算法设计与分析习题答案1-6章.docx
- 格式:docx
- 大小:46.70 KB
- 文档页数:9
算法设计与分析基础习题1.15..证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立.Hint:根据除法的定义不难证明:●如果d整除u和v, 那么d一定能整除u±v;●如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也一定能整除m=r+qn和n。
数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。
故gcd(m,n)=gcd(n,r)6.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次?Hint:对于任何形如0<=m<n的一对数字,Euclid算法在第一次叠代时交换m和n, 即gcd(m,n)=gcd(n,m)并且这种交换处理只发生一次.7.a.对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?(1次)b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?(5次)gcd(5,8)习题1.21.(农夫过河)P—农夫W—狼G—山羊C—白菜2.(过桥问题)1,2,5,10---分别代表4个人, f—手电筒4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平方根的函数)算法Quadratic(a,b,c)//求方程ax^2+bx+c=0的实根的算法//输入:实系数a,b,c//输出:实根或者无解信息If a≠0D←b*b-4*a*cIf D>0temp←2*ax1←(-b+sqrt(D))/tempx2←(-b-sqrt(D))/tempreturn x1,x2else if D=0 return –b/(2*a)else return “no real roots”else //a=0if b≠0 return –c/belse //a=b=0if c=0 return “no real numbers”else return “no real roots”5.描述将十进制整数表达为二进制整数的标准算法a.用文字描述b.用伪代码描述解答:a.将十进制整数转换为二进制整数的算法输入:一个正整数n输出:正整数n相应的二进制数第一步:用n除以2,余数赋给Ki(i=0,1,2...),商赋给n第二步:如果n=0,则到第三步,否则重复第一步第三步:将Ki按照i从高到低的顺序输出b.伪代码算法DectoBin(n)//将十进制整数n转换为二进制整数的算法//输入:正整数n//输出:该正整数相应的二进制数,该数存放于数组Bin[1...n]中i=1while n!=0 do {Bin[i]=n%2;n=(int)n/2;i++;}while i!=0 do{print Bin[i];i--;}9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.(算法略) 对这个算法做尽可能多的改进.算法MinDistance(A[0..n-1])//输入:数组A[0..n-1]//输出:the smallest distance d between two of its elements习题1.31.考虑这样一个排序算法,该算法对于待排序的数组中的每一个元素,计算比它小的元素个数,然后利用这个信息,将各个元素放到有序数组的相应位置上去.a.应用该算法对列表‖60,35,81,98,14,47‖排序b.该算法稳定吗?c.该算法在位吗?解:a. 该算法对列表‖60,35,81,98,14,47‖排序的过程如下所示:b.该算法不稳定.比如对列表‖2,2*‖排序c.该算法不在位.额外空间for S and Count[] 4.(古老的七桥问题)习题1.41.请分别描述一下应该如何实现下列对数组的操作,使得操作时间不依赖数组的长度. a.删除数组的第i 个元素(1<=i<=n)b.删除有序数组的第i 个元素(依然有序) hints:a. Replace the i th element with the last element and decrease the array size of 1b. Replace the ith element with a special symbol that cannot be a value of the array ’s element(e.g., 0 for an array of positive numbers ) to mark the i th position is empty. (―lazy deletion ‖)第2章 习题2.17.对下列断言进行证明:(如果是错误的,请举例) a. 如果t(n )∈O(g(n),则g(n)∈Ω(t(n)) b.α>0时,Θ(αg(n))= Θ(g(n)) 解:a. 这个断言是正确的。
第一章习题(1-1,1-2,1-3,1-6)1-1 求下列函数的渐进表达式3n2+10n = O(n2)n2/10+2n = O(2n)21+1/n = O(1)logn3 = O(logn)10log3n = O(n)知识点:如果存在正的常数C和自然数N0,使得:当N>=N0时有f(N)<=Cg(N),则称f(N)当N充分大时上有界,且g(N)是它的一个上界,记为f(N)=O(g(N)).这时,可以说f(N)的阶不高于g(N)的阶。
1-2 论O(1)和O(2)的区别O(1)和O(2)差别仅在于其中的常数因子,根据渐进上界记号O的定义可知,O(1)=O(2)。
1-3 从低到高排列以下表达式(按渐进阶排列以下表达式)结果:2 logn n2/320n 4n23n n! 分析:当n>=1时,有logn< n2/3当n>=7时,有3n < n!补充:当n>=4时,有logn> n1/31-6 对于下列各组函数f(n)和g(n),确定f(n)=O(g(n))或f(n)=Ω(g(n))或f(n)=Θ(g(n))。
知识点:f(n)的阶不高于g(n)的阶:f(n)=O(g(n));f(n)的阶不低于g(n)的阶:f(n)=Ω(g(n));f(n)与g(n) 同阶:f(n)=Θ(g(n)) (1)f(n)= logn2 ; g(n)= logn+5f(n)与g(n)同阶,故f(n)=Θ(g(n)) (2) f(n)= logn2 ; g(n)= n1/2当n>=8时,f(n)<=g(n),故f(n)=O(g(n))分析:此类题目不易直接看出阶的高低,可用几个数字代入观察结果。
如依次用n=1, 21, 22, 23, 26, 28, 210 (3) f(n)= n ; g(n)= log2nf(n)=Ω(g(n))(4) f(n)= nlogn+n; g(n)= lognf(n)=Ω(g(n))(5) f(n)= 10 ; g(n)= log10f(n)=Θ(g(n))(6) f(n)= log2n ; g(n)= lognf(n)=Ω(g(n))(7) f(n)= 2n ; g(n)= 100 n2f(n)=Ω(g(n))(8) f(n)= 2n ; g(n)= 3nf(n)=O(g(n))。
算法设计与分析习题解答第一章作业1.证明下列Ο、Ω和Θ的性质1)f=Ο(g)当且仅当g=Ω(f)证明:充分性。
若f=Ο(g),则必然存在常数c1>0和n0,使得?n≥n0,有f≤c1*g(n)。
由于c1≠0,故g(n) ≥ 1/ c1 *f(n),故g=Ω(f)。
必要性。
同理,若g=Ω(f),则必然存在c2>0和n0,使得?n≥n0,有g(n) ≥ c2 *f(n).由于c2≠0,故f(n) ≤ 1/ c2*f(n),故f=Ο(g)。
2)若f=Θ(g)则g=Θ(f)证明:若f=Θ(g),则必然存在常数c1>0,c2>0和n0,使得?n≥n0,有c1*g(n) ≤f(n) ≤ c2*g(n)。
由于c1≠0,c2≠0,f(n) ≥c1*g(n)可得g(n) ≤ 1/c1*f(n),同时,f(n) ≤c2*g(n),有g(n) ≥ 1/c2*f(n),即1/c2*f(n) ≤g(n) ≤ 1/c1*f(n),故g=Θ(f)。
3)Ο(f+g)= Ο(max(f,g)),对于Ω和Θ同样成立。
证明:设F(n)= Ο(f+g),则存在c1>0,和n1,使得?n≥n1,有F(n) ≤ c1 (f(n)+g(n))= c1 f(n) + c1g(n)≤ c1*max{f,g}+ c1*max{f,g}=2 c1*max{f,g}所以,F(n)=Ο(max(f,g)),即Ο(f+g)= Ο(max(f,g))对于Ω和Θ同理证明可以成立。
4)log(n!)= Θ(nlogn)证明:由于log(n!)=∑=ni i 1log ≤∑=ni n 1log =nlogn ,所以可得log(n!)= Ο(nlogn)。
由于对所有的偶数n 有,log(n!)= ∑=ni i 1log ≥∑=nn i i 2/log ≥∑=nn i n 2/2/log ≥(n/2)log(n/2)=(nlogn)/2-n/2。
《算法及其分析》课后选择题答案及详解第1 章——概论1.下列关于算法的说法中正确的有()。
Ⅰ.求解某一类问题的算法是唯一的Ⅱ.算法必须在有限步操作之后停止Ⅲ.算法的每一步操作必须是明确的,不能有歧义或含义模糊Ⅳ.算法执行后一定产生确定的结果A.1个B.2个C.3个D.4个2.T(n)表示当输入规模为n时的算法效率,以下算法效率最优的是()。
A.T(n)=T(n-1)+1,T(1)=1B.T(n)=2nC.T(n)= T(n/2)+1,T(1)=1D.T(n)=3nlog2n答案解析:1.答:由于算法具有有穷性、确定性和输出性,因而Ⅱ、Ⅲ、Ⅳ正确,而解决某一类问题的算法不一定是唯一的。
答案为C。
2.答:选项A的时间复杂度为O(n)。
选项B的时间复杂度为O(n)。
选项C 的时间复杂度为O(log2n)。
选项D的时间复杂度为O(nlog2n)。
答案为C。
第3 章─分治法1.分治法的设计思想是将一个难以直接解决的大问题分割成规模较小的子问题,分别解决子问题,最后将子问题的解组合起来形成原问题的解。
这要求原问题和子问题()。
A.问题规模相同,问题性质相同B.问题规模相同,问题性质不同C.问题规模不同,问题性质相同D.问题规模不同,问题性质不同2.在寻找n个元素中第k小元素问题中,如快速排序算法思想,运用分治算法对n个元素进行划分,如何选择划分基准?下面()答案解释最合理。
A.随机选择一个元素作为划分基准B.取子序列的第一个元素作为划分基准C.用中位数的中位数方法寻找划分基准D.以上皆可行。
但不同方法,算法复杂度上界可能不同3.对于下列二分查找算法,以下正确的是()。
A.intbinarySearch(inta[],intn,int x){intlow=0,high=n-1;while(low<=high){intmid=(low+high)/2;if(x==a[mid])returnmid;if(x>a[mid])low=mid;elsehigh=mid;}return –1;}B.intbinarySearch(inta[],intn,int x) { intlow=0,high=n-1;while(low+1!=high){intmid=(low+high)/2;if(x>=a[mid])low=mid;elsehigh=mid;}if(x==a[low])returnlow;elsereturn –1;}C.intbinarySearch(inta[],intn,intx) { intlow=0,high=n-1;while(low<high-1){intmid=(low+high)/2;if(x<a[mid])high=mid;elselow=mid;}if(x==a[low])returnlow;elsereturn –1;}D.intbinarySearch(inta[],intn,int x) {if(n>0&&x>=a[0]){intlow= 0,high=n-1;while(low<high){intmid=(low+high+1)/2;if(x<a[mid])high=mid-1;elselow=mid;}if(x==a[low])returnlow;}return –1;}答案解析:1.答:C。
算法设计与分析智慧树知到课后章节答案2023年下山东交通学院山东交通学院第一章测试1.解决一个问题通常有多种方法。
若说一个算法“有效”是指( )A:这个算法能在一定的时间和空间资源限制内将问题解决B:这个算法能在人的反应时间内将问题解决C:这个算法比其他已知算法都更快地将问题解决D:(这个算法能在一定的时间和空间资源限制内将问题解决)和(这个算法比其他已知算法都更快地将问题解决)答案:(这个算法能在一定的时间和空间资源限制内将问题解决)和(这个算法比其他已知算法都更快地将问题解决)2.农夫带着狼、羊、白菜从河的左岸到河的右岸,农夫每次只能带一样东西过河,而且,没有农夫看管,狼会吃羊,羊会吃白菜。
请问农夫能不能过去?()A:不一定B:不能过去 C:能过去答案:能过去3.下述()不是是算法的描述方式。
A:自然语言 B:E-R图 C:程序设计语言 D:伪代码答案:E-R图4.有一个国家只有6元和7元两种纸币,如果你是央行行长,你会设置()为自动取款机的取款最低限额。
A:40 B:29 C:30 D:42答案:305.算法是一系列解决问题的明确指令。
()A:对 B:错答案:对6.程序=数据结构+算法()A:对 B:错答案:对7.同一个问题可以用不同的算法解决,同一个算法也可以解决不同的问题。
()A:错 B:对答案:对8.算法中的每一条指令不需有确切的含义,对于相同的输入不一定得到相同的输出。
( )A:错 B:对答案:错9.可以用同样的方法证明算法的正确性与错误性 ( )A:错 B:对答案:错10.求解2个数的最大公约数至少有3种方法。
( )A:对 B:错答案:错11.没有好的算法,就编不出好的程序。
()A:对 B:错答案:对12.算法与程序没有关系。
( )A:错 B:对答案:错13.我将来不进行软件开发,所以学习算法没什么用。
( )A:错 B:对答案:错14.gcd(m,n)=gcd(n,m m od n)并不是对每一对正整数(m,n)都成立。
2020智慧树知到《算法分析与设计》章节测试完整答案智慧树知到《算法分析与设计》章节测试答案第一章1、给定一个实例,如果一个算法能得到正确解答,称这个算法解答了该问题。
答案: 错2、一个问题的同一实例可以有不同的表示形式答案: 对3、同一数学模型使用不同的数据结构会有不同的算法,有效性有很大差别。
答案: 对4、问题的两个要素是输入和实例。
答案: 错5、算法与程序的区别是()A:输入B:输出C:确定性D:有穷性答案: 有穷性6、解决问题的基本步骤是()。
(1)算法设计(2)算法实现(3)数学建模(4)算法分析(5)正确性证明A:(3)(1)(4)(5)(2)B:(3)(4)(1)(5)(2)C:(3)(1)(5)(4)(2)D:(1)(2)(3)(4)(5)答案: (3)(1)(5)(4)(2)7、下面说法关于算法与问题的说法错误的是()。
A:如果一个算法能应用于问题的任意实例,并保证得到正确解答,称这个算法解答了该问题。
B:算法是一种计算方法,对问题的每个实例计算都能得到正确答案。
C:同一问题可能有几种不同的算法,解题思路和解题速度也会显著不同。
D:证明算法不正确,需要证明对任意实例算法都不能正确处理。
答案: 证明算法不正确,需要证明对任意实例算法都不能正确处理。
8、下面关于程序和算法的说法正确的是()。
A:算法的每一步骤必须要有确切的含义,必须是清楚的、无二义的。
B:程序是算法用某种程序设计语言的具体实现。
C:程序总是在有穷步的运算后终止。
D:算法是一个过程,计算机每次求解是针对问题的一个实例求解。
答案: 算法的每一步骤必须要有确切的含义,必须是清楚的、无二义的。
,程序是算法用某种程序设计语言的具体实现。
,算法是一个过程,计算机每次求解是针对问题的一个实例求解。
9、最大独立集问题和()问题等价。
A: 最大团B:最小顶点覆盖C:区间调度问题D:稳定匹配问题答案: 最大团,最小顶点覆盖10、给定两张喜欢列表,稳定匹配问题的输出是( ) 。
第二章递归习题导论4.1-17(/?) = 27(b / 2)+ 1=> M = 2T5 /2) + 1%)习题导论4.1-6Tin) = 2T(0) + 1做代换:m=log2n另 S(m)=T(2m )则有: S(/z?) = 2S(zz? / 2) + 1 化简有:S(m)=O(m) 所以 T(n)=O(logn)习题4.2-27(/7)= T(n / 3) + 7(2/7 / 3) + 劲 注意最长分支 2n/3-*(2n/3)2 -*(2n/3)3...-*(2n^)log3/2n 习题4.3-1a) T(n) = 4T(n/2) + nb) T(n) = 4T(n/2) + n 2c 取大于1/2小于1的数即可,如珈习题4.3-4f(n )/nlogba = n 2log n/n'°g"二 log nvn所以不满足规则3直接化简即可,T(n)=O(n 2log 2n)c) T(n) = 4T(n/2) + n 3情况 3, ◎ (r?). 验证 4f(n/2)=4(n/2)3=n 3/2^cn 3,这里7X2")27(2"/彳)+情况4 0(n 2)情况 2, © (n 2logn)第三章习题4.5注意三分Z—和三分Z二分割点的计算ml = (2low+high)^m2 = (low+2high)/3习题4.20主要是验证T(n/r) + T(0)>|« n/r+O的数量级是否小于n的1次方(线性) 利用关系式:\n / r」n (/7 - r - 1) / /进行化简r=3:\r / 2~|~|_/2 / /_] / 2~| > 2 z? / r / 2 = n / r」> (/? 一2) / 3则,刀一卜/2北刀 / 厂」/ 2] < /? - (/? - 2) / 3 = 2/7 / 3 + 2 / 3 则,n〃 +羊n +厉超线性了r=7:\r / 2]\n / r\/ 2〕>/ 7」/2 = 2山 / 7」> 2(刀一6) / 7则,n - \r / i\\n / /」/ 2〕v 刀一2(刀一6) / 7 = 5刀 / 7 + 12 / 7可证,当n>48的时候,上式小于3伙则,n/7+3nA = 25n/28 <n 成立r=9:\r / 2][n / 厂」/ 2〕> 5[刀 / 9」/ 2 = (5 / 2)^/9」> 5(刀-8)/18n一\r / 2\[n / /」/ 2〕< 13/?/18 + 40/18可证,当n>20的时候,上式小于7n/8 则,n/9+7n/8 = 71n/72 <n 成立r=ll习题4.25肓接带入验证即可棋盘覆盖问题角上用一个骨牌覆盖,认为构造有特殊方格的区域,然后在四个区域上递归求解即可第四章中位数中位数习题导论9-2A)比较明显。
算法分析与设计教程习题解答第1章 算法引论1. 解:算法是一组有穷的规则,它规定了解决某一特定类型问题的一系列计算方法。
频率计数是指计算机执行程序中的某一条语句的执行次数。
多项式时间算法是指可用多项式函数对某算法进行计算时间限界的算法。
指数时间算法是指某算法的计算时间只能使用指数函数限界的算法。
2. 解:算法分析的目的是使算法设计者知道为完成一项任务所设计的算法的优劣,进而促使人们想方设法地设计出一些效率更高效的算法,以便达到少花钱、多办事、办好事的经济效果。
3. 解:事前分析是指求出某个算法的一个时间限界函数(它是一些有关参数的函数);事后测试指收集计算机对于某个算法的执行时间和占用空间的统计资料。
4. 解:评价一个算法应从事前分析和事后测试这两个阶段进行,事前分析主要应从时间复杂度和空间复杂度这两个维度进行分析;事后测试主要应对所评价的算法作时空性能分布图。
5. 解:①n=11; ②n=12; ③n=982; ④n=39。
第2章 递归算法与分治算法1. 解:递归算法是将归纳法的思想应用于算法设计之中,递归算法充分地利用了计算机系统内部机能,自动实现调用过程中对于相关且必要的信息的保存与恢复;分治算法是把一个问题划分为一个或多个子问题,每个子问题与原问题具有完全相同的解决思路,进而可以按照递归的思路进行求解。
2. 解:通过分治算法的一般设计步骤进行说明。
3. 解:int fibonacci(int n) {if(n<=1) return 1;return fibonacci(n-1)+fibonacci(n-2); }4. 解:void hanoi(int n,int a,int b,int c) {if(n>0) {hanoi(n-1,a,c,b); move(a,b);hanoi(n-1,c,b,a); } } 5. 解:①22*2)(−−=n n f n② )log *()(n n n f O =6. 解:算法略。
第六章动态规划法• P137 2 ,3, 4•2.解答:cost[i]表示从顶点i 到终点n-1 的最短路径,path[i]表示从顶点i 到终点n-1 的路径上顶点i 的下一个顶点。
cost[i]=min{cij+cost[j]}3 有5 个物品,其重量分别是{3, 2, 1, 4,5},价值分别为{25, 20, 15, 40, 50},背包的容量为6。
V[i][j]表示把前i 个物品装入容量为j 的背包中获得的最大价值。
最优解为(0,0,1,0,1)最优值为65. 4.序列A =(x, z , y , z , z , y,x ),B =(z , x , y , y , z , x , z ),建立两个(m+1)×(n+1)的二 维表L 和表S ,分别存放搜索过程中得到的子序列的长度和状态。
z , x , y , y , z,x , z )path[i]= 使 cij+cost[j] 最小的 j i 012345678 9 10 11 12 13 14 15 Cost[i] 18 13 16 13 10 9 12 7 6875943Path[i]145778911 11 11 13 14 14 15 15 0得到最短路径 0->1->4->7->11->14->15 , 长度为 18(a)长度矩阵L(b)状态矩阵S 。
第七章贪心算法2.背包问题:有7 个物品,背包容量W=15。
将给定物品按单位重量价值从大到小排序,结果如下:个物品,物品重量存放在数组w[n]中,价值存放在数组放在数组x[n]中。
按算法7.6——背包问题1.改变数组w 和v 的排列顺序,使其按单位重量价值v[i]/w[i]降序排列;2.将数组x[n]初始化为0;//初始化解向量3.i=1;4.循环直到( w[i]>C )4.1 x[i]=1; //将第i个物品放入背包4.2 C=C-w[i];4.3 i++;5. x[i]=C/w[i];得出,该背包问题的求解过程为:: x[1]=1;c=15-1=14 v=6 x[2]=1; c=14-2=12V=6+10=10 x[3]=1; c=12-4=8V=16+18=34 x[4]=1; c=8-5=3V=34+15=49 x[5]=1; c=3-1=2 V=49+3=52x[6]=2/3 ; c=0; V=52+5*2/3=156/3 最优值为156/3 最优解为(1,1,1,1,1,2/3,0)) (x[i]按排序后物品的顺序构造)5.可以将该问题抽象为图的着色问题,活动抽象为顶点,不相容的活动用边相连(也可以将该问题理解为最大相容子集问题,重复查找剩余活动的最大相容子集,子集个数为所求).具体参见算法7.3 算法7.3——图着色问题1.color[1]=1; //顶点1着颜色12.for (i=2; i<=n; i++) //其他所有顶点置未着色状态color[i]=0;3.k=0;4.循环直到所有顶点均着色4.1k++; //取下一个颜色4.2for (i=2; i<=n; i++) //用颜色k 为尽量多的顶点着色4.2.1 若顶点i已着色,则转步骤4.2,考虑下一个顶点;4.2.2 若图中与顶点i邻接的顶点着色与顶点i着颜色k 不冲突,则color[i]=k;5.输出k;第八章回溯法4.搜索空间(a) 一个无向图(b) 回溯法搜索空间最优解为(1,2,1,2,3)5.0-1 背包问题n∑w i x i≤c 1• 可行性约束函数:i =1• 上界函数:nr =∑Vi5 = 3A B *CD8 ** * 131 =12 =23 = 14 = 2 34215课后答案网()i=k+1 1第九章分支限界法5,解:应用贪心法求得近似解:(1,4,2,3),其路径代价为:3+5+7+6=21,这可以作为该问题的上界。
参考答案第1章一、选择题1. C2. A3. C4. C A D B5. B6. B7. D 8. B 9. B 10. B 11. D 12. B二、填空题1. 输入;输出;确定性;可行性;有穷性2. 程序;有穷性3. 算法复杂度4. 时间复杂度;空间复杂度5. 正确性;简明性;高效性;最优性6. 精确算法;启发式算法7. 复杂性尽可能低的算法;其中复杂性最低者8. 最好性态;最坏性态;平均性态9. 基本运算10. 原地工作三、简答题1. 高级程序设计语言的主要好处是:(l)高级语言更接近算法语言,易学、易掌握,一般工程技术人员只需要几周时间的培训就可以胜任程序员的工作;(2)高级语言为程序员提供了结构化程序设计的环境和工具,使得设计出来的程序可读性好,可维护性强,可靠性高;(3)高级语言不依赖于机器语言,与具体的计算机硬件关系不大,因而所写出来的程序可移植性好、重用率高;(4)把复杂琐碎的事务交给编译程序,所以自动化程度高,发用周期短,程序员可以集中集中时间和精力从事更重要的创造性劳动,提高程序质量。
2. 使用抽象数据类型带给算法设计的好处主要有:(1)算法顶层设计与底层实现分离,使得在进行顶层设计时不考虑它所用到的数据,运算表示和实现;反过来,在表示数据和实现底层运算时,只要定义清楚抽象数据类型而不必考虑在什么场合引用它。
这样做使算法设计的复杂性降低了,条理性增强了,既有助于迅速开发出程序原型,又使开发过程少出差错,程序可靠性高。
(2)算法设计与数据结构设计隔开,允许数据结构自由选择,从中比较,优化算法效率。
(3)数据模型和该模型上的运算统一在抽象数据类型中,反映它们之间内在的互相依赖和互相制约的关系,便于空间和时间耗费的折衷,灵活地满足用户要求。
(4)由于顶层设计和底层实现局部化,在设计中出现的差错也是局部的,因而容易查找也容易纠正,在设计中常常要做的增、删、改也都是局部的,因而也都容易进行。
习题 11.图论诞生于七桥问题。
出生于瑞士的伟大数学家欧拉(Leonhard Euler ,1707— 1783)提出并解决了该问题。
七桥问题是这样描述的:北区一个人是否能在一次步行中穿越哥尼斯堡(现东区在叫加里宁格勒,在波罗的海南岸)城中全部岛区的七座桥后回到起点,且每座桥只经过一次,图是这条河以及河上的两个岛和七座桥的草南区图。
请将该问题的数据模型抽象出来,并判断图七桥问题此问题是否有解。
七桥问题属于一笔画问题。
输入:一个起点输出:相同的点1,一次步行2,经过七座桥,且每次只经历过一次3,回到起点该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。
另一类是只有二个奇点的图形。
2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。
请用伪代码描述这个版本的欧几里德算法=m-n2.循环直到 r=0m=nn=rr=m-n3输出 m3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。
要求分别给出伪代码和 C++描述。
编写程序,求 n 至少为多大时, n 个“1”组成的整数能被2013 整除。
#include<iostream>using namespace std;int main(){double value=0;for(int n=1;n<=10000 ;++n){value=value*10+1;if(value%2013==0){cout<<"n 至少为 :"<<n<<endl;break;}} 计算π值的问题能精确求解吗?编写程序,求解满足给定精度要求的π 值#include <iostream>using namespace std;int main (){double a,b;double arctan(double x);圣经上说:神 6 天创造天地万有,第7 日安歇。
为什么是6天呢?任何一个自然数的因数中都有 1 和它本身,所有小于它本身的因数称为这个数的真因数,如果一个自然数的真因数之和等于它本身,这个自然数称为完美数。
例如, 6=1+2+3,因此6 是完美数。
神 6 天创造世界,暗示着该创造是完美的。
设计算法,判断给定的自然数是否是完美数#include<iostream>using namespace std;int main(){int value, k=1;cin>>value;for (int i = 2;i!=value;++i){while (value % i == 0 ){k+=i;有 4 个人打算过桥,这个桥每次最多只能有两个人同时通过。
他们都在桥的某一端,并且是在晚上,过桥需要一只手电筒,而他们只有一只手电筒。
这就意味1着两个人过桥后必须有一个人将手电筒带回来。
每个人走路的速度是不同的:甲过桥要用分钟,乙过桥要用 2 分钟,丙过桥要用 5 分钟,丁过桥要用10 分钟,显然,两个人走路的速度等于其中较慢那个人的速度,问题是他们全部过桥最少要用多长时间?由于甲过桥时间最短,那么每次传递手电的工作应有甲完成甲每次分别带着乙丙丁过桥例如:第一趟:甲,乙过桥且甲回来第二趟:甲,丙过桥且甲回来第一趟:甲,丁过桥一共用时19 小时9.欧几里德游戏:开始的时候,白板上有两个不相等的正整数,两个玩家交替行动,每次行动时,当前玩家都必须在白板上写出任意两个已经出现在板上的数字的差,而且这个数字必须是新的,也就是说,和白板上的任何一个已有的数字都不相同,当一方再也写不出新数字时,他就输了。
请问,你是选择先行动还是后行动?为什么?设最初两个数较大的为则最终能出现的数包括a/factor个。
a,较小的为b,两个数的最大公约数为factor: factor, factor*2, factor*3, ..., factor*(a/factor)=a.。
一共如果a/factor是奇数,就选择先行动;否则就后行动。
习题 41.分治法的时间性能与直接计算最小问题的时间、合并子问题解的时间以及子问题的个数有关,试说明这几个参数与分治法时间复杂性之间的关系。
2.证明:如果分治法的合并可以在线性时间内完成,则当子问题的规模之和小于原问题的规模时,算法的时间复杂性可达到O( n)。
O(N)=2*O(N/2)+xO(N)+x=2*O(N/2)+2*xa*O(N)+x=a*(2*O(N/2)+x)+x=2*a *O(N/2)+(a+1)*x由此可知,时间复杂度可达到O(n);3.分治策略一定导致递归吗?如果是,请解释原因。
如果不是,给出一个不包含递归的分治例子,并阐述这种分治和包含递归的分治的主要不同。
不一定导致递归。
如非递归的二叉树中序遍历。
这种分治方法与递归的二叉树中序遍历主要区别是:应用了栈这个数据结构。
4.对于待排序序列 (5, 3, 1, 9),分别画出归并排序和快速排序的递归运行轨迹。
归并排序:第一趟:( 5,3 )( 1,9 );第二趟:( 3,5,1,9 );第三趟:( 1,3,5,9);快速排序:第一趟: 5( ,3,1,9);分治算法求一个数中的最大元素,并分析性能。
分治算法,将数[] 中所有元素循左移k个位置 ,要求复性A nO( n),空复性 O(1)。
例如, abcdefgh 循左移 3 位得到defghabc。
算法生成n 个元素的所有排列象。
#include <iostream>using namespace std;int data[100];分治算法求解一空上n 个点的最近。
参 4.4.1最近的算法分析及算法9.在有序序列(r1,r 2,⋯, r n)中,存在序号i (1≤ i ≤ n),使得 r i=i 。
一个分治算法找到个元素,要求算法在最坏情况下的性能O(log2n)。
在一个序列中出次数最多的元素称众数。
算法找众数并分析算法的复性。
M 是一个 n× n 的整数矩,其中每一行(从左到右)和每一列(从上到下)的元素都按升序排列。
分治算法确定一个定的整数x 是否在 M 中,并分析算法的复性。
12.S 是 n( n 偶数)个不等的正整数的集合,要求将集合S划分子集S1和 S2,使得 | S1|=|S 2|= n/2,且两个子集元素之和的差达到最大。
a1,a2,⋯,a n是集合{1, 2,⋯,n}的一个排列,如果i <j 且称排列的一个逆序。
例如,2, 3, 1有两个逆序:(3, 1)和(2, 1)排列中含有逆序的个数。
a i>a j,序偶( a i,a j)。
算法定k循日程安排。
有 n=2个手要行网球循,要求一个足以下要求的比日程表:(1)每个手必与其他n-1 个手各一次;(2)每个手一天只能一次。
采用分治方法。
将 2^k 手分 2^k-1 两,采用方法,行分,直到只剩下 2 个手,然后行比,回溯就可以指定比日程表了15.格雷是一个度2n的序列,序列中无相同元素,且每个元素都是度n 的二制位串,相元素恰好只有 1 位不同。
例如度23的格雷 (000, 001, 011, 010,110, 111, 101, 100)。
设计分治算法对任意的 n 值构造相应的格雷码。
矩阵乘法。
两个 n × n 的矩阵 X 和 Y 的乘积得到另外一个n × n 的矩阵 Z ,且 Z ij满足( 1≤ , j≤ ),这个公式给出了运行时间为( 3) 的算法。
可以用分i nO n治法解决矩阵乘法问题,将矩阵X 和Y 都划分成四个n /2 × /2 的子块,从而 X 和Y 的乘积n可以用这些子块进行表达,即从而得到分治算法:先递归地计算8 个规模为 n /2 的矩阵乘积 AE 、BG 、 AF 、BH 、 CE 、DG 、CF 、 DH ,然后再花费 O ( n 2) 的时间完成加法运算即可。
请设计分治算法实现矩阵乘法,并分析时间性能。
能否再改进这个分治算法?习题 51. 下面这个折半查找算法正确吗?如果正确,请给出算法的正确性证明,如果不正确,请说明产生错误的原因。
int BinSearch(int r[ ], int n, int k) {int low = 0, high = n - 1; int mid;while (low <= high) {mid = (low + high) / 2; if (k < r[mid]) high = mid; else if (k > r[mid]) low = mid;else return mid;}return 0; }错误。
正确算法:int BinSearch1(int r[ ], int n, int k) {int low = 0, high = n - 1; int mid;while (low <= high) {mid = (low + high) / 2; if (k < r[mid]) high =elseif (k > r[mid]) low =mid - 1;mid + 1;else return mid;}return 0;}2.写出折半找的算法,并分析性能。
求两个正整数m和 n 的最小公倍数。
(提示: m和 n 的最小公倍数lcm( m,n)与 m和 n 的最大公数gcd( m,n)之有如下关系:lcm( m,n)= m×n/gcd( m,n))插入法整堆。
已知(k1, k2,⋯,k n)是堆,算法将(k1, k2,⋯,k n,k n+1)整堆(假整大根堆)。
参照:void SiftHeap(int r[ ], int k, int n){int i, j, temp;i = k; j = 2 * i + 1;算法在大根堆中除一个元素,要求算法的复性O(log2n)。
算两个正整数n 和 m的乘有一个很有名的算法称俄式乘法,其思想是利用了一个模是n 的解和一个模是 n/2的解之的关系:n× m= n/2×2m(当 n 是偶数)或: n×m=( n-1)/2× 2m+m(当n是奇数),并以1× m=m 作算法束的条件。
例如,出了利用俄式乘法算50× 65的例子。
据十九世的俄国夫使用算法并因n m 5065 25130 130 122606520 31040 1040 12080 2080+3250此得名,个算法也使得乘法的硬件速度非常快,因图俄式乘法只使用移位就可以完成二制数的折半和加倍。
算法俄式乘法。
拿子游。
考下面个游:桌子上有一堆火柴,游开始共有n 根火柴,两个玩家流拿走 1, 2, 3 或 4 根火柴,拿走最后一根火柴的玩家方。