有限体积法
- 格式:pdf
- 大小:265.18 KB
- 文档页数:8
有限体积法简单的例子知乎
有限体积法(Finite Volume Method)是一种数值求解偏微分方程的方法,常用于流体力学和热传导等领域。
在知乎上可能有一些简单的例子,比如以下几种:
1. 热传导问题:假设有一个金属棒,两端分别暴露在两个恒温的环境中,通过有限体积法可以模拟出金属棒上温度的分布和随时间的变化,从而探讨热传导的过程。
2. 空气流动问题:考虑一个封闭的容器内有热水,通过一侧的孔向外喷出,可以使用有限体积法模拟空气在容器内的流动情况,以及温度和速度的变化。
3. 地下水流问题:考虑地下水在不同地质层中的流动,可以使用有限体积法建立离散的网格,计算地下水的流速、压力分布等参数,从而研究地下水资源的开发和利用。
这些例子都可以通过在知乎上搜索相关话题或专栏来找到更详细的讨论和解释。
1/ 1。
有限体积法(Finite Volume Method,FVM)是一种数值计算方法,广泛应用于解决流体动力学、热传导等物理现象的偏微分方程。
它将求解域划分为有限数量的控制体积,然后通过对控制体积应用质量、动量、能量守恒等物理原理,将偏微分方程转化为代数方程组,最终用数值方法求解。
有限体积法的基本思想包括以下几个步骤:
1.离散化:将求解域划分为有限数量的控制体积,这些体积通常是规则的立方体或六
面体。
2.建立守恒方程:对每个控制体积应用守恒方程,例如质量守恒、动量守恒、能量守
恒等。
这通常涉及将偏微分方程转化为积分形式。
3.积分:对守恒方程进行积分,将守恒方程应用于控制体积的表面,得到在体积上的
积分方程。
4.离散化方程:将积分方程离散化,将连续域上的方程转化为离散的代数方程。
5.求解代数方程组:利用数值方法求解得到的代数方程组,通常采用迭代方法或直接
求解方法。
6.结果后处理:根据求解得到的数值解进行后处理,如可视化、数据分析等。
有限体积法的优势在于其能够自然地处理复杂的几何形状、多相流体、非结构网格等问题。
它在计算流体动力学、热传导、固体力学等领域有着广泛的应用。
有限体积法介绍有限体积法1 有限体积法基本原理上⼀章讲到的有限差分法将数值⽹格的节点上定义为计算节点,并在⽹格节点上对微分形式的流体基本⽅程进⾏离散,⽤⽹格节点上的物理量的代数⽅程作为原PDE 的近似。
在本章所要学习的有限体积法则采⽤了不同的离散形式。
⾸先,有限体积法离散的是积分形式的流体⼒学基本⽅程:d q ds ds SSΩΩ+??Γ=?φφρφn n v(1)计算域⽤数值⽹格划分成若⼲⼩控制体。
和有限差分法不同的是,有限体积法的⽹格定义了控制体的边界,⽽不是计算节点。
有限体积法的计算节点定义在⼩控制体内部。
⼀般有限体积法的计算节点有两种定义⽅法,⼀种是将⽹格节点定义在控制体的中⼼,另⼀种⽅法中,相邻两个控制体的计算节点到公共边界的距离相等。
第⼀种⽅法的优点在于⽤计算节点的值作为控制体上物理量的平均值具有⼆阶的精度;第⼆种⽅法的好处是在控制体边界上的中⼼差分格式具有较⾼的精度。
积分形式的守恒⽅程在⼩控制体和计算域上都是成⽴的。
为了获得每⼀个控制体上的代数⽅程,⾯积分和体积分需要⽤求⾯积公式来近似。
2 ⾯积分的近似采⽤结构化⽹格,在⼆维情况下,每⼀个控制体有4个⾯,⼆维情况,每⼀个控制体有6个表⾯。
计算节点⽤⼤写字母表⽰,控制体边界和节点⽤⼩写字母表⽰。
为了保证守恒性,控制体不能重叠,每⼀个⾯都是相邻两个控制体的唯⼀公共边界。
控制体边界上的积分等于控制体个表⾯的积分的和:∑??=kkfds fdS(2)上式中,f 可以表⽰n u ρφ或nΓφ。
显然,为了获得边界上的积分,必须知道f 在边界上的详细分布情况,这是不可能实现的,由于只是计算节点上的函数值,因此必须采⽤近似的⽅法来计算积分。
整个近似过程分成两步第⼀步:⽤边界上⼏个点的近似积分公式第⼆步:边界点上的函数值⽤计算节点函数值的插值函数近似⾯积分可采⽤以下不同精度的积分公式:⼆阶精度积分:e e e e S e Sf S f fds F e≈==?(3)上式中e f 为边界中点出的函数值。
有限体积法编程(实用版)目录1.有限体积法概述2.有限体积法的基本原理3.有限体积法的编程实现4.有限体积法在工程领域的应用5.有限体积法的优缺点分析正文一、有限体积法概述有限体积法(Finite Volume Method,简称 FVM)是一种基于数值分析的计算流体力学方法,主要应用于求解三维空间内的流体运动问题。
该方法将流体区域划分为有限个小体积,通过在每个小体积内进行物理量的平均值计算,建立方程组求解流场各个点的流速、压力等物理量。
二、有限体积法的基本原理有限体积法基于质量守恒、动量守恒和能量守恒的原理,通过对流体区域进行离散化处理,将复杂的流场问题简化为求解离散点的物理量问题。
具体来说,有限体积法通过以下步骤进行计算:1.将流体区域划分为有限个小体积;2.在每个小体积内计算流体的质量、动量和能量等物理量的平均值;3.根据质量守恒、动量守恒和能量守恒原理,建立离散点的方程组;4.求解方程组,得到流场中各点的流速、压力等物理量。
三、有限体积法的编程实现有限体积法的编程实现主要包括以下几个步骤:1.建立计算网格:根据流体区域的几何形状,使用网格生成算法建立计算网格;2.设置物理参数:根据实际问题,设置流体的密度、粘度等物理参数;3.编写数值求解算法:根据有限体积法的原理,编写数值求解算法,实现质量守恒、动量守恒和能量守恒方程的求解;4.边界条件处理:根据实际问题的边界条件,设置相应的边界条件;5.求解并输出结果:运行程序,求解流场问题,并输出流速、压力等物理量的分布情况。
四、有限体积法在工程领域的应用有限体积法在工程领域有广泛的应用,如航空航天、汽车工程、船舶工程、能源工程等。
通过有限体积法的计算,可以优化流体动力学设计,提高系统的性能和效率。
五、有限体积法的优缺点分析有限体积法具有以下优点:1.适用范围广:可以求解三维空间内的流体运动问题,适用于多种工程领域;2.计算精度高:通过对流体区域进行离散化处理,可以提高计算精度;3.稳定性好:采用质量守恒、动量守恒和能量守恒原理,保证了计算结果的稳定性。
有限容积法和有限体积法有限容积法和有限体积法是计算流体力学中常用的两种数值方法,它们在流体动力学的数值计算中占有非常重要的地位。
本文将从概念、原理、特点、应用等方面,对这两种方法进行详细介绍。
一、有限容积法1.概念有限容积法(Finite Volume Method,FVM)是一种离散化的数值方法,它将连续的物理量离散化为有限个体积元,在每个体积元内计算其平均值,进而求解整个流体系统的物理量。
FVM方法的核心是质量守恒原理,即物质的进出必须平衡,这种保证了物理量在每个体积元内的守恒关系,从而保证了数值计算的准确性。
2.原理FVM方法的数值计算是基于网格的,它将流体动力学问题离散化为一个由有限体积元组成的系统,将原问题转化为流量守恒方程的求解,即$$\frac{\Delta m}{\Delta t}=\Sigma_{faces}\rho uA$$其中,$\Delta m$是在$\Delta t$时间内通过一个表面的质量变化量,$\rho$是介质的密度,$u$是速度,$A$是面积。
对于每个有限体积元,上式可以写为其中,$F_{ij}^p$和$F_{ij}^n$分别是流向有限体积元内部和外部的通量,$i,j$是有限体积元的编号。
3.特点(1)FVM方法基于质量守恒原理,具有非常强的数值稳定性和保真性;(2)FVM方法的计算结果具有局部守恒性,能够准确反映流场内部的物理现象;(3)FVM方法可以处理非结构化网格,适用范围广泛;(4)FVM方法求解的是面积分,所需的时间和空间存储相对较少。
4.应用(1)流体力学领域,如空气动力学、水力学、燃烧问题等;(2)材料科学领域,如薄膜生长、材料变形等。
有限体积法(Finite Element Method,FEM)是一种离散化的数值方法,它将求解的物理场离散化为有限个单元,然后在每个单元内进行近似计算。
相比于FVM方法,FEM方法更加精确,适用于需要高精度计算的问题。
第三讲 空间离散方法—有限体积法由于控制方程的复杂性,很难求出其解析解,一般采用数值方法对其进行求解。
采用数值求解方法,首先要对流场空间进行离散,即用一些基本体积单元对物理空间进行填充,要求这些体积单元既不能重叠,也不应有间隙,我们称这些体积单元为网格,或控制体积,填充的过程则称为网格生成。
对于二维流动,基本的网格单元有三角形和四边形网格,而对于三维流动,则基本的网格单元可由四面体、三棱柱、金字塔和六面体单元组成,图3.1即为机翼附近网格。
网格划分完成后,就可以应用相应的数值求解方法把每个网格单元中心点处的流动变量求解出来,也就完成了全部流场的计算。
有限体积法就是针对每个控制体积直接对积分形式的控制方程进行离散,从而把积分型方程近似为代数方程进行求解的方法。
图3.1 机翼附近网格3.1 N-S 方程的半离散形式积分形式的N-S 方程为: ∫∫Ω∂Ω=⋅−+Ω∂∂0)(dS n F F Qd t V c r (3-1) 针对空间某一控制体I Ω,首先对时间导数项进行处理,假设守恒变量Q 在控制体积内为常数分布,即等于控制体中心点处的值I Q (也即为控制体积内守恒变量的平均值),有∫Ω∂∂Ω=Ω∂∂t Q Qd t I (3-2) 式(3-1)变为 ∫Ω∂⋅−Ω−=∂∂dS n F F t Q v c I r )(1 (3-3)假设对流通量和粘性通量在控制体界面上为常值分布,且等于界面中心点(面心)处的值,则有 ⎥⎦⎤⎢⎣⎡Δ⋅−Ω−=∂∂∑=F N m m m v c I S F F t Q 1)(1 (3-4) 对式(3-3)右端项的近似称为空间离散,而式(3-4)时间方向暂时保留连续的形式,所以称该式为半离散控制方程。
式(3-4)中的m S Δ为第m 个界面的有向面积,即该面的外法线矢量与界面面积的乘积,为一矢量,又称面积矢量。
仔细观察半离散方程可以发现:时间导数项是由单元中心点处的守恒变量值表示的,我们称其为单元中心法;式(3-4)右端项中的通量是关于界面处流动变量的函数,需由界面处的流动变量来确定,由此可看出,流动变量I Q 与流动通量m S F Δ⋅的空间存储位置不同,要想求出流动通量,需先假设流动变量在控制体积内的分布规律,这一过程称为重构,然后确定界面处的流动变量值,再求出界面处的流动通量。
有限体积法求解流程一、啥是有限体积法。
有限体积法呀,就像是给计算的区域画好多小格子,把这个大的求解区域给它划分得规规矩矩的。
这就好比我们整理书架,把一整个大书架分成一个个小格子,每个小格子里放特定类型的书一样。
这个方法呢,它主要是基于守恒原理的哦。
你想啊,就像在一个封闭的空间里,东西的总量是不会凭空消失或者突然变多的,这就是守恒的概念在这个方法里的体现啦。
二、网格划分。
网格划分可是个挺重要的步骤呢。
我们要根据求解的问题来确定怎么划分这些小格子。
比如说,如果我们要研究一个形状比较规则的物体,像正方体或者圆柱体,那网格就可以划分得比较整齐均匀。
但要是物体的形状很奇怪,弯弯扭扭的,那这个网格划分就得更灵活一点啦。
这就像是给不同身材的人做衣服,身材标准的就用标准尺码的模板裁剪布料,身材奇特的就得特别量体裁衣了。
在划分网格的时候呢,还得考虑格子的大小呀。
格子太大了,可能就会丢失很多细节,就像用大刷子画画,只能画出个大概轮廓;格子太小呢,计算量就会超级大,就好像是你用超级小的针绣花,虽然细致但是特别耗时。
三、离散方程。
离散方程这个东西呢,听起来有点高大上,但其实也没那么难理解。
我们就是把那些原本连续的方程,按照我们划分好的网格,把它变成在每个小格子里适用的方程。
这就像是把一大锅汤,分装到一个个小杯子里,每个小杯子里的汤虽然量少了,但是它的成分比例还是和原来大锅里的汤差不多的。
这个过程呢,就是把连续的物理现象,用离散的数学式子表示出来,这样我们的计算机就能看懂啦,然后就能进行计算了。
而且在这个过程中,我们还得考虑边界条件呢。
边界就像是一个区域的边缘,比如说一个房间的墙。
边界条件就是墙那里的特殊情况,比如说墙是隔热的还是导热的,这对房间里的温度分布计算可是很重要的哦。
四、求解过程。
接下来就是求解啦。
我们把前面得到的离散方程和边界条件都给计算机,然后计算机就开始按照一定的算法进行计算。
这个计算过程就像是走迷宫一样,计算机要一步一步地按照规则找到答案。
有限体积法一、基本概念有限体积法是西方物理学家威廉.波音(William Bonynge)1890年提出的一种数值求解的方法,它的基本思想是:体积的变化量等于速度与时间(或位移)的变化量的乘积,可用该方法将求解所需要的复杂积分运算完全转化为一系列可以进行迭代计算的一阶微分方程组或其它形式的差分方程组,从而达到精确求解物理量的目的。
因此,定积分是有效控制精度的唯一手段,具有定积分法所不具有的稳定性和可逆性,因而有限体积法被广泛应用于气象、流体动力学和计算力学领域。
二、理论原理有限体积法的原理是基于一个体积的时间变化:一定体积的运动元件在时间上的体积变化为它的速度变化和位移变化的乘积。
这个变化的积分就是这个体积的变化量。
运用积分的方法,可以求出速度和位移变化总量。
在求解有限体积法时,应遵循以下步骤:(1)准备数据:确定当前体积元件的大小,位置,特性等,也可以准备一些较为精确的拟合值;(2)定义 size variable:对于每个体积元件,用大小变量x来进行描述;(3)定义变量系数:假定每个体积元件有一定的变量系数a来描述其变化量;(4)建立方程:根据上述步骤求出的变量系数a就可以构建积分的代数形式;(5)求值:根据构建的形式可以求解体积的变量系数a,以此来计算出体积变化量。
三、应用有限体积法应用广泛,在流体动力学,气象与空间等诸多领域中得到广泛应用。
有限体积法主要应用于数值计算中,用来求解涡流的发生、动态行为,以及特殊物理量的计算等。
有限体积法主要用来求解涡流问题,它能够对流动过程中的细节进行描述,问题的解决也比较精确。
由于有限体积法有较好的精度、可逆性和可靠性,因而在研究空气流动中用到比较多。
例如,汽车动力学领域中用来分析汽车机车旋转力矩、操纵力、起飞阻力等特性,以及舰船水车结构设计时等。
有限体积法在气象中也得到应用,例如预报气象,探测天气现象的发展趋势以及其影响。
此外,有限体积法也可以用于地性质、物理数学模型、生物物理过程中的求解,用来处理水库沿岸的地质、物理状况,以及景观的改变和积水的形成等问题。
计算流体力学中的有限体积法有限体积法(FVM)是计算流体力学(CFD)中常用的数值方法之一,用于求解流体力学方程。
它将求解域划分为离散的有限体积,通过对这些体积进行积分,将偏微分方程转化为代数方程,从而得到离散的数值解。
有限体积法的基本思想是将求解域划分为互不相交的有限体积单元,每个体积单元都包含一个中心点和一个相对应的体积。
在每个体积单元内,通过对流体力学方程进行积分,可以得到一个代表该体积单元平均值的代数方程。
这些代数方程连成一个线性方程组,通过求解这个方程组可以得到流场的数值解。
在FVM中,主要有三个关键步骤:离散化、积分和求解。
离散化是将待求解的方程在各个体积单元上进行离散,最常用的离散方式是采用控制体积法。
控制体积法通过定义控制体积面和控制体积边界上的通量,将方程离散化为一个线性代数方程组。
通常,在离散化过程中,流体力学方程会按照守恒形式进行处理。
积分是将流体力学方程在体积单元上进行积分,得到一个代表该体积单元平均值的代数方程。
通过这种方式,可以避免对方程进行高阶求导,降低计算的复杂性和误差。
在FVM中,除了对流体力学方程进行积分外,还需要对边界条件、源项和湍流模型等进行积分。
这些积分一般会产生一些额外的项,如壁面摩擦力、源项通量等。
求解是通过求解离散化后的线性代数方程组,得到流场的数值解。
求解方程组的方法有很多种,常见的方法包括迭代法、直接法和代数多重网格法等。
与其他数值方法相比,有限体积法在求解非结构网格上的方程组时具有较大的优势。
有限体积法的应用广泛,可以用于求解各种流动问题,如湍流、多相流、辐射传热等。
它在工程实践中具有很高的实用价值,可以为设计和优化流体系统提供有效的数值工具。
在实际应用中,有限体积法还可以与其他数值方法相结合,如有限元法、差分法等。
这样可以充分利用各种数值方法的优势,提高求解的精度和效率。
总之,有限体积法作为一种数值计算方法,被广泛应用于流体力学领域。
它不仅能够准确求解流体力学方程,还能够为工程实践提供有效的数值计算工具。
有限体积法应用
有限体积法(Finite Volume Method,FVM)是一种离散化方法,近年来在计算流体力学领域得到了广泛应用。
其基本思想是将计算区域划分为网格,并使每个网格点周围都有一个互不重复的控制体积。
控制方程对每一个控制体积积分,从而得出一组离散方程,其中的未知数为网格点上的因变量。
为了求出控制体积的积分,必须假定值在网格点之间的变化规律。
有限体积法的特点包括:
1. 计算效率高:有限体积法在离散过程中直接处理偏微分方程,因此具有较高的计算效率。
2. 守恒性:有限体积法利用控制单元中的物理量守恒来离散求解偏微分方程,因此在理论上具有最强的守恒性。
3. 适应复杂几何:有限体积法能适应复杂的几何形状和边界条件,因此在解决实际问题时具有很大的优势。
4. 内存需求较低:与有限元法相比,有限体积法的内存需求较低。
有限体积法在计算流体力学领域的应用包括:
1. 流体动力学模拟:有限体积法被广泛应用于流体动力学模拟,如湍流、燃烧、传热等问题的求解。
2. 航空航天领域:在航空航天领域,有限体积法被用于模拟飞行器的流体动力性能,如机翼、尾翼等部件的气动特性。
3. 气象预报:在气象预报领域,有限体积法被用于模拟大气流动和气候变化。
4. 生物医学工程:在生物医学工程领域,有限体积法被用于模拟血流、药物扩散等过程。
5. 化工模拟:在化工模拟领域,有限体积法被用于模拟流体流动、传热、化学反应等过程。
总之,有限体积法是一种广泛应用于计算流体力学领域的离散化方法,具有高效、守恒、适应性强等优点。
其应用范围涵盖了流体动力学模拟、航空航天、气象预报、生物医学工程和化工模拟等领域。