深井超深井钻井技术
- 格式:doc
- 大小:2.86 MB
- 文档页数:33
探究深井超深井和复杂结构井垂直钻井技术
深井、超深井和复杂结构井垂直钻井技术是油气勘探与开发领域中的关键技术,它们的应用能够有效提高油气资源的开采效率和效益。
本文将从深井钻井技术、超深井钻井技术和复杂结构井钻井技术三个方面进行探究。
深井钻井技术是针对井深较大的油气井而设计的一项钻井技术。
一般而言,当井深超过3000米时,我们称为深井。
而在深井井段的钻进过程中,由于岩石力学性质的改变,钻井速度变慢,井漏、井塌等问题也随之增加。
深井钻井技术需要考虑钻井液体系的设计与优化、钻具与井眼之间的匹配、钻头的选择与设计等问题。
深井井下环境恶劣,对工具设备和井下作业人员有更高的要求,深井钻井技术还需要关注井下作业的安全性。
而复杂结构井钻井技术则是指针对复杂地质条件下的油气井而开发的钻井技术。
复杂地质条件包括但不限于水平井、斜井、S形井、复杂沉积层等。
针对这种类型的井,传统的垂直钻井技术往往难以达到预期的效果。
复杂结构井钻井技术需要解决的问题包括井眼的稳定性、钻进路径的控制、横向钻井技术的应用等。
通过合理的设计和技术手段,可以提高复杂结构井的构建效率和完整程度,从而提高油气资源的开采效益。
探究深井超深井和复杂结构井垂直钻井技术【摘要】深井超深井和复杂结构井垂直钻井技术在油气开采中具有重要意义。
本文从技术概述、特点、介绍、原理和关键技术等方面对这些钻井技术进行了探究。
深井超深井钻井工程具有高温高压、井深大、技术复杂等特点,复杂结构井更是面临地质构造复杂等挑战。
垂直钻井技术在解决这些问题中发挥着重要作用。
未来,技术研究将持续推动深井超深井和复杂结构井垂直钻井技术的发展,并对油气开采产生深远影响。
对这些技术进行深入研究,了解其发展趋势以及对油气产业的影响至关重要。
【关键词】深井超深井、复杂结构井、垂直钻井技术、钻井工程、技术研究、发展趋势、油气开采impact。
1. 引言1.1 深井超深井和复杂结构井垂直钻井技术的重要性深井超深井和复杂结构井垂直钻井技术在油气勘探开发中具有重要意义。
随着地表资源逐渐枯竭和人们对能源需求的不断增加,对深层油气资源的开发已成为当前的热点。
而深井超深井和复杂结构井垂直钻井技术的运用则是实现这一目标的关键。
深井超深井和复杂结构井垂直钻井技术可以有效提高油气采收率。
由于深层油气资源埋藏深度较大,常规钻井技术无法满足长距离的油气开采需求。
而深井超深井和复杂结构井垂直钻井技术在探查前景、确定井位和提高产量方面有着独特的优势,可以有效提高采收率。
深井超深井和复杂结构井垂直钻井技术可以减少工程风险。
深井钻井过程中会遇到高温高压、地层变化、井下环境等复杂情况,如果采用传统的钻井技术难以应对这些挑战。
而深井超深井和复杂结构井垂直钻井技术具有更高的适应性和可靠性,可以有效降低工程风险。
深井超深井和复杂结构井垂直钻井技术在油气勘探开发中具有重要意义,对提高采收率、减少工程风险等方面都有着积极的影响。
深井超深井和复杂结构井垂直钻井技术的研究和应用具有重要意义和广阔发展前景。
1.2 研究背景随着石油和天然气资源的逐渐枯竭,人们对深层油气资源的开发需求日益增加。
深井、超深井和复杂结构井成为当前油气勘探与开发的重要领域,但其钻井技术的复杂性和困难度也相应增加。
探究深井超深井和复杂结构井垂直钻井技术深井超深井和复杂结构井的垂直钻井技术是钻井领域的重要研究课题,它们是对地下资源勘探和开发提出了更高的技术要求。
深井超深井主要指的是井深超过3000米的油气井,而复杂结构井则是指存在大量非均质地层或者构造复杂的地质条件下的井筒钻井工程。
本文将就深井超深井和复杂结构井垂直钻井技术进行深入探讨。
一、深井超深井垂直钻井技术深井超深井钻井技术是油气勘探和开发领域的重点研究方向之一,因为地下资源的开发需求越来越多地转向深层资源。
在深井超深井垂直钻井中,最关键的技术挑战之一是井深带来的高温、高压和高硬度地层,这对井下作业的钻头、钻柱和钻井液等设备都提出了更高的要求。
而且,在深井超深井钻井中,井眼稳定和排屑及井环环空的完整性等问题也是需要解决的难题。
目前,针对深井超深井的垂直钻井技术主要有以下几个方面的研究:1. 高温高压钻井技术:高温高压环境下的固体控制、液相控制、井下设备选择等方面的技术研究和应用;2. 钻柱设计优化:传统的钻井钻具在高深度井钻造施工能力上存在局限性,因此需要研发更加稳定可靠的高深度钻具;3. 钻井液技术:针对深井超深井的地层条件,研究开发适应高压、高硬度地层的钻井液技术,以保证井钻的正常运行;4. 井下设备研发:研发适应深井超深井井下环境的各种井下设备,包括测井工具、定向钻井仪器等。
通过以上技术的研究和应用,可以有效解决深井超深井井下作业中遇到的各种问题,提高井深井的施工效率和成功率。
复杂结构井的钻井工程是指勘探开发中遇到非均质地层或者构造复杂的地质条件下的井筒钻井工程,这类井种在勘探开发中的比例逐年增加。
复杂结构井垂直钻井技术的发展也是为了满足对地下资源勘探和开发的需要。
复杂结构井钻井中,井筒的方向、倾角和弯曲度都不断变化,因此在施工过程中需要克服更多的困难和挑战。
1. 定向钻井技术:通过改变钻头参数、采用不同的钻头类型、优化钻柱结构等手段,实现对井筒方向的控制。
探究深井超深井和复杂结构井垂直钻井技术深井超深井和复杂结构井是石油勘探开发领域中的难点和重点。
为了提高井深和提高钻井效率,高效、安全、可靠的垂直钻井技术显得尤为重要。
深井超深井钻井技术是指针对超过5000米或更深井深的垂直钻井而言的,在这个范围内,钻井面临的挑战有:高温高压、地层钻进难度大、极易发生事故、井底钻头易受损等。
为了解决这些问题,人们采用了下面的方法:1. 确定合适的钻井液体系结构。
钻井液的质量会对井的钻进效率起到重要的影响,特别是在深井超深井钻井时。
2. 优化钻井工艺,特别针对井口、井筒以及井底的情况进行优化,减少阻力,提高钻进效率。
3. 高效地利用井眼以及钻头的各种功能,例如:钻头可以作为测井工具、地层样品采集工具等。
4. 使用新型的测井技术。
利用高分辨率测井工具,如多频声波测井技术、多角度声波测井技术等。
复杂结构井钻井技术,是指在非垂直井管内钻孔的技术,例如斜井、水平井、方向钻井等。
这种钻井技术常常被应用于开采层状、层状粘土、页岩、煤制气等井型。
为了解决复杂结构井钻井时面临的困难,例如遇到高压、高温、高地层压力、高气水比、钻柱损坏等问题,我们可以采用下面的方法:1. 应用高压钻井液。
因为在水平井、斜井中钻井时,井眼形状复杂,液体能流阻力加大,因此需要使用高压钻井液,以弥补这种能流阻力。
2. 选择合适的防护装置。
为了防止顶部的岩石物质落入井眼,我们需要使用合适的防护装置,如套管、电缆保护管、钢丝绳内钢管等。
3. 选择合适的钻井工具。
钻井工具优化可以提高钻进速度、延长钻头使用寿命、减少钻柱损坏等问题。
4. 积极采用新型的钻井技术。
例如利用地下导向仪、方向钻井技术等。
总之,深井超深井和复杂结构井的钻井技术与传统钻井工艺有很大不同点,需要我们采用先进的钻井技术,才能充分发挥其巨大的生产潜力。
深井超深井钻井技术现状和发展趋势摘要:石油、天然气是重要的资源,促进了社会的发展,而在油气资源不断地消耗和储量不断减少的背景下,深部油气资源的勘探开采成为一项非常重要的工作,其中会应用深井超深井钻井技术,且技术应用时存在一定的难度。
随着开采技术的发展,相关勘探开采工作和技术不断进步,并朝着更好的方向发展。
基于此,分析和探究了深井超深井技术的现状与发展趋势。
关键词:深井;超深井;钻井技术;现状;发展趋势引言我国钻井技术起步较晚,但发展比较迅速,现阶段,我国的超深井钻井技术步入了世界先进行列。
相较于浅层油气开采工作,深层开采的难度更大,深井与超深井的钻挖所面对的地质环境更复杂,同时钻井提速是困扰其进行的一大问题。
怎样做好深井、超深井钻井技术的应用,提高钻井质量,开采出更丰富的油气资源,是现阶段相关业内人士十分关注的问题。
一、深井超深井钻井技术难点分析深井超深井钻井工程的施工相对比较复杂,工程的进行是基于科学技术理论的,同时应完善相关配套设备与技术,依靠对相关工程进行的实际情况进行分析总结,我们发现不同深井其在钻井时所面临的最为常见的问题有:高温高压所导致的泥浆性能不稳定、井壁稳定性差、地层硬度高影响机械钻速等问题。
当前,随着浅层油气资源开采工作的有序进行,剩余更多的工程项目其开采深度不断提高,难度更大,对于深井超深井技术的应用更为频繁。
钻井过程中,在其钻进至一定深度后,井斜控制难度更大,极易出现井斜角超标等情况,并对下部井段的安全钻进产生较大的不利影响,同最先的设计工作存在一定的差异。
一旦在深井段出现井斜角超标过大的情况,后期纠斜将面临更大的难度,为满足设计要求以及下部安全钻井的需求,还可能出现填井重钻的情况,必然会造成较大的损失,耗时费力[1]。
深井超深井钻井时,必然会面对高温高压的情况,这一环境条件下,会导致泥浆密度、流变性等性能产生变化,并对钻井安全产生较大的不利影响。
所以为保障钻井工作有序进行,还应做好泥浆抗高温高压性能的探究。
探究深井超深井和复杂结构井垂直钻井技术【摘要】深井、超深井和复杂结构井钻井技术是石油工程领域的重要研究课题。
本文旨在探究这些钻井技术的发展现状、工艺特点、设备创新以及工程实践案例。
通过对深井和超深井的钻井技术进行分析,可以了解到其在油气勘探中的重要性和应用价值;而对复杂结构井的垂直钻井技术研究则有助于解决在地质复杂地区开采难题。
结合工程实践案例分析,可以总结出钻井技术的发展趋势和应用前景展望。
通过本文的研究,可以为深井、超深井和复杂结构井钻井技术的进一步发展提供一定的参考和借鉴。
【关键词】深井、超深井、复杂结构井、垂直钻井、技术探究、研究目的、研究意义、钻井工艺、钻井设备、工程实践、案例分析、技术发展趋势、应用前景、总结。
1. 引言1.1 探究深井超深井和复杂结构井垂直钻井技术研究目的:深井、超深井和复杂结构井是当今石油工业开发中面临的重要挑战,钻井技术的发展将直接影响到钻井效率和成本控制。
本研究的目的在于探究深井、超深井和复杂结构井垂直钻井技术,提高钻井效率,降低钻井成本,减少钻井事故风险,促进石油工业的可持续发展。
研究意义:1.2 研究目的研究目的是为了深入探究深井、超深井和复杂结构井垂直钻井技术的原理和方法,提高钻井的效率和安全性。
通过对这些技术的研究,可以更好地了解地下岩层情况,准确预测油气资源分布,优化钻井设计方案,降低钻井风险,提高钻井成功率。
通过深入研究钻井工艺和设备创新,可以不断提升钻井技术水平,推动钻井行业的发展。
研究的目的是为了实现钻井领域的技术创新和进步,为油气勘探开发提供更可靠的技术支持和保障。
1.3 研究意义深井超深井和复杂结构井垂直钻井技术的研究意义主要体现在以下几个方面:深井和超深井钻井技术的研究可以帮助我们更好地开发地下资源,满足能源需求。
随着地表资源的逐渐枯竭,地下资源的开采将成为未来发展的重要方向,而深井和超深井钻井技术的提升可以有效增加勘探开发成功率,提高资源利用率。
深井和超深井钻井技术全套深井、超深井钻井技术问题主要包括:复杂深井井身结构及套管柱优化设计,深井高效破岩及钻井参数优选技术,深井用系列高效钻头,深井钻井装备以及其他配套技术在深井中的应用等问题。
一、复杂深井井身结构及套管柱优化设计1.井身结构设计传统的井身结构设计方法对生产井和探井没有区分,都是自下而上进行设计,这种设计可以使所设计的套管层次最少,每层套管下入的深度最浅,节省成本。
对于深井钻井,尤其是深探井钻井来说,一般对所钻地区的情况掌握不清,要切实保证钻达目的层、提高深井钻井的成功率,就必须有足够的套管层次储备,以便一旦钻遇未预料到的复杂层位时能够及时封隔,并继续钻进。
但目前的套管、钻头系列有限,只能有2~3层技术套管,只能封隔钻井过程中的2~3个复杂层位。
因而,希望每一层套管都能尽量发挥其作用,希望上部裸眼尽量长些,上部大尺寸套管尽量下得深一些,以便在下部地层钻进时有一定的套管层次储备和避免小井眼完井。
自上而下的设计方法能很好地体现上述想法,可以使设计的套管层次最少,每层套管下入的深度最深,从而有利于保证实现钻探目的,顺利钻达目的层位。
自上而下的设计方法的基本过程是:根据裸眼井段必须满足的约束条件,首先从地表开始向下确定表层套管的下入深度,然后向下逐层设计每一层技术套管的下入深度,直至目的层位裸眼井段必须满足的约束条件均为式中i一—计算点序号,在设计程序中每米取一个计算点;Pmmax ------ 裸眼井段的最大钻井液密度,g/crrP; Ppmax——裸眼井段钻遇的最大地层孔隙压力系数,g/cm3;Sb——抽吸压力系数,g/cm3;Pcmax一—裸眼井段的最大井壁稳定压力系数,g/cm3;Ppi——计算点处的地层孔隙压力系数,g∕cm3;Hi——计算点处的深度,m;△P——压差卡钻允值,MPa;Sg——激动压力系数,g/cm3;Sf——地层破裂压力安全增值系数,g/cm3;Pfi——计算点处的地层破裂压力系数,g∕cm3;Hmax ----- 裸眼井段的最大井深,m;Sk一一井涌允量系数,g/cm3。
超深井钻井技术进展研究1超深井钻井历史地球深部的岩石组成和结构只能通过地质钻探获得的间接数据来判断,为了更好的了解地球的地质构造情况,地质学家需要通过深井、超深井钻探技术来获取相关数据。
所以,近几十年来,钻井技术越来越多地被用作解决现代地质学问题的一种方法。
近几十年来,为了获得海相沉积的地质资料和油气资源,美国通过海上平台钻探了数百口深井,这些井穿过海底松散的沉积物深入到下面的玄武岩中。
目前,在太平洋以南的哥斯达黎加海岸,海上平台钻探的最深井已经达到海底之下2105m。
在陆上钻井方面,美国在德克萨斯州和俄克拉荷马州钻探了深度6500~7000m的井350多口,深度超过7000m的井50口,深度超过9000m的井4口。
其中1973~1974年勘探的最深井Berta Rogers井的井深达到了9583m,但该井用时仅为502d。
获得如此高的钻井速度一方面是由于美国强大的钻井技术水平,另一方面也是由于该井的钻探是在没有取芯的情况下进行的。
1960~1962年前苏联制定并实施了第一个系统化的大陆超深井钻探计划。
该计划实施的第一口超深井是位于哈萨克斯坦北部的Aralsorskaya井,该井的完钻井深达到5600m。
随后又在阿塞拜疆的Kura-Araks完成了Saatlinskaya 井(8200m),在西西伯利亚完成了乌伦戈斯克井(7800m)。
1970年5月,科拉超深井在摩尔曼斯克地区北部开始钻探,距扎波利亚尔诺耶市10km。
其设计深度为15000m,最终完钻深度为12263m。
在接下来的几年中,前苏联又钻探了十几口深度为4000~9000m的井。
并与1986年成立了一个特殊的国家科学企业“雅罗斯拉夫尔”来执行超深井钻探综合研究计划。
苏联在超深井方面取得的成功刺激了德国、法国、美国等其他欧美发达国家对科学大陆钻井计划的关注。
德国在拜仁(1990~1994年)钻探了超深井KTB-Oberpfalz井,其深度达到了9101m。
深井超深井钻井液及固井技术目录第一节深井超深井钻井液技术 (3)一、我国深井超深井钻井液技术概述 (4)二、国外深井超深井钻井液技术概述 (5)三、油基钻井液在深井超深井中的应用情况 (11)四、水基钻井液在深井超深井中的应用情况 (13)五、新型耐高温水基钻井液 (26)六、抗高温处理剂 (39)第二节国内外深井超深井固井完井技术 (45)一、国内固井基础理论研究 (46)二、国内常规固井技术 (46)三、国内深井固井技术 (47)四、国内深井固井实例 (49)五、国内深井完井技术 (53)六、深井固井完井问题原因探讨 (56)七、深井固井完井技术措施探讨 (57)八、国外深井超深井固井技术 (59)九、国外超深井完井技术 (69)第一节深井超深井钻井液技术由于普通泥浆高温高压下会发生降解而失效,因此,钻深井超深井必须使用专门的泥浆,这种泥浆必须具有:高温稳定性、良好的润滑性和剪切稀释特性,固相含量低、高压失水量低、抗各种可溶性盐类和酸性气体的污染,有利于处理、配置、维护和减轻地层污染。
现已研制出各种适合于钻深井超深井的泥浆,新的泥浆也在不断出现。
深井超深井钻井液技术的特点:①井愈深,井下温度压力愈高,钻井中泥浆在井下停留和循环的时间愈长,使深井超深井泥浆的性能变化和稳定性成为一个突出的问题,而且井愈深,井下温度愈高,问题就愈突出。
②深井钻井裸眼长,地层压力系统复杂,泥浆密度的合理确定和控制则更为困难,且使用重泥浆时,压差大因而经常出现井漏、井喷、井塌、压差卡钻以及由此而带来的井下复杂问题,从而成为深井超深井泥浆工艺技术的难点之一。
③深井钻遇地层多而杂,地层中的油、气、水、盐、粘土等的污染可能性增大,且会因高温作用对泥浆体系的影响而加剧,从而增加了泥浆体系抗污染的技术难度。
④泥浆对深部油层的损害,因高温而加剧, 从而对打开油层钻井完井液的技术要求更加严格。
⑤浅井已取得成效的各种先进钻井工艺技术及先进工具,在深井井段应用受到很大的限制。
探究深井超深井和复杂结构井垂直钻井技术引言:随着能源需求的不断增长,石油和天然气资源的开发已经成为国民经济发展的重要基础。
而为了开采地下石油和天然气,垂直钻井技术成为了不可或缺的一环。
在石油和天然气勘探开发中,深井、超深井和复杂结构井的垂直钻井技术成为了研究的热点问题。
本文将探究深井超深井和复杂结构井垂直钻井技术,并对其发展历程和技术特点进行梳理,为石油和天然气勘探开发提供技术支持。
一、深井、超深井和复杂结构井的定义和特点1. 深井、超深井的定义深井一般指井深大于3000米的油气钻井,而超深井则一般指井深超过6000米的油气钻井。
深井、超深井的特点主要包括井深巨大、井斜大、井径小、地温高、地压大、钻井液性能要求高、工作环境恶劣等。
2. 复杂结构井的定义复杂结构井主要指出现在外部地质力学条件变化、岩石破裂带、砂岩、泥岩层位变化等情况下,井眼扭曲、扭曲、偏差、位移、塌陷等所引发的技术难题。
复杂结构井的特点主要包括井眼不规则、井斜变化大、接近水平、局部陷落、分层不均匀、局部储量高、泥浆循环困难等。
20世纪50年代,随着石油工业的飞速发展,对于大井深、大井斜和大井径的需求不断增加,深井超深井钻井技术开始得到重视和发展。
1980年代以来,国内外在深井、超深井和复杂结构井钻井技术方面都取得了良好的进展。
深井超深井和复杂结构井垂直钻井技术的发展历程主要经历了以下几个阶段:1. 初级阶段在初级阶段,主要是通过技术改进提高井深,尤其在钻头材料、液相、地层处理、工程设计等方面开始有新的突破。
2. 内世代阶段内世代阶段主要是通过技术先进化、技术系统的整合和科技进步的应用来推动井深不断提高和技术发展。
1. 钻井液的优化深井超深井和复杂结构井垂直钻井所面临的地质条件复杂,工程处理难度大。
而优化钻井液是一个重要手段。
钻井液的优化可以改进井内条件,减小对地层的影响。
优化钻井液,是一种提高深井超深井和复杂结构井垂直钻井技术成功率的重要措施。
探究深井超深井和复杂结构井垂直钻井技术深井、超深井和复杂结构井的垂直钻井技术是石油勘探开发领域的重要技术之一。
随着油气资源勘探开发难度的不断增加,对垂直钻井技术的要求也越来越高。
为了更好地探究深井、超深井和复杂结构井的垂直钻井技术,本文将从技术原理、地质条件、钻井工艺和装备等方面进行深入探讨。
一、技术原理垂直钻井技术是指从地表向下钻探地下矿藏或构造地质构造的一种工艺技术。
在深井、超深井和复杂结构井的垂直钻井中,需要考虑的技术原理包括地层构造、地应力、井筒稳定性、井壁稳固、井眼完整性、钻井液控制等。
通过对这些技术原理的研究和应用,可以有效地提高垂直钻井的成功率和效率。
二、地质条件深井、超深井和复杂结构井的垂直钻井技术需要充分考虑地质条件。
地质条件包括地层性质、地下水压力、地温、地震活动性等因素。
这些地质条件对垂直钻井的施工和装备选择具有重要影响。
在钻井前需要进行充分的地质调查和勘察,以确保钻井施工的安全和顺利进行。
三、钻井工艺深井、超深井和复杂结构井的垂直钻井工艺具有一定的特点和要求。
需要选用合适的钻井工具和装备,包括钻机、钻头、钻柱、钻井液等。
需要根据地质条件和井口情况,合理设计钻井参数,包括钻速、转速、钻压等。
需要重点关注井筒稳定性、井眼完整性和钻井液控制等关键技术环节。
四、装备技术深井、超深井和复杂结构井的垂直钻井需要使用高科技装备和技术手段。
包括钻机自动化控制系统、钻头智能化设计、钻井液环境友好化等。
这些高科技装备和技术手段能够大大提高垂直钻井的效率和安全性。
五、发展趋势未来深井、超深井和复杂结构井的垂直钻井技术将更加注重高效、智能、环保、安全的发展方向。
预计在深井、超深井和复杂结构井的垂直钻井中,将出现更多自动化、智能化的装备和工艺,并将进一步提高垂直钻井的成功率和效率。
深井、超深井钻井技术研究胜利油田勘探监督中心孙晓东摘要由于在钻井过程中随着井深的增加底层变化幅度大,地层的压力随之增大,井底温度提高,导致了不可见因素增多,因此深井钻井的工艺有它的特殊性。
深井、超深井钻井技术是勘探和开发深部油气等资源必不可少的关键技术,并且已经成为代表钻井工程技术发展水平的标志。
关键词深井超深井钻井技术一、深井、超深井的概念对深井、超深井的界定,在国内外不同教科书上有不同的概念。
在我国一般把井深超过4500-6000m的井定义为深井,井深超过6000m的定义为超深井。
二、国内深井、超深井钻井技术发展状况我国的深井钻井发展较晚,整个发展过程可分为3个阶段。
第一阶段从1966年到1975年。
1966年7月8日我国第一口深井大庆松基6井(井深4719m)完成,标志着我国钻井工作由打浅井和中深井发展到打深井的阶段。
第二阶段从1976年到1985年。
1976年4月30 日,我国第一口超深井四川女基井(井深6011m)完成,标志着我国钻井工作由打深井进一步发展到超深井第三阶段从1986年到现在。
1989年4月,随着塔里木大规模勘探序幕的拉开,塔里木石油勘探开发指挥部的正式成立,塔里木会战从此开始,90年代前期川东气区的勘探开发也进入了高潮,使我国深井、超深井钻井工作进入规模性应用阶段。
三、深井、超深井钻井施工中的几个问题(一)井身结构的设计原则(1)套管层数要满足分隔不同压力系统的地层以及加深要求,以利于安全钻井。
(2)套管与井眼的间隙要有利于套管顺利下入和提高固井质量,有效分隔目的层。
(3)套管和钻头基本符合API标准,并向国内常用产品系列靠拢,以减少改进设备及工具的工作量。
(4)目的层套管尺寸要满足试油、开发及井下作业的要求。
(5)要有利于提高钻井速度,缩短建井周期,降低钻井成本。
(二)提高深井钻速的技术随着我国石油勘探开发不断向新探区和深部发展,为了勘探开发深部油气藏、获取地质资料,钻井深度越来越深,深井钻井的数量也越来越多。
深井超深井钻井技术
第一节概述 (1)
第二节地层孔隙压力评估技术 (2)
第三节井身结构及套管柱优化设计 (4)
第四节防斜打快理论和技术 (9)
第五节地层抗钻特性评价与钻头选型技术 (14)
第六节井壁稳定技术 (18)
第七节钻井液技术 (23)
第八节固井技术 (27)
第九节深井测试和录井技术 (31)
第一节概述
对于油气井而言,深井是指完钻井深为4500~6000米的井;超深井是指完钻井深为6000米以上的井。
深井、超深井钻井技术,是勘探和开发深部油气等资源的必不可少的关键技术。
在我国,深井、超深井比较集中的陆上地区包括塔里木、准噶尔、四川等盆地。
实践证明,由于地质情况复杂(诸如山前构造、高陡构造、难钻地层、多压力系统及不稳定岩层等,有些地层也存在高温高压效应),我国在这些地区(或其它类似地区)的深井、超深井钻井工程遇到许多困难,表现为井下复杂与事故频繁,建井周期长,工程费用高,从而极大地阻碍了勘探开发的步伐,增加了勘探开发的直接成本。
在“八五”末期,虽然我国在3000m以内的油气井钻井方面已接近国际80年代末的技术水平,但当井深超过4000m时,我国的钻井技术与国外先进水平相比仍有较大差距。
美国5000m左右的油气井钻井周期约为90天,5500m左右约为110天,6000m左右约为140天,6500~7000m约为5~7月。
然而,我国深井平均钻井周期约为210天左右,特别是在对付复杂深井超深井工程方面的钻井能力和水平比较低,没有形成一整套与之相适应的深井超深井钻井技术。
为了尽快适应我国西部深层油气资源勘探开发工程的迫切需要,在“八五”初步研究的基础上,中国石油天然气集团公司将“复杂地层条件下深井超深井钻井技术研究”列为“九五”重大科技工程项目之一(项目编号:960024),调动全国的优势科研力量开展大规模攻关研究,试图使塔里木、准葛尔、四川等盆地的深井超深井钻井技术水平有较大提高,基本满足这些地区深部油气资源高效钻探与开采的技术需求。
通过五年多的持续攻关研究,该项目攻关集团攻克了不同地质条件下深井超深井钻井技术的许多难题,有力地推动了我国复杂地质条件下深井超深井钻井技术的发展,取得了丰硕的理论和技术研究成果(2002年通过专家验收评价),可概括如下:
1.项目共完成深井超深井91口,其中,由塔里木攻关集团完成一口国内最深的超深井(塔参1井),完钻井深7200米,完成6000米以上的超深井6口,4500-6000米的深井85口。
各攻关集团完成的深井超深井数量分别为:塔里木攻关集团26口,准葛尔攻关集团45口,四川攻关集团12口,塔西南攻关集团3
口,科探井攻关集团5口。
与“八五”期间相比平均机械钻速提高20~40%;平均钻井周期缩短26.7%~40%,井下复杂和事故时率分别降低26%和17%。
直接经济效益4.116亿元,投入与产出比高达1:5.92。
2.项目共进行了5个课题(包括31个专题)的研究工作,取得了一系列研究成果,在以下技术方面有重大突破:钻前地层压力与井壁稳定预测,井身不稳定性剖面的建立及套管柱强度设计,高效钻头、井下动力钻具提高机械钻速,高陡构造井眼轨迹预测及防斜打快理论和技术,“三高一抗”和高密度甲酸盐系列聚合物钻井液体系及配套技术,高密度(2.6g/cm3)、低密度(1.3 1.5 g/cm3)、塑性水泥及深井小间隙固井工艺技术,漏层位置测定及防漏堵漏技术,现场混配水泥浆循环喷射搅拌式水泥浆批量混合器,轻便顶驱、盘式刹车、105MPa液压防喷器等配套装备,涡轮及减速涡轮钻具、液动冲击器、防磨接头、堵漏波纹管、自动自锁套管浮箍、随位自动脱挂尾管悬挂器等配套工具,溢流早期监测、固井施工监测、60MPa漏层位置测定等仪器,并形成了配套工艺技术。
3.项目共开发新产品55项,提出新方法、新技术及新工艺共计47项,开发出专用计算软件30套,研制新材料12种及新的设备和工具9套,获国家专利18项,发表研究论文百余篇。
项目开发的工具与设备填补了国内空白。
实践证明,这些成果可以在我国各油田大规模推广应用,对我国山前构造等复杂地质条件下深井超深井优快钻井及加快深部油气资源的勘探开发步伐具有重要作用。
第二节地层孔隙压力评估技术
一、概述
异常地层孔隙压力是世界性的。
世界油气勘探实践表明,正常地层孔隙压力、异常高压、异常低压三种类型的地层孔隙压力都可以钻遇到,但异常高压的出现较异常低压更为频繁,对石油工业来说意义更大。
地层孔隙压力确定是钻井界长期关注的热点课题,已形成多种方法,但如何提高精度成为国内外关注的焦点。
多年的实践使人们认识到地层孔隙压力在油气地质勘探、油气井工程、油气开发及油藏工程等领域占有极其重要的地位。
在科学钻井方面:是合理确定套管程序的基础;也是合理选择泥浆密度,实现安全高效钻井的关键。
油气成藏研究和油藏工程方面:地层孔隙压力是油气成藏与分布的主控因素之一,是油气成藏流体动力学研究的依据。
同时异常地层压力分布和规模影响采油作业和有关的
油藏工程。
地层孔隙压力确定方法的研究已有40年的历史,相继提出了许许多多确定其值的方法。
但是问题并未完全得到解决,进入九十年代以来,在西方国家再次成为研究的热点。
一般说来,可以将地层孔隙压力确定技术的发展分为两个阶段:经验半经验阶段(1965~1987年)和逐步科学化阶段(1987年~至今)。
经验半经验阶段提出的方法国内外一般称为传统方法。
“九五”攻关之前我国地层压力预测技术仍停留在国外在60年代提出的传统方法的水平,关于方法的研究国内几乎为空白。
二、研究进展
在“九五”期间,以中国石油大学(北京)为代表,对地层压力检测预测方法进行了系统的研究,并结合新疆克拉玛依油田、塔里木油田等进行了应用,取得了良好的技术经济效果,主要研究进展如下:
1.对异常压力的概念、特点、成因、确定方法等进行了系统总结,详细分析了现有国内外现有方法的特点和缺陷。
有针对性的进行了检测和预测新方法的研究和应用。
2.针对传统声波时差法仅适于欠压实泥岩且经验性强的缺陷,提出了基于有效应力定理的“简单计算模型”,利用声速求垂直有效应力。
尽管也限于泥岩欠压实成因的异常高压检测,但较传统时差法有更高的精度,且使用简便,不同地区的实际应用表明,对于新生代沉积地层有很高的精度,采用的四参数速度模型较Exxon公司Bowers1994年发表的两参数速度模型在压力检测方面更合理。
3.针对非欠压实成因及非泥岩地层,提出了一种“综合解释模型”。
对于砂泥岩地层,同时考虑泥质含量(岩性)、孔隙度、垂直有效应力对声速的影响,由相关测井资料求取泥质含量和孔隙度,再由声速计算垂直有效应力。
解决了利用声速检测非泥岩或非欠压实地层异常高压的问题,初步应用表明具有很高的检测精度。
4.系统分析了影响层速度预测地层压力的因素、提高预测精度的关键和途径。
提出了两种预测模型:单点计算模型和综合算法模型。
单点计算模型是将上述检测地层压力的“简单计算模型”直接用于压力预测,该方法简单实用,适于资料极少的预探区。
应用表明,对泥岩为主的新生代砂泥岩地层预测效果良好。
针对层速度预测地层压力诸多不确定性,在详细分析Scott“综合算法模型”缺陷的基础上,重新设计了一种新的“综合算法”,对于砂泥岩剖面,可以同时实现对泥质含量、孔隙度、地层密度等较可靠的预测,通过对预测结果的综合分析,可以大大提高预测结果的可信度。
通过对几口井的初步预测分析表明,该方法有相当好的可靠性。
5.开发了具有国内独立知识产权的“地层孔隙压力检测预测应用软件”。
并进行了推广应用,目前已在已在克拉玛依、塔里木等油田正式推广应用,同时在柴达木、南海西部英琼盆地等地区也进行了应用。
取得很好的应用。
第三节井身结构及套管柱优化设计
通过“九五”科技攻关,主要在深井井身结构、套管柱优化设计模型及其求解方法、套管柱内外压力计算模型、套管柱强度设计准则及套管柱优化设计软件等方面取得了重要进展。
一、井身结构设计方法
在“九五”攻关以前,井身结构设计的基础数据是:两条压力剖面(地层孔隙压力和地层破裂压力,这主要反映人们对地质环境认识的深刻程度),6个基础参数(抽吸压力系数、激动压力系数、井涌允值、破裂压力允值、正常压力压差卡钻临界值和异常压力卡钻临界值,这主要体现了钻井技术水平),必封点位置(坍塌层位和漏失层位)。
在设计方法方面,主要是根据压力平衡关系设计出合理的井身结构。
这种设计方法的基本思想就是:在保证钻井施工能够顺利进行的前提下,使井身结构的套管层次最少,每层套管下入的深度最浅,从而达到成本最优的目的。
能否达到设计思想的目的,主要取决于基础数据的准确程度。
在“九五”研究过程中,通过调研现有的井身结构设计方法,发现存在有某些不足之处。
对深井生产井和探井的设计,由于钻井的条件、目的和对所钻地区的了解程度不同,不应该用同样的设计方法,而原来的设计方法对生产井和探井就没有区分。
对深井钻井,尤其是深探井钻井来说,一般对所钻地区的情况掌握不清,中心目标是怎样切实保证钻达目的层,提高深探井的钻井成功率。
要提高成功率,就必须有足够的套管层次储备,以便一旦钻遇未预料到的复杂层位时能够及时封隔,并继续钻进。
但目前的套管钻头系列毕竟是有限的,只能有两到三层技术套管,也就是说只能封隔钻井过程中的两到三个复杂层位。
因而,希望每一层套管都能尽量发挥其作用。
即:希望上部裸眼尽量长些,上部大尺寸套管尽量下深一些,以便在下部地层的钻进时有一定的套管层次储备和不至于小井眼完。