第5课时--圆的面积公式应用——已知周长求面积圆的面积公式应用——已知周长求面积
- 格式:docx
- 大小:96.45 KB
- 文档页数:3
教材分析:圆是小学数学平面图形教学中唯一的曲线图形。
本课是在学生了解和掌握了圆的特征、学会计算圆周长的计算以及学习过直线围成的平面图形面积计算公式的基础上进行教学的。
教材将理解“化曲为直”的转化思想贯穿在活动之中。
通过一系列的活动将新的数学思想纳入到学生原有的认知结构之中,从而完成新知的建构过程。
学好这节课的知识,对今后进一步探究“圆柱圆锥”的体积起着举足轻重的作用。
【教学目标】1、了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。
2、能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。
3、在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
教学重点】探索并掌握圆的面积公式。
【教学难点】探索推导圆的面积公式,体会“化曲为直”思想。
【教具准备】投影仪,多煤体课件,圆形纸片。
【学具准备】圆形纸片。
【教学设计】一、创设情境。
提出问题(投影出示P16中草坪喷水插图)这节课我们就来学习如何求喷水头转动一周浇灌的面积有多大。
(板书:圆的面积)二、探究思考。
解决问题1、估计圆面积大小师:请大家估计半径为5米的圆面积大约是多大?(让同学们充分发挥自己感官,估计草坪面积大小)------2、用数方格的方法求圆面积大小①投影出示P16方格图,让同学们看懂图意后估算圆的面积,学生可以讨论交流。
②指明反馈估算结果,并说明估算方法及依据。
1、根据圆里面的正方形来估计2、用数方格的方法来估计。
三、探索规律1、由旧知引入新知师:大家还记得我们以前学习的平行四边形、三角形、梯形面积分别是由哪些图形的面积来的吗?(学生回答,教师订正。
那么圆形的面积可由什么图形面积得来呢。
2、探索圆面积公式师:拿出我们剪好的图形拼一拼,看看能成为一个什么图形?并考虑你拼成的图形与原来的圆形有什么关系?(同学们开始操作,教师巡视)指名汇报(学生在说的同时教师注意板书)请大家来观察一下刚才拼成的哪个图形更接近长方形呢?[等分为32份的更接近长方形。
冀教版六年级数学上册全册教案:第5课时圆的面积(3)第5课时圆的面积(3)教学目标:l.结合具体事例,经历解决已知圆的周长求圆面积的实际问题的过程2.能灵活运用圆的周长、圆的面积公式解决简单的实际问题。
3.感受数学在生活中的广泛应用,获得解决问题的成功体验。
教学重点:培养综合运用知识的能力。
教学难点:培养综合运用知识的能力。
教具学具准备:半径为10厘米的圆纸片、剪刀、半圆仪。
教学过程:一、复习l.半径是2厘米,直径是多少?圆周长是多少?圆面积是多少?2.半径是多少?直径是5分米,圆周长是多少分米?圆面积是多少分米?二、新授(一)问题情境1.师生讨论引出蒙古包,教师贴出图片让学生观察。
提出:你能想到哪些和数学有关的问题,给学生充分的发表不同问题的机会。
师:同学们,在草原上有一种非常特别的房子,你们知道叫什么吗?生:蒙古包。
师:对,蒙古包。
看,老师带来了一张蒙古包的图片。
图片贴在黑板上。
师:观察这个蒙古包,你都想到了哪些和数学有关的问题?学生可能会说:这个蒙古包是个圆形的。
这个蒙古包占地面积是多少呢?这个蒙古包有多高呢?这个蒙古包的直径是多少呢?这个蒙古包能住几个人呢?……2.提出:要计算蒙古包的占地面积,怎么办?师生讨论,得出:测量直径不好测,可以测量出周长,再计算占地面积。
教师给出周长数据。
师:如果要计算蒙古包的占地面积,怎么办?生:测量出蒙古包的直径,就能计算出它的占地面积。
师:对。
测量出直径就能求出它的面积。
大家来观察这个图片,这个蒙古包的直径好测量吗?生:不好测量。
师:对,从外面没法测量。
从里面测量一方面屋子里有东西不好量,另外也不容易测量准确。
测量直径不行,还有其它方法吗?生:测量出周长。
师:对,周长容易测。
草原上的人们也想到了这个办法,他们测量出蒙古包的周长是18.84米。
板书:周长18.84米。
(二)解决问题1.提出:已知周长,怎样求蒙古包的占地面积?学生讨论,理清思路后,自主计算。
一对一教师辅导教案课程主题:第一章圆第五节圆的面积上课时间:学习目标:掌握圆的面积计算公式,并能运用圆的面积计算公式解决实际问题。
教学内容一、内容回顾1.圆的周长:2.圆的周长=()。
二、知识精讲知识点一(圆的面积计算公式)【知识梳理】1.圆的面积的意义:圆所占平面的大小就是圆的面积。
2.圆的面积计算公式:如果用S 表示圆的面积,r 表示圆的半径,那么圆的面积计算公式是S=2r 。
【例题精讲】例1.求下图阴影部分的面积。
(单位:厘米)例2.一个钟的分针长15厘米,这根分针1小时转过的面积是多少平方厘米?例3.填空。
(1)一个圆的半径扩大到原来的2倍,直径就扩大()倍,周长就扩大()倍,面积就扩大()倍。
(2)一个圆的半径缩小到原来的32,则面积就缩小到原来的()。
(3)大圆半径是小圆半径的3倍,大圆面积是84.78平方厘米,则小圆面积为()平方厘米。
(4)用三根同样长的铁丝分别围成一个长方形、一个正方形、和一个圆,其中()面积最小,()面积最大。
【课堂练习】1.判断。
(1)直径是半径的2倍。
()(2)圆周率就是3.14。
()(3)直径是圆的对称轴。
()(4)一个圆的面积和一个正方形的面积相等,它们的周长也相等。
()(5)半圆形的面积就是圆面积的一半。
()2.求下图阴影部分的面积。
(单位:厘米)3.选择题。
(1)圆的半径扩大到原来的2倍,它的面积扩大到原来的()倍。
A.2B.4C.6D.8(2)一个圆的半径由3cm增加到8cm,圆的面积增加了()cm2。
A.55B.39C.55πD.39π4.北京天坛公园的回音壁是文明世界的声学奇迹,它是一道圆形围墙。
圆的直径约为61m,面积是多少?知识点二(圆的面积计算公式的应用)【知识梳理】1.圆的面积计算公式的应用:(1)已知圆的半径或直径,求圆的面积:S=2r π=22⎪⎭⎫⎝⎛d π。
(2)已知圆的周长,求圆的面积:S=()22÷÷ππC 。
圆的面积教案【精选6篇】《圆的面积》教学设计篇一教学目标:1、用转化的思想使学生能够理解并掌握圆的面积计算公式,学会利用圆的面积计算公式解答简单的实际问题。
2、通过圆的面积计算公式的推导及应用,培养学生知识迁移能力,观察发现能力,分析概括能力和解决实际问题能力。
3、通过本节课的学习,渗透转化数学思想,让学生体会到数学知识之间的内在联系,感受学数学的快乐。
教学重难点:理解圆的面积计算公式的推导过程及应用。
教学思路:直观引入,演示发现,学会应用。
教学过程:一、激发兴趣,引出概念1、回忆圆的周长概念及计算公式,引出圆的面积概念。
2、回忆学过平面图形的面积公式,例举某图形面积计算公式的推导过程。
渗透转化数学思想,引出学生对圆面积计算公式推导的探究兴趣。
二、点题提出目标1、圆的面积计算公式的推导。
(1)课件演示将圆平均分成若干份后,拼接成近似长方形的全过程。
让学生不仅懂得圆平均分的份数越多,拼接成的图形越接近长方形;还了解到圆转化成近似长方形后形状发生了变化,但面积没有变化。
(2)学生分组尝试(或教师教具演示等)将圆转化长方形的全过程。
让学生进一步感受转化的数学思想,并在操作(或观察)发现拼接成的近似长方形的长相当于圆的哪一部分;宽相当于圆的哪一部分。
(3)由长方形面积公式推导出圆的面积计算公式。
(4)小结:在一个圆里,圆的面积与半径有关系,知道了圆的半径就可以求出圆的面积。
2、教学例1题。
(1)出示例题,学生根据圆面积计算公式独立解决,集体评议。
(2)尝试练习,做一做第1题,练习二十四第3题等。
圆的面积教案篇二教学内容:六年制小学数学教科书第十一册第一单元《圆的面积》中的第一节课,数学-圆的面积。
教学目的:1、通过教学使学生建立圆面积的概念,理解圆面积计算公式的推导过程,掌握圆面积的计算公式。
2、能正确地应用圆面积计算公式进行圆面积的计算,并能解答有关圆的实际问题。
教学重点:理解和掌握圆面积的计算公式的推导过程教学难点:圆面积计算公式的推导教学过程:一、创设情境,提出问题(课件演示)用一根绳子把羊栓在木桩上,演示羊边吃草边走的情景。
知识梳理:一根31.4米长的绳子,用它围成的正方形面积大,还是围成圆的面积大?大多少?围成的圆或正方形的周长是米,算出它们的面积再比较大小。
正方形的面积: ÷4=(米) ×≈(平方米) 圆的面积: ÷2÷=5(米) ×5×5=(平方米) 围成的圆面积大 -=(平方米)答:围成的圆面积大,大平方米。
一、圆的周长圆周长的意义:围成圆的曲线的长度叫作圆的周长。
直径大的圆,周长大;直径小的圆,周长小。
圆周长的计算公式:如果用字母C 表示圆的周长,那么=C d π或=2C r π。
圆周长计算公式的应用: 1 已知半径求周长:=2C r π。
2 已知直径求周长:=C d π。
3 已知周长求半径:2r C π=÷÷。
4 已知周长求直径:d C π=÷。
二、圆的面积圆面积的含义:圆形物体所占平面的大小或圆形物体表面的大小就是圆的面积。
圆面积的计算公式:如果用S 表示圆的面积,圆的面积计算公式可写成2S r π=。
圆面积的计算公式: 1 已知半径求面积:2S r π=。
2 已知直径求面积:因为2d r =,所以2()2d S π=或24S d π=。
3 已知周长求面积:因为2r C π=÷÷,所以2(2)S C ππ=÷÷。
典例精析例题1 在长6分米,宽4分米的长方形中画一个最大的半圆,半圆的周长和面积各是多少? 解答过程:以长6分米为直径的半圆最大。
R=6÷2=3(分米)半圆周长=6×6÷2=(分米) 半圆面积=×3²÷2=(平方分米)答:半圆周长为分米,半圆面积为平方分米。
技巧点拨:半圆周长=直径半圆弧长,半圆面积=圆面积÷2。
例题2 用26米长的篱笆围成一个圆形苗圃,篱笆接头处用去米,苗圃的面积是多少? 解答过程: 26-=(米) ÷2÷=4(米) ×4²=(平方米)答:苗圃的面积是平方米。
圆的面积公式应用——已知周长求面积教学目标:
1.在解决问题的过程中,进一步巩固圆的面积公式。
2.结合具体事例,能灵活运用所学公式解决生活中的问题。
3.感受数学与生活的密切联系,培养学生综合运用知识的能力。
教学重点:
正确并灵活的运用公式进行计算。
教学难点:
正确并灵活的运用公式解决生活中的问题
教学过程:
一、复习旧知,导入新课
前面我们学习了圆、圆的周长、圆的面积,如果圆的半径用r表示,周长怎样表示?(2πr)面积怎样表示?(πr2),这节课我们继续学习圆的面积,研究如何用圆的公式解决实际问题。
二、引导探究,解决问题
1.探究教材第52页“蒙古包占地”问题。
(1)多媒体出示问题。
一个底面是圆形的蒙古包,沿地面量得周长是25.12米。
它的占地面积是多少平方米?
(2)探究。
学生根据以前的经验可知:要先利用圆的周长公式求出蒙古包的半径或直径,才能计算占地面积。
师:我们在算蒙古包半径时用算术法和方程法都可以,哪种更简单?
生:列方程解,思路统一,便于理解。
师:请同学们在练习本上把过程写完整!
指名学生板演。
2.探究教材第52页“选台布”问题。
圆桌面的直径是120厘米。
(1)多媒体出示三块不同规格的台布:
110cm×110cm;120cm×120cm;140cm×140cm
(2)合作探究。
(教师需引导学生知道"110cm×110cm"等表示的意义)
120)2=11304(平方厘米)
生1:因为桌面面积:3.14×(
2
边长是110厘米的台布面积:110×110=12100(平方厘米)
12100>11304
所以边长是110厘米的台布能用,因为它的面积比圆桌面的面积大。
生2:边长是110厘米的台布不能用,边长是110厘米的台布最大只能遮盖直径是110厘米的圆桌面。
(教师引导学生知道,只比较面积的大小不行,还要看台布能不能盖全圆桌)
通过学生比较第2种和第3种台布,使学生知道边长是140厘米的台布不但比圆桌面的面积大,而且铺在上面周围都能垂下一部分,这样比较美观,台布不容易被掀起,所以选择边长是140厘米的台布更合适些。
三、联系实际,巩固提高
练一练第53页第1、2、3题。
四、全课总结,畅谈收获
通过今天的学习,谈谈大家的收获。