航空物探最新进展
- 格式:ppt
- 大小:23.85 MB
- 文档页数:15
航空地球物理在战略性矿产勘查中的应用前景导读:航空地球物理是重要的高效找矿勘查方法,如大家熟知的航磁,在我国铁矿普查和地质构造研究中发挥了巨大作用。
随着科学技术的不断进步,近年来我国航空地球物理得到了快速发展,自主研发了高灵敏度仪器和多种类型数据的无缝采集方法,开发了精细数据处理和解释方法新软件,等。
探测深度更大、应用领域更广的航空地球物理为地质找矿提供高效的勘查技术支撑。
随着航空地球物理方法的增多,资料处理解释技术要求不断提高,与地表地质调查等其他方法深度融合成为必然趋势,以便直接解决地质找矿过程难题。
为了提找矿勘查效果,本文总结了航空地球物理找矿勘查中不同方法在不同找矿阶段的作用,以及探测不同矿种、不同矿产类型的有效性,提出了航空地球物理支撑战略性矿产勘查的思路,指出航磁全参量、航空重力/重力梯度、航空电磁、航空放射性等新技术是重点发展方向。
文中还系统梳理了航空地球物理发展历程和主要科技进展,并介绍了航空地球物理国内外矿产勘查应用概况。
本文研究成果为新一轮找矿突破战略行动航空地球物理发展和应用提供了重要指导。
------内容提纲------0 引言1 航空地球物理勘查技术发展历程和主要科技进展1.1 发展历程1.2 主要科技进展2 航空地球物理矿产勘查应用成效2.1 应用概述2.1.1 国外找矿勘查2.1.2 国内找矿勘查2.2 各种航空地球物理方法的作用2.3 在找矿勘查各阶段中的作用2.3.1 区调、矿调阶段(快速找矿勘查选区)2.3.2 预查、普查阶段(快速缩小靶区)2.3.3 详查、勘探阶段(提高钻孔见矿率)2.3.4 小结3 航空地球物理在战略性矿产勘查中的应用前景3.1 需求3.2 主要问题与差距3.3 难点3.4 支撑找矿勘查的思路3.5 应用前景4 讨论4.1 发展方向4.2 重点发展的航空地球物理勘查技术4.2.1 航磁全参量勘查技术与装备4.2.2 航空重力/重力梯度勘查技术与装备4.2.3 多深度航空电磁勘查技术与装备4.2.4 航空放射性勘查技术4.2.5 综合地球物理勘查技术4.2.6 地球物理数据处理方法与软件平台技术5 结语0 引言能源资源安全保障已上升为国家战略,国家“十四五”规划和2035年远景目标对战略性矿产找矿勘查提出了新要求,明确要-实施新一轮找矿突破战略行动,旨在通过加大国内矿产勘查力度,推动矿业高质量发展,增强战略性矿产资源安全保障能力。
航空物探的常青树——记中国国土资源航空物探遥感中心副主任、总工程师熊盛青作者:暂无来源:《科学中国人》 2017年第7期本刊记者鲁长国熊盛青,中国国土资源航空物探遥感中心副主任、总工程师,博士生导师,中央直接联系的专家,国家“万人计划”首批科技领军人才,首批国家重点领域创新团队负责人,国务院政府特殊津贴获得者,获“十一五”国家科技计划执行突出贡献奖。
目前为我国航空地球物理勘探技术领域的学科带头人。
主持完成我国航空地球物理勘探历史上不同时期规模、难度和投资最大的科研与工程相结合的项目:“十一五”国家“863”计划重大项目“航空地球物理勘查技术系统”和“十二五”国家“863”计划主题项目“航空地球物理勘查技术与装备”等。
攻克了航空磁力、电磁、重力等核心技术和装备研制的关键技术,基本实现了航空地球物理勘查技术系统的国产化,初步满足了国家对地质矿产勘查和环境调查评价对航空物探技术的需求,提高了我国能源与矿产资源保障能力,使我国航空物探总体水平达到国际先进,航空磁测和航空放射性测量技术达到国际领先。
航空地球物理勘探技术(以下简称“航空物探”),就是把物理的仪器装载在飞机上面,从空中探测地球的磁场、电磁场、重力场和放射性场等,然后通过对“场”的研究进行地质找矿,还可以进一步研究地球的内部结构,具有宏观、快速、高效、经济、综合、绿色、不受地面条件(如海、河、湖、沙漠)的限制等特点。
如此高精尖的技术到底用来做什么?事实上,当你需要进行精准的地质制图进而研究大区域构造的时候,当你试图寻找“藏匿”起来的金属矿和其他固体矿藏的时候,当你想在大中华复杂的地质地形中普查石油和天然气的时候??航空物探都是不可或缺的。
从世界范围内来说,航空物探技术并不算稀奇,早在上世纪30年代就已问世。
在我国上世纪50年代也已开展,但技术装备真正实现国产化却直到“十一五”国家“863”计划重大项目“航空地球物理勘查技术系统”和“十二五”国家“863”计划主题项目“航空地球物理勘查技术与装备”的实施才开始。
航空物探技术现状及其在铁路工程勘察中的应用展望Zhang Ji摘要:航空物探方法效率高、成本低、地形适应能力强,在矿产资源勘查领域已有广泛应用。
随着铁路工程勘察工作区域的拓展及勘察成本和工期压缩的需求日益强烈,在铁路勘察引入航空物探手段已成为必然趋势。
本文首先总结分析了航空物探技术发展的现状,并对其在工程勘察领域的应用情况进行了分析,最后结合行业现状对航空物探技术在铁路工程物探中的深入应用提出了展望。
关键词:航空物探、铁路工程物探、航空磁法、航空电磁法1前言航空物探本质是将地球物理勘探设备挂载于飞行器上进行勘探的一种物探方法。
因其先天具有地形地貌适应能力强、外业工作效率高、便于大面积施工等特点,自诞生之初就备受关注[1]。
从广义上看,搭载于卫星等航天器上的物理探测设备也属于航空物探,但受飞行高度和探测精度限制,其在铁路工程勘察领域的应用受到较大限制,本文对此不做讨论。
2航空物探技术现状2.1航空物探方法发展现状严格来说,所有的地面物探方法都可应用于航空物探,但由于飞行器平台的限制,航空物探设备及传感器很难与地面接触,这就造成了传导类电法、传统地震类方法等接触式物探方法目前无法应用于航空物探。
现阶段航空物探方法主要分为两类,第一类是航空磁力测量、航空重力测量、航空放射性测量等常规天然场源物探方法;第二类是时间域电磁法和频率域电磁法等非接触式人工源电磁法。
近年来加拿大Geotech公司研制出一种类似于音频大地电磁法原理的ZTEM系统,与其他商业电磁系统不同,该系统使用电离层电流或自然界产生的25~720Hz的雷电信号作为激发场源,拥有较低的噪声、较高的分辨率和较大的勘探深度。
2.2航空磁法及放射性探测技术现状航空磁法是最早应用于生产实践的航空物探方法,在地质调查、矿产普查和地球科学研究工作中发挥着重要的作用。
根据观测方式不同,航磁测量又分为四种,分别是:测量地球磁场的总磁场强度B的总场测量、测量地球磁场总场强度B的空间变化率的梯度测量、测量地球磁场的三个分量的张量测量、测量地球磁场空间变化率的梯度张量测量。
物探市场发展现状1. 简介物探,即物理勘探,是一种利用物理原理或方法对地下资源进行勘探与开发的技术。
物探市场作为资源勘探领域的重要组成部分,对于矿产资源的发现和开发至关重要。
本文将从物探市场的概况、发展现状和前景等方面进行探讨。
2. 物探市场概况物探市场是一个在全球范围内具有很大潜力的市场。
随着全球经济的发展和资源需求的增加,对矿产资源的探测需求也呈现出增长的趋势。
物探技术的不断创新和进步,为物探市场的发展提供了有力的支持。
3. 物探市场发展现状3.1 技术发展物探技术在过去几十年中取得了长足的发展。
传统的物探技术包括地震、电磁、重力、磁法等方法,这些方法的应用范围广泛,但仍存在诸多局限性。
近年来,随着先进的仪器设备和计算机技术的发展,矿产勘探领域出现了一些新的物探技术,如地电阻率成像、地震层析成像等,这些新技术在提高勘探效率和准确度方面具有巨大的潜力。
3.2 市场规模物探市场的规模逐年扩大。
根据统计数据显示,全球物探市场规模从2015年的X 亿美元增长到2020年的XX亿美元。
这一增长主要受益于新兴市场对矿产资源的快速开发和老龄矿山的再生利用。
预计未来几年内,物探市场规模将呈现持续增长的趋势。
3.3 市场竞争物探市场的竞争激烈。
目前,全球有许多物探公司和矿产勘探机构参与市场竞争。
这些公司通过不断创新、提高技术水平和服务质量,争夺市场份额。
同时,物探行业的进入壁垒相对较低,新的参与者也在不断涌现,进一步加剧了市场竞争的激烈程度。
4. 物探市场前景4.1 技术创新随着科学技术的不断进步和应用需求的不断增长,物探技术仍将不断创新。
新技术的应用将极大提高矿产资源勘探的效率和准确度。
例如,人工智能、大数据分析和云计算等技术的应用,将为物探行业带来全新的发展机遇。
4.2 市场机会全球尚未开发的矿产资源仍然巨大,这为物探市场提供了广阔的发展空间。
尤其是在新兴市场和开发中国家,矿产资源勘探的需求将持续增长。
同时,环境保护和可持续发展的日益重视也将推动物探技术向更加环保和可持续的方向发展,为市场带来新的机遇。
探索太空探测的最新技术进展当我们仰望星空,那无尽的宇宙总是充满着神秘和诱惑。
人类对于太空的探索从未停止,而每一次的技术突破都如同点亮了一盏明灯,引领我们更深入地了解宇宙的奥秘。
近年来,太空探测领域取得了一系列令人瞩目的新技术进展。
其中,新型推进技术的发展尤为关键。
传统的化学推进系统在效率和推力方面存在一定的局限性,而电推进技术的出现为太空探测带来了新的可能。
电推进系统利用电能来加速推进剂,产生微小但持续的推力,虽然单个推力较小,但在长时间的工作中能够显著节省燃料,从而增加航天器的有效载荷或延长任务时间。
离子推进器和霍尔推进器是电推进技术中的典型代表,它们已经在一些卫星和探测器上得到了成功应用。
在太空探测中,通信技术的进步也至关重要。
随着太空任务的日益复杂和数据量的不断增加,高速、稳定的通信成为了必需。
激光通信技术的出现,为解决这一问题提供了新的途径。
相较于传统的无线电通信,激光通信具有更高的带宽和更低的能量损耗,可以实现更快速、更大量的数据传输。
目前,激光通信技术已经在一些太空任务中进行了试验和初步应用,未来有望成为太空通信的主流方式。
太空探测中的材料科学也取得了重大突破。
为了应对太空环境中的极端条件,如高温、低温、辐射等,新型的高性能材料不断涌现。
例如,具有优异抗辐射性能的特种合金和复合材料,能够有效保护航天器及其内部的设备和仪器。
此外,自修复材料的研究也在不断推进,这种材料能够在受到损伤时自动修复,提高了航天器的可靠性和使用寿命。
太空探测器的小型化和智能化也是当前的重要发展趋势。
小型化的探测器不仅可以降低发射成本,还能够更灵活地执行任务。
而智能化技术的应用,则使得探测器能够自主决策、自主适应环境变化,大大提高了探测效率和任务成功率。
例如,一些探测器配备了先进的人工智能算法,可以对收集到的数据进行实时分析和处理,自主选择最佳的观测目标和探测策略。
太空探测中的能源供应技术也在不断创新。
太阳能是目前太空探测器最常用的能源来源,但在一些远离太阳的任务中,太阳能的供应就显得不足。