数电课后习题及答案精修订
- 格式:docx
- 大小:90.86 KB
- 文档页数:41
《数字电子技术基础》课后习题及参考答案(总90页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。
(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。
(1);(2);(3);(4)解:(1)=177(2)=170(3)=241(4)=136【题1-3】将下列十六进制数转换为十进制数。
(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。
(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)21(2)(9C)16=()2(3)(B1)16=(1011 0001)2(4)(AF)16=()2【题1-5】将下列二进制数转换为十进制数。
(1);(2);(3);(4)解:(1)()2=(2)()2=(3)()2=【题1-6】将下列十进制数转换为二进制数。
(1);(2);(3);(4)解:(1)=()2(2)=()2(3)=()2(4)=()2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。
(1)01101100;(2);(3);(4)解:(1)01101100是正数,所以其反码、补码与原码相同,为01101100(2)反码为,补码为(3)反码为,补码为(4)反码为,补码为【题1-8】将下列自然二进制码转换成格雷码。
第一章 数字逻辑基础 思考题与习题题1-1将下列二进制数转换为等值的十六进制数和等值的十进制数。
⑴(10010111)2 ⑵(1101101)2⑶(0.01011111)2 ⑷(11.001)2题1-2将下列十六进制数转换为等值的二进制数和等值的十进制数。
⑴(8C )16 ⑵(3D.BE )16⑶(8F.FF )16 ⑷(10.00)16题1-3将下列十进制数转换为等值的二进制数和等值的十六进制数。
要求二进制数保留小数点以后4位有效数字。
⑴(17)10 ⑵(127)10⑶(0.39)10 ⑷(25.7)10题1-4将十进制数3692转换成二进制数码及8421BCD 码。
题1-5利用真值表证明下列等式。
⑴))((B A B A B A B A ++=+ ⑵AC AB C AB C B A ABC +=++⑶A C C B B A A C C B B A ++=++ ⑷E CD A E D C CD A C B A A ++=++++)( 题1-6列出下列逻辑函数式的真值表。
⑴ C B A C B A C B A Y ++=⑵Q MNP Q P MN Q P MN PQ N M Q NP M PQ N M Y +++++=题1-7在下列各个逻辑函数表达式中,变量A 、B 、C 为哪几种取值时,函数值为1?⑴AC BC AB Y ++= ⑵CA CB B A Y ++=⑶))((C B A C B A Y ++++= ⑷C B A BC A C B A ABC Y +++=题1-8用逻辑代数的基本公式和常用公式将下列逻辑函数化为最简与或形式。
⑴ B A B B A Y ++=⑵C B A C B A Y +++=⑶B A BC A Y += ⑷D C A ABD CD B A Y ++= ⑸))((B A BC AD CD A B A Y +++= ⑹)()(CE AD B BC B A D C AC Y ++++= ⑺CD D AC ABC C A Y +++=⑻))()((C B A C B A C B A Y ++++++= 题1-9画出下列各函数的逻辑图。
第一章数制与编码1.1自测练习1.1.1、模拟量数字量1.1.2、(b)1.1.3、(c)1.1.4、(a)是数字量,(b)(c)(d)是模拟量1.2 自测练习1.2.1. 21.2.2.比特bit1.2.3.101.2.4.二进制1.2.5.十进制1.2.6.(a)1.2.7.(b)1.2.8.(c)1.2.9.(b)1.2.10.(b)1.2.11.(b)1.2.12.(a)1.2.13.(c)1.2.14.(c)1.2.15.(c)1.2.16.10010011.2.17.111.2.18.1100101.2.19.11011.2.20.8进制1.2.21.(a)1.2.22.0,1,2,3,4,5,6,71.2.23.十六进制1.2.24.0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F 1.2.25.(b)1.3自测练习1.3.1.1221.3.2.675.521.3.3.011111110.011.3.4.521.3.5.1BD.A81.3.6.1110101111.11101.3.7.38551.3.8.28.3751.3.9.100010.111.3.10.135.6251.3.11.570.11.3.12.120.51.3.13.2659.A1.4自测练习1.4.1.BCD Binary coded decimal 二—十进制码1.4.2.(a)1.4.3.(b)1.4.4.8421BCD码,4221BCD码,5421BCD1.4.5.(a)1.4.6.011001111001.10001.4.7.111111101.4.8.101010001.4.9.111111011.4.10.61.051.4.11.01011001.011101011.4.12.余3码1.4.13.XS31.4.14.XS31.4.15.1000.10111.4.16.1001100000111.4.17.521.4.18.110101.4.19.0101111.4.20.(b)1.4.21.ASCII1.4.22.(a)1.4.23.ASCII American Standard Code for Information Interchange美国信息交换标准码EBCDIC Extended Binary Coded Decimal Interchange Code 扩展二-十进制交换吗1.4.24.10010111.4.25.ASCII1.4.26.(b)1.4.27.(b)1.4.28.110111011.4.29.-1131.4.30.+231.4.31.-231.4.32.-861.5 自测练习 1.5.1 略1.5.2 11011101 1.5.3 010001011.5.4 11100110 补码形式 1.5.5 011111011.5.6 10001000 补码形式 1.5.7 11100010 补码形式习题1.1 (a )(d )是数字量,(b )(c )是模拟量,用数字表时(e )是数字量,用模拟表时(e )是模拟量 1.2 (a )7, (b )31, (c )127, (d )511, (e )40951.3 (a )22104108⨯+⨯+, (b )26108108⨯+⨯+,(c )321102105100⨯+⨯+⨯+(d )322104109105⨯+⨯+⨯+ 1.4 (a )212121⨯+⨯+, (b )4311212121⨯+⨯+⨯+, (c )64212+12+12+12+1⨯⨯⨯⨯(d )9843212+12+12+12+12⨯⨯⨯⨯⨯ 1.5 2201210327.15310210710110510--=⨯+⨯+⨯+⨯+⨯,3210-1-221011.0112+02+12+12+02+12=⨯⨯⨯⨯⨯⨯,210-18437.448+38+78+48=⨯⨯⨯⨯, 10-1-2163A.1C 316+A 16+116+C 16=⨯⨯⨯⨯1.6 (a )11110, (b )100110,(c )110010, (d )1011 1.7 (a )1001010110000, (b )10010111111.8 110102 = 2610, 1011.0112 = 11.37510, 57.6438 = 71.81835937510, 76.EB 16= 118.91796875101.9 1101010010012 = 65118 = D4916,0.100112 = 0.468 = 0.9816,1011111.011012 = 137.328 = 5F.68161.10 168 = 1410,1728 = 12210,61.538 = 49.671875, 126.748 = 86.9375101.11 2A 16 = 4210 = 1010102 = 528, B2F 16 = 286310 = 1011001011112 = 54578, D3.E 16= 211.87510 = 11010011.11102 = 323.78, 1C3.F916 = 451.9726562510 = 111000011.111110012 = 703.76281.12 (a )E, (b )2E, (c )1B3, (d )349 1.13 (a )22, (b )110, (c )1053, (d )2063 1.14 (a )4094, (b )1386, (c )49282 1.15(a )23, (b )440, (c )27771.16 198610 = 111110000102 = 00011001100001108421BCD , 67.31110 = 1000011.010012 =01100111.0011000100018421BCD , 1.183410 = 1.0010112 = 0001.00011000001101008421BCD ,0.904710 = 0.1110012 = 0000.10010000010001118421BCD1.17 1310 = 000100118421BCD = 01000110XS3 = 1011Gray, 6.2510 = 0110.001001018421BCD=1001.01011000 XS3 = 0101.01Gray,0.12510= 0000.0001001001018421BCD= 0011.010*********XS3 = 0.001 Gray1.18 101102 = 11101 Gray,0101102 = 011101 Gray1.19 110110112 = 0010000110018421BCD,45610 = 0100010101108421BCD,1748=0010011101008421BCD,2DA16 = 0111001100008421BCD,101100112421BCD = 010*********BCD, 11000011XS3 = 100100008421BCD1.20 0.0000原= 0.0000反= 0.0000补,0.1001原= 0.1001反= 0.1001补,11001原= 10110反= 10111补1.21 010100原= 010100补,101011原= 110101补,110010原= 101110补,100001原=111111补1.22 1310 = 00001101补,11010 = 01101110补,-2510 = 11100111补,-90 =10100110补1.23 01110000补= 11210,00011111补= 3110,11011001补= -3910,11001000补= -56101.24 1000011 1000001 1010101 1010100 1001001 1001111 1001110 0100001 01000001001000 1101001 1100111 1101000 0100000 1010110 1101111 1101100 1110100 1100001 1100111 11001011.25 0100010 1011000 0100000 0111101 0100000 0110010 0110101 0101111 101100101000101.26 BEN SMITH1.27 00000110 100001101.28 01110110 10001110第二章逻辑门1.1 自测练习2.1.1. (b)2.1.2. 162.1.3. 32, 62.1.4. 与2.1.5. (b)2.1.6. 162.1.7. 32, 62.1.8. 或2.1.9. 非2.1.10. 12.2 自测练习=⋅2.2.1. F A B2.2.2. (b)2.2.3. 高2.2.4. 322.2.5. 16,52.2.6. 12.2.7. 串联2.2.8. (b)2.2.9. 不相同2.2.10. 高2.2.11. 相同2.2.12. (a)2.2.13. (c)2.2.14. 奇2.3 自测练习2.3.1. OC,上拉电阻2.3.2. 0,1,高阻2.3.3. (b)2.3.4. (c)2.3.5. F A B=⋅, 高阻2.3.6. 不能2.4 自测练习1.29 TTL,CMOS1.30 Transisitor Transistor Logic1.31 Complementary Metal Oxide Semicoductor1.32 高级肖特基TTL,低功耗和高级低功耗肖特基TTL1.33 高,强,小1.34 (c)1.35 (b)1.36 (c)1.37 大1.38 强1.39 (a)1.40 (a)1.41 (b)1.42 高级肖特基TTL1.43 (c)习题2.1 与,或,与2.2 与门,或门,与门2.3 (a)F=A+B, F=AB (b)F=A+B+C, F=ABC (c)F=A+B+C+D, F=ABCD2.4 (a )0 (b )1 (c )0 (d )0 2.5 (a )0 (b )0 (c )1 (d )0 2.6 (a )1 (b )1 (c )1 (d )1 2.7 (a )4 (b )8 (c )16 (d )32 2.8 (a )3 (b )4 (c )5 (d )62.9 (a )(b ) A B C D F 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 0 0 0 0 1 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 1 0 1 1 1 0 0 1 11112.10 Y AB AC =+2.11A B C Y 0 0 0 0 0 0 1 0 011A B C F 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 11110 1 1 11 0 0 01 0 1 11 1 0 01 1 1 12.122.13F1 = A(B+C), F2=A+BCA B C F1F20 0 0 0 00 0 1 0 00 1 0 0 00 1 1 0 11 0 1 1 11 0 0 0 11 1 0 1 11 1 1 1 12.142.15 (a)0 (b)1 (c)1 (d)02.16 (a)1 (b)0 (c)0 (d)12.17 (a)0 (b)02.182.19 Y AB BC DE F=⋅⋅⋅2.20 Y AB CD EF=⋅⋅2.21 102.22 402.23 当TTL反相器的输出为3V,输出是高电平,红灯亮。
第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。
(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。
(1)10110001;(2)10101010;(3)11110001;(4)10001000 解:(1)10110001=177(2)10101010=170(3)11110001=241(4)10001000=136【题1-3】将下列十六进制数转换为十进制数。
(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。
(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=(10011100)2(3)(B1)16=(1011 0001)2(4)(AF)16=(10101111)2【题1-5】将下列二进制数转换为十进制数。
(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101解:(1)(1110.01)2=14.25(2)(1010.11)2=10.75(3)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。
(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)2(3)5.8=(101.1100)2(4)101.71=(1100101.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。
数电课后习题答案(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2思考题与习题思考题与习题第一章【1-1】(1)(1101)2= (13)10(2)(10111)2=(23)10 (3)(110011)2=(51)10 (4)()2=()10【1-2】(1)(35)10=(100011)2 (2)(168)10 =()2 (3)()10=()2 (4)(199)10=()2【1-3】(1)(1011011682)()55()AD ==(2)(11682)1()715()CD == (3)(011682)36()1435()D == (4)(11682)157()527()==【1-4】答:数字逻辑变量能取“1”,“0”值。
它们不代表数量关系,而是代表两种状态,高低电平.【1-5】答:数字逻辑系统中有“与”,“或”,“非”三种基本运算,“与”指只有决定事件发生的所有的条件都成立,结果才会发生,只要其中有一个条件不成立,结果都不会发生. “与“指只要所有的条件中有一个条件成立,结果就会发生,除非所有的条件都不成立,结果才不会发生. ”非“指条件成立,结果不成立。
条件不成立,结果反而成立。
【1-6】答:逻辑函数:指用与,或,非,等运算符号表示函数中各个变量之间逻辑关系的代数式子。
将由真值表写出逻辑函数表达式的方法: 1.在真值表中挑选出所有使函数值为1的变量的取值组合。
2.将每一个选出的变量取值组合对应写成一个由各变量相与的乘积项,在此过程中,如果某变量取值为1,该变量以原变量的形式出现在乘积项中,如果某变量取值为0,则该变量以反变量的形式出现在乘积项中。
3.将所有写出的乘积项相或,即可得到该函数的表达式。
【1-7】答:在n 输入量的逻辑函数中,若m 为包含n 个因式的乘积项,而且这n 个输入变量均以原变量或反变量的形式在m 中出现且仅出现一次,这m 称为该n 变量的一个最小项。
第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。
(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。
(1)10110001;(2)10101010;(3)11110001;(4)10001000 解:(1)10110001=177(2)10101010=170(3)11110001=241(4)10001000=136【题1-3】将下列十六进制数转换为十进制数。
(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。
(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=(10011100)2(3)(B1)16=(1011 0001)2(4)(AF)16=(10101111)2【题1-5】将下列二进制数转换为十进制数。
(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101解:(1)(1110.01)2=14.25(2)(1010.11)2=10.75(3)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。
(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)2(3)5.8=(101.1100)2(4)101.71=(1100101.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。
第1章 数字电路基础知识1 电子电路主要分为两类:一类是电子电路主要分为两类:一类是 模拟电路 ,另一类是,另一类是 数字电路 。
2 模拟电路处理的是模拟电路处理的是 模拟信号 ,而数字电路处理的是,而数字电路处理的是 数字信号 。
3 晶体管(即半导体三极管)的工作状态有三种:晶体管(即半导体三极管)的工作状态有三种:截止截止、 放大和 饱和。
在模拟电路中,晶体管主要工作在体管主要工作在 放大状态 。
4 在数字电路中,晶体管工作在在数字电路中,晶体管工作在 截止与 饱和状态,也称为状态,也称为 “开关”状态。
状态。
5 模拟信号是一种模拟信号是一种大小随时间连续变化大小随时间连续变化的电压或电流,数字信号是一种的电压或电流,数字信号是一种突变突变的电压和电流。
6 模拟信号的电压或电流的大小是模拟信号的电压或电流的大小是随时间连续缓慢变化的随时间连续缓慢变化的,而数字信号的特点是“保持”(一段时间内维持低电压或高电压)和“段时间内维持低电压或高电压)和“突变突变”(低电压与高电压的转换瞬间完成)。
7 在数字电路中常将0~1v 范围的电压称为范围的电压称为低电平低电平,用,用““0”来表示;将3~5v 范围的电压称为高电平,用,用““1”来表示。
来表示。
介绍了数字电路的发展状况和数字电路的一些应用领域,并将数字电路和模拟电路进行了比较,让读者了解两者的区别,以利于后面数字电路的学习。
以利于后面数字电路的学习。
第2章 门电路1 基本门电路有基本门电路有与门与门、或门、非门三种。
三种。
2 与门电路的特点是:只有输入端都为只有输入端都为 高电平 时,输出端才会输出高电平;只要有一个输入端为“0”,输出端就会输出输出端就会输出 低电平 。
与门的逻辑表达式是与门的逻辑表达式是 Y A B =· 。
3 或门电路的特点是:只要有一个输入端为只要有一个输入端为 高电平 ,输出端就会输出高电平。
只有输入端都为 低电平 时,输出端才会输出低电平。
第1章习题与参考答案【题1-1】将下列十进制数转换为二进制数、八进制数、十六进制数。
(1)25;(2)43;(3)56;(4)78解:(1)25=(11001)2=(31)8=(19)16(2)43=(101011)2=(53)8=(2B)16(3)56=(111000)2=(70)8=(38)16(4)(1001110)2、(116)8、(4E)16【题1-2】将下列二进制数转换为十进制数。
(1)10110001;(2)10101010;(3)11110001;(4)10001000 解:(1)10110001=177(2)10101010=170(3)11110001=241(4)10001000=136【题1-3】将下列十六进制数转换为十进制数。
(1)FF;(2)3FF;(3)AB;(4)13FF解:(1)(FF)16=255(2)(3FF)16=1023(3)(AB)16=171(4)(13FF)16=5119【题1-4】将下列十六进制数转换为二进制数。
(1)11;(2)9C;(3)B1;(4)AF解:(1)(11)16=(00010001)2(2)(9C)16=(10011100)2(3)(B1)16=(1011 0001)2(4)(AF)16=(10101111)2【题1-5】将下列二进制数转换为十进制数。
(1)1110.01;(2)1010.11;(3)1100.101;(4)1001.0101解:(1)(1110.01)2=14.25(2)(1010.11)2=10.75(3)(1001.0101)2=9.3125【题1-6】将下列十进制数转换为二进制数。
(1)20.7;(2)10.2;(3)5.8;(4)101.71解:(1)20.7=(10100.1011)2(2)10.2=(1010.0011)2(3)5.8=(101.1100)2(4)101.71=(1100101.1011)2【题1-7】写出下列二进制数的反码与补码(最高位为符号位)。
数电课后习题及答案 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-题1.1完成下面的数值转换:(1)将二进制数转换成等效的十进制数、八进制数、十六进制数。
①(0011101)2②(11011.110)2③()2解:①(0011101)2 =1×24+ 1×23+ 1×22+ 1×20=(29)10(0011101)2 =(0 011 101)2= (35)8(0011101)2 =(0001 1101)2= (1D)16② (27.75)10,(33.6)8,(1B.C)16;③ (439)10,(667)8,(1B7)16;(2)将十进制数转换成等效的二进制数(小数点后取4位)、八进制数及十六进制数。
①(89)10②(1800)10③(23.45)10解得到:① (1011001)2,(131)8,(59)16;② )2,(3410)8,(708)16③ (10111.0111)2,(27.31)8,(17.7)16;(3)求出下列各式的值。
①(54.2)16=()10②(127)8=()16③(3AB6)16=()4解① (84.125)10;② (57)16;③ (3222312)4;题1.2 写出5位自然二进制码和格雷码。
题1.3 用余3码表示下列各数①(8)10 ②(7)10 ③(3)10解(1)1011;(2)1010;(3)0110题1.4 直接写出下面函数的对偶函数和反函数。
解题1.5 证明下面的恒等式相等1、(AB+C)B=AB+BC=AB ( C+C')+ ( A+A')BC=ABC+ABC'+ABC+ A'BC= ABC+ABC'+ A'BC2、AB'+B+A'B=A+B+A'B=A+B+B=A+B3、左=BC+AD,对偶式为(B+C)(A+D)=AB+AC+BD+CD右=(A+B)(B+D) (A+C)(C+D),对偶式为: AB+AC+BD+CD对偶式相等,推得左=右。
4、(A+C')(B+D)(B+D')= (A+C')(B+BD+BD')= (A+C')B=AB+BC'题1.7 在下列各个逻辑函数中,当变量A、B、C为哪些取值组合时,函数Y的值为1。
Y=AB+BC+A'C= AB(C+C')+BC (A+A')+A'C(B+B')=m7+m6+m1+m3使以上四个最小项为1时,Y为1.即:111;110;011;001(2)000,001,011,100(3)100,101,000,011,010,111(4)110,111,010题1.8 列出下面各函数的真值表题1.9 在举重比赛中,有甲、乙、丙三名裁判,其中甲为主裁判,乙、丙为副裁判,当主裁判和一名以上(包括一名)副裁判认为运动员上举合格后,才可发出合格信号。
列出该函数的真值表。
设A为主裁判,真值表如下表所示。
题1.10 一个对4逻辑变量进行判断的逻辑电路。
当4变量中有奇数个1出现时,输出为1;其他情况,输出为0。
列出该电路的真值表,写出函数式。
题1.11 已知逻辑函数真值表如右表所示,写出对应的函数表达式。
将Y为1对应的最小项相加,就可以得到函数式。
Y=m1+m2+m4+m5+m7=A'B'C+ A'BC'+ AB'C'+ AB'C+ ABC同理可以得到题1.12的函数式:Y= A'B'C'D+A'B'CD'+A'BC'D'+A'BCD+AB'C'D'+AB'CD+ABC'D+ABCD'题1.13 写出如下图所示的各逻辑图对应的逻辑函数式。
题1.14 写出如下图所示的各逻辑图对应的逻辑函数式。
Y1=((A+B) 'C) ' +(C'D) ' Y2=((AB')E+(B'CD)E) '题1.15 利用公式法将下列各函数化为最简与或式。
(1)Y=AB'C+A'+B+C'=B'C+A'+B+C'= C+A'+B+C‘=1(2)Y=(A'BC) '+(AB') '=A+B'+C'+A'+B=1(3)Y=AB'CD+ABD+AC'D=AD(B'C+B+C')=AD(4)Y=AB' (A'CD+(AD+B'C') ') '(A'+B)= AB' (A'CD+(AD+B'C') ') '(AB') '=0(5)Y=AC (C'D+A'B) +BC((B'+AD) '+CE) '= BC(B'+AD) (CE) '=ABCDE(6)Y=AC +AC'D+AB'E'F' +B(D+E)+BC'DE'+BC'D'E+ABE'F= AC +AD+AB'E'F' +B(D+E)+BC' (D+E)+ABE'F= AC+AD+B(D+E) +AE' (B⊙F)题1.16 写出下图中各逻辑图的逻辑函数式,并化简为最简与或式。
(a)Y=((AB'C) '(BC') ') '=AB'C+BC'(b)Y=((A'+B)'+(A+B')' +(B+C') ') '= (A'+B)(A+B')(B+C')=(AB+A'B') (B+C')=AB+A'B'C'(c)Y1=((AB') '(AD'C) ') '=AB'+ AD'CY2=((AB') '(AD'C') '(A'C'D)(ACD))'=AB'+ AD'C'+A'C'D+ACD= AB'+ AD'C'+A'C'D+ACD(d)Y1=(((AB) +(A+B)C) ') '=AB+ +(A+B)C=AB+BC+ACY2=(A+B)+C=BC+AC题1.17 将下列各函数式化为最小项之和的形式。
Y=A'BC+AC+B'C=A'BC+A(B+B')C+(A+A')B'C= A'BC+ABC+AB'C+ A'B'CY=AB+((BC)'(C'+D') ') '=AB+B+C'+D'=B+C'+D'=∑m(0,1,2,4,5,6,7,8,9,10,12,13,14,15)Y=AB'C'D+BCD+A'D= ∑m(1,3,5,7,9,15)Y=((A+B)(C+D)) '=A⊙B+C⊙D=∑m(0,1,2,3,4,7,8,11,12,13,14,15)题2-1 三极管的开关特性指的是什么什么是三极管的开通时间和关断时间若希望提高三极管的开关速度,应采取哪些措施解:三极管在快速变化的脉冲信号的作用下,其状态在截止与饱和导通之间转换,三极管输出信号随输入信号变化的动态过程称开关特性。
开通时间是指三极管由反向截止转为正向导通所需时间,即开启时间(是三极管发射结由宽变窄及基区建立电荷所需时间)关断时间是指三极管由正向导通转为反向截止所需的时间,即关闭时间(主要是清除三极管内存储电荷的时间)三级管的开启时间和关闭时间总称为三极管的开关时间,提高开关速度就是减小开关时间。
因为有的大小是决定三极管开关时间的主要参数。
所以为提高开关速度通常要减轻三极管饱和深度题2-2 试写出三极管的饱和条件,并说明对于题图2-62的电路,下列方法中,哪些能使未达到饱和的三极管饱和.解:三极管的饱和判断条件为 所以,能使未达到饱和的三极管饱和的方法:题2-3 电路如图2-63所示,其三极管为硅管,=20,试求小于何值时,三极管T 截止;大于何值时,三极管T 饱和;题2-5 为什么说TTL 反相器的输入端在以下4种接法下都属于逻辑0?(1)输入端接地。
(2)输入端接低于0.8V 的电源。
(3)输入端接同类门的输出低电压0.2V 。
(4)输入端接200off on t t >s ft t >B BS i I>b R ↓β↑解:(2)因为TTL 反相器V IL(max)=0.8V,相当于输入低电平。
(4)因为TTL 反相器接的输入端负载题2-6 为什么说TTL 反相器的输入端在以下4种接法下都属于逻辑1?(1)输入端悬空。
(2)输入端接高于2V 的电源。
(3)输入端接同类门的输出高电压3.6V 。
(4)输入端接10k 的电阻到地。
(1) 如果输入端A 悬空,由下图TTL 反相器电路可见,反相器各点的电位将和A 端接高电平的情况相同,输出也为低电平。
所以说TTL 反相器的输入端悬空相当于接高电平。
(2)因为TTL 反相器 输入端接高于2V 的电源相当于输入高电平。
(此时反相器输出低电平)(4)因为TTL 反相器接的输入端负载 ,则TTL 反相器输出低电平。
所以输入端接的 电阻到地相当于接高电平。
题2-7 指出图2-65中各门电路的输出是什么状态(高电平、低电平或高阻态)。
已知这些门电路都是74系列的TTL 电路。
()IH min =2.0VV解:根据TTL 反相器电路输入端负载特性:关门电阻 开门电阻同时考虑图中各逻辑门的功能特点:题2-8 说明图2-66中各门电路的输出是高电平还是低电平。
已知它们都是74HC 系列的CMOS 电路。
解:根据CMOS 门在输入正常工作电压0~V DD 时,输入端的电流为“0”的特点,则接输入端电阻时,电阻两端几乎没有压降值。
答案如下:题2-9 用OC 门实现逻辑函数画出逻辑电路图。