高铁弓网系统的受流特性及受电弓共34页
- 格式:ppt
- 大小:2.47 MB
- 文档页数:34
电力机车、动车组受电弓动态包络线资料武汉供电段 方卫健一、受电弓的定义安装在电气列车上的一种从一根或几根接触线上集取电流的专用设备,由弓头、框架、底架和传动系统等部分组成,其几何形状可以改变。
运行时,受电弓全部或部分带电,与安装平台的车顶电气绝缘,将电流从接触网传输到车内的电气系统。
二、受电弓类型介绍目前,国内电气化铁路上运行的受电弓主要有TSG系列、DSA系列等单臂受电弓,各类受电弓发展进程如下图:2.1 TSG1-600/25型单臂受电弓适用于相应速度等级的各种电力机车。
主要技术参数额定工作电压…………………………………25kV额定工作电流…………………………………600A最大运行速度………………………………80km/h静态接触压力 …………………………(70±10)N工作高度……………………………680~1800mm最大升弓高度 ……………………………2400mm折叠高度 ……………………………………432mm弓头总长度………………………………≯2160mm滑板长度 ………………………………≯1250mm2.2 TSG3-630/25型单臂受电弓适用于相应速度等级的各种电力机车。
2.3 TSG15型单臂受电弓适用于相应速度等级的各种电力机车。
主要技术参数额定工作电压…………………………………25kV额定工作电流…………………………………630A最大运行速度……………………………170km/h静态接触压力 …………………………(90±10)N工作高度……………………………500~2250mm最大升弓高度 ……………………………2600mm折叠高度 ……………………………………228mm弓头总长度…………………………………2085mm滑板长度 …………………………………1250mm 主要技术参数额定工作电压…………………………………25kV额定工作电流………………………………1000A最大运行速度……………………………200km/h静态接触压力 …………………………(70±10)N工作高度…………………………500~2250mm最大升弓高度 ……………………………2600mm图(2) TSG3-630/25受电弓 图(1)TSG1-600/25受电弓2.4 DSA-150型单臂受电弓DSA150型受电弓,设计速度160 Km/h,适用于相应速度等级的各种电力机车及动车组。
计及受电弓跟随性的高速铁路弓网系统受流质量分析摘要:受电弓是高速铁路动车组的关键受流装置,其与接触网的接触稳定性直接关系到动车组供电安全。
本文通过建立接触网的非线性有限元模型和受电弓归算质量模型,对受电弓跟随性与弓网受流质量的相关性进行分析。
结果显示,随着受电弓弓头质量的增加,弓网系统接触稳定性呈逐渐下降趋势。
以受电弓弓头运动速度作为跟随性指标分析显示,弓头质量增加可引起弓头运动速度趋于稳定,造成受电弓弓头无法对接触线振动做出及时响应,从而造成弓网接触力波动幅度增大。
关键词:高速铁路;受电弓;接触网;受电弓跟随性;接触力高速铁路是我国居民出行和经济连通的重要命脉。
目前,我国高速铁路运营里程已位居世界第一,运营速度也在向着更快、更强发展。
在更高速度运行,如何保证动车组的供电安全性至关重要。
当前,我国高速铁路动车组主要依赖安装在车顶部的受电弓与接触网滑动接触实现取流,如图1所示。
因此,受电弓-接触网系统(以下简称弓网系统)的接触稳定性对动车组的供电安全至关重要。
在动车组高速运行过程中,受电弓对接触网造成持续的滑动冲击,在接触点产生向线路两端方向传播的波动,波动往复反射,造成弓网接触位置发生相对位移,从而引起弓网接触力稳定性下降。
随着我国高速铁路时速400公里乃至更高速度运行目标的提出,如何有效提高弓网接触力的稳定性已成为解决更高速度运行下弓网关系问题的重点。
图1 高速铁路受电弓-接触网系统既往研究中,大量学者针对如何改善高速铁路弓网系统的受流质量已展开了充分的讨论。
在研究手段方面,目前计算机仿真以其成本可控、操作简便、可重复性高的优势被广泛应用于高速铁路弓网关系的研究中。
Tur M等[1]针对重力载荷所引起的接触网弧垂现象,提出了一种基于绝对节点坐标法的接触网找形方法。
部分学者将绝对节点坐标法进一步发展,提出了一种可以反映接触网线索大变形特征的建模方法[2],并在弓网系统风振响应研究中得以广泛应用[3]。
CRH2A型动车组受电弓结构原理及常见故障分析摘要:随着我国高速铁路的发展,动车组在客运方面发挥着越来越重要的作用。
而受电弓作为接触网导线和动车组牵引系统连接的纽带,它的运行状态直接影响着动车组速度的提升。
因此分析受电弓的结构原理及运用中常见的故障原因,具有一定的现实意义。
关键词:受电弓;结构原理;故障分析随着动车组的速度不断提高,对动车组牵引性能的要求也越来越高,受电弓作为连接接触网供电系统和动车组牵引系统的重要部件,其性能的好坏对速度的提升起到了至关重要的作用。
1受电弓结构CRH2A型动车组受电弓采用DSA250型单臂受电弓,主要由:底架、阻尼器、下臂、升弓装置、弓装配、上导杆、下导杆,滑板、弓头、等部件构成,升弓装置安装在底架上,通过钢丝绳作用于下臂。
下臂、上臂和弓头由较轻的铝合金材料结构设计而成。
滑板安装在U型弓头支架上,弓头支架垂悬在4个拉簧下方,两个扭簧安装在弓头和上臂间,这种结构使滑板在动车组运行方向上移动灵活,而且能够缓冲各方向上的冲击,达到保护滑板的目的。
2控制原理分析2.1升弓原理当动车组需启动受电弓时,首先由司机操纵受电弓升起旋钮保持3至5秒,通过控制系统发送升弓命令,控制受电弓电控阀接收到电路信号后动作打开,压缩空气经由电控阀流经由空气过滤器、升弓用单向节流阀、精密调压阀、压力表、降弓用节流阀、安全阀组成的受电弓气路控制阀板和高压绝缘软管进入车顶受电弓升弓装置,气囊充气,推动导盘前移,通过钢索带动下臂绕轴顺时针旋转,此时上臂在推杆的作用下逆时针转动,使受电弓弓头升起。
2.2降弓原理降弓时,操作司机室操纵台上的降弓按钮3至5秒,控制受电弓电控阀使气路与大气接通,气囊收缩,下臂逆时针转动,最终使受电弓弓头降到落弓位。
同时,还可调节升降弓节流阀和调压阀对受电弓的升降弓时间以及静态解除压力进行调整,保证运行时状态稳定。
2.3受电弓的自动降弓功能由于动车组运行的速度较高,受电弓极易因异物打击或接触网状态不佳造成故障,甚至发生刮网事故。