语音信号的特征分析共77页文档
- 格式:ppt
- 大小:6.34 MB
- 文档页数:77
中北大学课程设计说明书学生姓名:蒋宝哲学号: 24学生姓名:瓮泽勇学号: 42学生姓名:侯战祎学号: 47学院:信息商务学院专业:电子信息工程题目:信息处理实践:语音信号的时域特征分析指导教师:徐美芳职称: 讲师2013 年 6 月 28 日中北大学课程设计任务书2012-2013 学年第二学期学院:信息商务学院专业:电子信息工程学生姓名:蒋宝哲学号: 24 学生姓名:瓮泽勇学号: 42 学生姓名:侯战祎学号: 47 课程设计题目:信息处理实践:语音信号的时域特征分析起迄日期: 2013年6 月7日~2013年6月 28 日课程设计地点:学院楼201实验室、510实验室、608实验室指导教师:徐美芳系主任:王浩全下达任务书日期: 2013 年 6 月 7 日课程设计任务书课程设计任务书语音信号的采集与分析摘要语音信号的采集与分析技术是一门涉及面很广的交叉科学,它的应用和发展与语音学、声音测量学、电子测量技术以及数字信号处理等学科紧密联系。
其中语音采集和分析仪器的小型化、智能化、数字化以及多功能化的发展越来越快,分析速度较以往也有了大幅度的高。
本文简要介绍了语音信号采集与分析的发展史以及语音信号的特征、采集与分析方法,并通过PC机录制自己的一段声音,运用Matlab进行仿真分析,最后加入噪声进行滤波处理,比较滤波前后的变化。
关键词:语音信号,采集与分析, Matlab0 引言通过语音传递倍息是人类最重要、最有效、最常用和最方便的交换信息的形式。
语言是人类持有的功能.声音是人类常用的工具,是相互传递信息的最主要的手段。
因此,语音信号是人们构成思想疏通和感情交流的最主要的途径。
并且,由于语言和语音与人的智力活动密切相关,与社会文化和进步紧密相连,所以它具有最大的信息容量和最高的智能水平。
现在,人类已开始进入了信息化时代,用现代手段研究语音信号,使人们能更加有效地产生、传输、存储、获取和应用语音信息,这对于促进社会的发展具有十分重要的意义。
第八章语音信号特征参数8.1 概述语音信号是十分复杂的非平稳信号,它不仅包含语义信息,还有个人特征信息,对其特征参数的研究是语音识别的基础。
换句话说,特征参数应能完全、准确地表达语音信号。
那么特征参数也应能完全、准确地表达语音信号所携带的全部信息。
实验语音学的研究从语音信号本质上给出的特征参数是科学的、合理的,但是不完全的。
在元音的特征研究较深入,对辅音的研究相对较弱,对辅音、元音之间的过渡就更弱,而这一部分恰好是含信息量最大、最难处理的。
本章介绍语音信号的九种特征参数及其提取算法,是从不同的角度对语音信号研究的结果,是可行的、有效的,但不是万能的。
值得提请读者注意的是,某些算法对一些应用表现很好,但对另一些应用可能表现不佳。
应该说我们对语音信号的本质认识还不够深入,也就是我们对语音信号的发音机理、心理,听觉机理、心理,语义的社会性等方面缺乏深入研究,更谈不上多学科综合研究。
尽管如此,现有的这些特征参数在语音识别中起着重要作用。
8.2基音周期Equation Chapter 8 Section 2基音周期(Pitch)(或基音频率)是指发浊音时声带震动所引起的周期性,基音周期也F的倒数,它不仅是语音信号分析的一个重要参数,也是语音产生的数字是声带振动频率模型中激励源的一个重要参数,它携带着非常重要的具有辨意信息,因此它的检测和估计是语音处理中一个十分重要的问题[1]。
基音检测的主要困难在于:(1)语音信号变化十分复杂,声门激励波形并不是一个完全周期的序列,在语音的头、尾部并不具有声带振动那样的周期性,有些清浊音的过渡帧是很难判断它应属于周期性还是非周期性,从而也就无法估计出基音周期。
(2)要从语音信号中去除声道影响,或者直接去除仅和声带振动有关的音源信息并非容易的事,例如声道共振峰有时会严重影响音源的谐波结构。
(3)在浊音段很难精确地确定每个基音周期的开始和结束位置,这不仅因为语音信号本身是准周期的(即音调是有变化的),而且因为波形的峰或过零受共振峰结构、噪声等影响。
语音信号的识别与分析技术语音信号是我们日常交流中最为普遍和基础的通信手段,随着科技的不断发展,越来越多的人工智能设备和人机交互系统也采用语音作为信息输入和输出的方式,语音信号的识别与分析技术也越来越成为了一个重要的研究领域。
语音信号的识别可以分为语音识别和说话人识别两种。
语音识别是指将说话人说的语音信号转化为文本或命令等符号组合的技术,它是现代人机交互和自然语言处理的基础;而说话人识别是指通过对语音信号中的说话人身份进行识别,从而实现区分不同说话人的功能。
语音信号的分析则是指对说话人语音信号的声学和语言特征进行分析,以提取有效信息的技术。
从声学角度来说,语音信号的分析可以分别在时域和频域上进行。
在时域上,可以利用数字信号处理技术对语音信号进行连续采样,并对其物理特性(如频率、振幅、波形等)进行分析;在频域上,可以将语音信号转化为频域信号,并利用现代声学理论对其进行分析。
在语言学角度来说,语音信号分析的主要任务是对语音信号中的语言信息进行抽取和处理。
语音信号中的语言信息包括音位、音节、单词和语调等。
而对于这些语言信息的抽取和处理,则需要运用到语言学理论、音韵学和自然语言处理等相关技术。
除了语音识别和说话人识别以外,语音信号的识别和分析技术还能够应用于很多其他领域。
例如,通过语音识别技术的应用,可以实现智能家居、手写识别、虚拟助手等人工智能设备的语音交互功能;通过说话人识别技术的应用,可以实现声纹识别、安全认证等方面的应用;而通过语音分析技术的应用,则可以实现情感分析、语音合成等应用。
尽管语音信号的识别和分析技术在很多领域得到了广泛的应用,但是在实际应用中仍然存在一些困难和挑战。
例如,现有的语音识别技术在语音噪声和口音干扰比较大的情况下准确率较低,而现有的说话人识别技术在多说话人同时发言的情况下也容易出现识别困难;而对于语音信号的分析,则由于人类语言的复杂性和多样性,其分析也面临着很大的挑战。
总体来说,语音信号的识别与分析技术已经逐渐成为了计算机科学和人工智能领域中的研究重点之一,随着机器学习和深度学习等技术的不断进步和应用,我们期待这一领域在未来的进一步发展。