right) {fmax = num[left];fmin = num[left];}else if (right - left == 1) {if (num[right] > num[left]) {fmax = num[right];fmin = num[left];}else {fmax = num[left];fmin = num[right];}}else {mid = left + (right - left) / 2;MAXMIN(num, left, mid, lmax, lmin);MAXMIN(num, mid+1, right, rmax, rmin);fmax = max(lmax, rmax);fmin = min(lmin, rmin);}}2、归并分类#include<iostream>using namespace std;int num[100];int n;void merge(int left, int mid, int right) { int a[100];int i, j,k,m;i = left;j = mid+1;k = left;while (i <= mid && j <= right) {if (num[i] < num[j]) {a[k] = num[i++];}else {a[k] = num[j++];}k++;}if (i <= mid) {for (m = i; m <= mid; m++) {a[k++] = num[i++];}}else {for (m = j; m <= right; m++) {a[k++] = num[j++];}}for (i = left; i <= right; i++) { num[i] = a[i];}}void mergesort(int left, int right) { int mid;if (left < right) {mid = left + (right - left) / 2;mergesort(left, mid);mergesort(mid + 1, right);merge(left, mid, right);}}int main() {int left=0,right;int i;cout << "请输入数字个数:";cin >> n;right = n - 1;cout << "输入数字:";for (i = 0; i < n; i++) {cin >> num[i];}mergesort(left,right);for (i = 0; i < n; i++) {cout<< num[i];}return 0;}六、运行结果和算法复杂度分析1、找最大和最小元素图1-1 找最大和最小元素结果算法复杂度为O(logn)2、归并分类图1-2 归并分类结果算法复杂度为O(nlogn)实验二背包问题和最小生成树算法实现(用贪心法)一、实验目的1.掌握能用贪心法求解的问题应满足的条件;2.加深对贪心法算法设计方法的理解与应用;3.锻炼学生对程序跟踪调试能力;4.通过本次实验的练习培养学生应用所学知识解决实际问题的能力。
算法设计与分析算法设计是计算机科学重要的研究方向之一。
其核心目的是在给定的计算机问题下,设计出一种能够高效完成任务的算法。
在算法设计的过程中,需要考虑多种因素,如算法的正确性、可理解性、可维护性、可移植性以及算法的时间和空间复杂度等。
常用的算法设计策略包括贪心算法、动态规划算法、回溯算法、分治算法等多种。
算法的正确性是算法设计的首要考虑因素之一。
如果一个算法不能够正确地解决问题,那么它的时间复杂度和空间复杂度再低也没有用处。
一般来说,算法的正确性可以通过数学证明来进行验证。
根据不同的算法类型,其正确性验证需要应用不同的证明方法。
时间复杂度和空间复杂度也是算法设计的关键考虑因素。
通常,一个算法的时间复杂度越低,运行时间就越短。
同样地,一个算法的空间复杂度越低,需要占用的内存就越少。
时间复杂度和空间复杂度之间通常是矛盾的,因此需要在两者之间做出权衡。
常用的算法比较基准是时间复杂度,时间复杂度大致可以分为常数阶、对数阶、线性阶、平方阶、立方阶等多个级别,并且可能还存在更高阶的时间复杂度。
在算法设计之后,需要进行算法的分析。
算法分析通常包括平均时间复杂度、最坏时间复杂度和最好时间复杂度的分析。
平均时间复杂度指的是在一组随机输入下的平均运行时间,通常是指输入数据分布的随机分布;最坏时间复杂度指的是运行时间的上界,通常是指特殊的输入情况时,算法运行时间达到最大值;最好时间复杂度指的是算法在最理想情况下的运行时间,通常指输入数据已经有序的情况下的运行时间。
除此之外,尚有许多其他因素需要考虑,例如算法的可扩展性、可移植性、可维护性、可复用性等。
其中的可扩展性指的是算法能够处理的数据规模的大小,通常需要根据不同的数据规模进行不同的优化;可移植性指的是算法能够运行在不同的计算机体系结构之上;可维护性指的是算法在输出结果有问题时,能够容易地找到错误所在并进行修改;可复用性指的是算法能够被其他程序员或其他算法模块所复用。
第一章算法概述1、算法的五个性质:有穷性、确定性、能行性、输入、输出。
2、算法的复杂性取决于:(1)求解问题的规模(N) , (2)具体的输入数据(I),( 3)算法本身的设计(A),C=F(N,I,A。
3、算法的时间复杂度的上界,下界,同阶,低阶的表示。
4、常用算法的设计技术:分治法、动态规划法、贪心法、回溯法和分支界限法。
5、常用的几种数据结构:线性表、树、图。
第二章递归与分治1、递归算法的思想:将对较大规模的对象的操作归结为对较小规模的对象实施同样的操作。
递归的时间复杂性可归结为递归方程:1 11= 1T(n) <aT(n—b) + D(n) n> 1其中,a是子问题的个数,b是递减的步长,~表示递减方式,D(n)是合成子问题的开销。
递归元的递减方式~有两种:1、减法,即n -b,的形式。
2、除法,即n / b,的形式。
2、D(n)为常数c:这时,T(n) = 0(n P)。
D(n)为线形函数cn:r O(n) 当a. < b(NT(n) = < Ofnlog^n) "n = blljI O(I1P)二"A bl吋其中.p = log b a oD(n)为幕函数n x:r O(n x) 当a< D(b)II JT{ii) = O(ni1og b n) 'ia = D(b)ll].O(nr)D(b)lHJI:中,p= log b ao考虑下列递归方程:T(1) = 1⑴ T( n) = 4T(n/2) +n⑵ T(n) = 4T(n/2)+n2⑶ T(n) = 4T(n/2)+n3解:方程中均为a = 4,b = 2,其齐次解为n2。
对⑴,T a > b (D(n) = n) /• T(n) = 0(n);对⑵,•/ a = b2 (D(n) = n2) T(n) = O(n2iog n);对⑶,•/ a < b3(D(n) = n3) - T(n) = 0(n3);证明一个算法的正确性需要证明两点:1、算法的部分正确性。
《算法设计与分析》教案张静第1章绪论算法理论的两大论题:1. 算法设计2. 算法分析1.1 算法的基本概念1.1.1 为什么要学习算法理由1:算法——程序的灵魂➢问题的求解过程:分析问题→设计算法→编写程序→整理结果➢程序设计研究的四个层次:算法→方法学→语言→工具理由2:提高分析问题的能力算法的形式化→思维的逻辑性、条理性1.1.2 算法及其重要特性算法(Algorithm):对特定问题求解步骤的一种描述,是指令的有限序列。
算法的五大特性:⑴输入:一个算法有零个或多个输入。
⑵输出:一个算法有一个或多个输出。
⑶有穷性:一个算法必须总是在执行有穷步之后结束,且每一步都在有穷时间内完成。
⑷确定性:算法中的每一条指令必须有确切的含义,对于相同的输入只能得到相同的输出。
⑸可行性:算法描述的操作可以通过已经实现的基本操作执行有限次来实现。
1.1.3 算法的描述方法⑴自然语言优点:容易理解缺点:冗长、二义性使用方法:粗线条描述算法思想注意事项:避免写成自然段欧几里德算法⑶程序设计语言优点:能由计算机执行缺点:抽象性差,对语言要求高使用方法:算法需要验证注意事项:将算法写成子函数欧几里德算法#include <iostream.h>int CommonFactor(int m, int n) {int r=m % n;while (r!=0){m=n;n=r;r=m % n;}return n;}void main( ){cout<<CommonFactor(63, 54)<<endl;}⑷伪代码——算法语言伪代码(Pseudocode):介于自然语言和程序设计语言之间的方法,它采用某一程序设计语言的基本语法,操作指令可以结合自然语言来设计。
优点:表达能力强,抽象性强,容易理解使用方法:7 ± 2欧几里德算法1. r = m % n;2. 循环直到 r 等于02.1 m = n;2.2 n = r;2.3 r = m % n;3. 输出 n ;1.1.4 算法设计的一般过程1.理解问题2.预测所有可能的输入3. 在精确解和近似解间做选择4. 确定适当的数据结构5.算法设计技术6.描述算法7.跟踪算法8.分析算法的效率9.根据算法编写代码1.2 算法分析算法分析(Algorithm Analysis):对算法所需要的两种计算机资源——时间和空间进行估算➢时间复杂性(Time Complexity)➢空间复杂性(Space Complexity)算法分析的目的:➢设计算法——设计出复杂性尽可能低的算法➢选择算法——在多种算法中选择其中复杂性最低者时间复杂性分析的关键:➢ 问题规模:输入量的多少;➢ 基本语句:执行次数与整个算法的执行时间成正比的语句for (i=1; i<=n; i++)for (j=1; j<=n; j++)x++;问题规模:n基本语句:x++1.2.1 渐进符号1. 大O 符号定义1.1 若存在两个正的常数c 和n 0,对于任意n ≥n 0,都有T (n )≤c ×f (n ),则称T (n )=O (f (n ))2. 大Ω符号定义1.2 若存在两个正的常数c 和n 0,对于任意n ≥n 0,都有T (n )≥c ×g (n ),则称T (n )=Ω(g (n ))问题规模n 执行次3. Θ符号定义1.3 若存在三个正的常数c 1、c 2和n 0,对于任意n ≥n 0都有c 1×f (n )≥T (n )≥c 2×f (n ),则称T (n )=Θ(f (n ))例: T (n )=5n 2+8n +1当n ≥1时,5n 2+8n +1≤5n 2+8n +n=5n 2+9n ≤5n 2+9n 2≤14n 2=O (n 2)当n ≥1时,5n 2+8n +1≥5n 2=Ω(n 2)∴ 当n ≥1时,14n 2≥5n 2+8n +1≥5n 2则:5n 2+8n +1=Θ(n 2)0问题规模n 执行次数问题规模n 执行次数定理 1.1 若T(n)=amnm +am-1nm-1 + … +a1n+a0(am>0),则有T(n)=O(nm)且T(n)=Ω(n m),因此,有T(n)=Θ(n m)。
《算法设计与分析》教案算法设计与分析是计算机科学与技术专业的一门核心课程,旨在培养学生具备算法设计、分析和优化的能力。
本课程通常包括算法基础、算法设计方法、高级数据结构以及算法分析等内容。
本教案主要介绍了《算法设计与分析》课程的教学目标、教学内容、教学方法和评价方法等方面。
一、教学目标本课程的教学目标主要包括以下几个方面:1.掌握算法设计的基本思想和方法。
2.熟悉常见的算法设计模式和技巧。
3.理解高级数据结构的原理和应用。
4.能够进行算法的时间复杂度和空间复杂度分析。
5.能够使用常见的工具和软件进行算法设计和分析。
二、教学内容本课程的主要教学内容包括以下几个方面:1.算法基础:算法的定义、性质和分类,时间复杂度和空间复杂度的概念和分析方法。
2.算法设计方法:贪心算法、分治算法、动态规划算法、回溯算法等算法设计思想和方法。
3.高级数据结构:堆、树、图等高级数据结构的原理、实现和应用。
4.算法分析:渐进分析法、均摊分析法、递归方程求解等算法分析方法。
5. 算法设计与分析工具:常见的算法设计和分析工具,如C++、Java、Python和MATLAB等。
三、教学方法本课程采用多种教学方法结合的方式,包括讲授、实践和讨论等。
1.讲授:通过教师讲解理论知识,引导学生掌握算法的基本思想和方法。
2.实践:通过课堂上的编程实验和课后作业,培养学生动手实践的能力。
3.讨论:通过小组讨论和学生报告,促进学生之间的交流和合作,提高学习效果。
四、评价方法为了全面评价学生的学习情况,本课程采用多种评价方法,包括考试、作业和实验报告等。
1.考试:通过期中考试和期末考试,检验学生对算法设计和分析的理解和掌握程度。
2.作业:通过课后作业,检验学生对算法设计和分析的实践能力。
3.实验报告:通过编程实验和实验报告,检验学生对算法设计和分析工具的应用能力。
五、教学资源为了支持教学工作,我们为学生准备了如下教学资源:1.课件:编写了详细的教学课件,包括理论知识的讲解和案例分析。
算法设计与分析实验报告
姓名:888
学号:129074999
老师:许精明
实验1:杨辉三角
解法思路:
根据杨辉三角中除最外层(不包括杨辉三角底边)的数为1外,其余的数都是它肩上两个数之和这一性质,用数组输出杨辉三角。
根据杨辉三角的第n行恰好是C(n,0)~C(n,n),可以不用数组输出,而用动态规划。
这里的C表示组合。
注:由于为了便于控制输出格式,程序中的最大输出行确定的较小,但程序本身并没有错误。
若要输出更多行,需要增加控制输出格式的语句。
解法一:数组
#include<stdio.h>
void print(int *row,int n)
{
int i;
for(i=1;i<n;i++)
{
if(row[i]!=0)
{
printf("%d",row[i]);
row[i]=0;//置为初始态,方便保存下一行
}
else
printf(" ");
}
printf("\n");
}
void initia(int num)
{
int up_row[20];
int next_row[20];
int i,j;
for(i=0;i<=num*2;i++)
{
up_row[i]=0;
next_row[i]=0;
}
up_row[num]=next_row[num]=1;
for(i=0;i<num;i++)//控制行
{
for(j=1;j<num+i+1;j++)
{
up_row[j]=next_row[j];//保存当前输出行
}
print(next_row,num+i+1);//本行输出的有效数据个数为当前行数
for(j=1;j<=num+i+1;j++)//0号位的值保留以便下行计算
{
next_row[j]=up_row[j-1]+up_row[j+1];//下一行相应位置的值是上一行相应位置左右值的和
}
}
}
int main(void)
{
int num_row;
printf("确定行数(小于10):");
scanf("%d",&num_row);
initia(num_row);
return 0;
}
运行截图:
解法二:动态规划
#include <stdio.h>
#define MAXH 31
int main(void)
{
unsigned long num[MAXH]={0};
int i,j;
int n;
printf("Input a number to set row:");
scanf("%d",&n);
num[0]=1;
for(i=0;i<n;i++)
{
for(j=i;j>0;j--)
{
num[j] = num[j] + num[j-1];
printf(" %d ",num[j]);
}
printf(" %d \n",1);
}
return 0;
}
运行截图:
实验二:0-1背包
问题描述:给定n 种物品和一背包,物品i 的重量是wi ,其价值为vi ,背包的容量为C 。
应如何选择装入背包的物品(物品不能分割),使得装入背包中物品的总价值最大。
程序实现:
运行截图:
实验三:斐波那挈数列
运行截图:。