多重序列比对的数学模型与算法
- 格式:doc
- 大小:23.50 KB
- 文档页数:2
生物信息学中的序列比对算法分析与优化序列比对是生物信息学中一项重要的技术与方法,用于研究生物序列之间的相似性和差异性。
比对的准确性和效率直接影响到后续的功能注释、进化分析和结构预测等生物学研究。
本文将对生物信息学中的序列比对算法进行分析与优化,探讨不同算法的原理、优缺点以及改进方法。
一、序列比对算法的原理序列比对算法的基本原理是通过寻找序列之间的共同特征来衡量它们之间的相似性。
常用的序列比对算法包括全局比对、局部比对和多序列比对,采用的算法包括动态规划、贪心算法和快速搜索算法等。
1. 全局比对全局比对算法用于比较两个序列的整个长度,并给出最佳的匹配结果。
最常用的算法是Needleman-Wunsch算法,其基本思想是通过动态规划的方法,计算出一个最优的比对方案。
全局比对适用于两个序列相似度较高的情况,但计算复杂度较高,对大规模序列比对不太适用。
2. 局部比对局部比对算法用于比较两个序列的一部分,并给出最佳的局部匹配结果。
最常用的算法是Smith-Waterman算法,其基本思想是通过动态规划的方法,计算出所有可能的局部比对方案,并选择得分最高的方案作为最佳匹配结果。
局部比对适用于两个序列相似度较低的情况,可以发现较短的共同片段。
3. 多序列比对多序列比对算法用于比较多个序列之间的相似性,常用于进化分析和亲缘关系推断等研究。
最常用的算法是CLUSTALW算法,其基本思想是通过多次的全局比对和局部比对,逐步构建多个序列的比对结果。
二、序列比对算法的优缺点不同的序列比对算法在准确性、效率和适用范围等方面有不同的优缺点。
1. 全局比对的优缺点全局比对算法可以找到两个序列的所有匹配段,准确度高;但计算复杂度高,对于大规模序列比对的时间和空间开销较大。
2. 局部比对的优缺点局部比对算法可以找到两个序列的相似片段,准确度高;但由于需要计算所有可能的局部比对,计算复杂度较高,对于大规模序列比对的时间和空间开销较大。
题目A :多重序列比对的数学模型与算法自美国提出组织的人类基因组计划(Human Genome Proreet )简称为HGP 以来,美国每年拔出相当大的经费支持,日本、法国、英国、德国等纷纷响应,它们的工作使新的交叉学科生物信息论得以诞生和发展,生物信息论是用数理和信息科学的观点、理论和方法去研究生命现象,组织和分析呈指数增长的生物学数据。
生物信息学是一门综合学科,是计算机科学、数学、物理、生物学的结合。
生物信息学的基础是各种数据库的建立和分析工具的发展。
目前,生物学数据库已达500个以上,共有四大类:基因组数据库,核酸和蛋白质一级结构数据库、生物大分子三维空间结构数据库及其以她们为基础构建的二级数据库。
生物信息学主要研究基因组测序及其信息分析、生物大分子的结构与功能预测及其模拟和药物设计、大规模基因表达数据的分析与基因芯片设计,以及基因与蛋白质相互作用网络等四方面的问题。
多重序列比对是计算分子生物学中最重要的运算。
多重序列比对的基本问题就是找出适当安排删减与插入尽量少的空格,使得两个序列达到最大程度的一致的方案。
比如给出下列三个序列:_ (1)AC GAGTCC ACT我们适当安排删减与插入空格得到:_____ (2)___ACG A GTCC AC T(2)就是多重序列的一个比对。
局部分段比对是其中更为常见的运算。
上世纪80年代,Smith-Waterman 提出了两个序列的局部比对的明确的模型。
1998—1999年,相继出现利用k-tuple 的快速容错分段比对搜索法。
2002年开始出现对完整基因组及其异常基因的比较研究以及多重序列比对问题的研究,2003年刘军Mayetri Gupta 和刘军得到Motif 的搜索算法。
人类基因组计划后,目前已经进入后基因时代,主要就是对人类基因组计划实施得到的基本数据库进行信息分析、加工和利用,提取有用信息,用来研究生命现象中的重大问题。
多重序列比对问题是生物信息学的基本问题,多重序列比对技术也是生物信息学的基本工具,有着十分广泛的应用,比如基因是否为同一个家族,癌症患者的基因与正常时的基因比对分析等等。
生物信息学中的序列比对算法及评估指标比较序列比对是生物信息学中非常重要的工具之一,用于分析和比较生物序列的相似性和差异。
序列比对是理解生物进化和功能注释的关键步骤,在基因组学、蛋白质学和遗传学等领域都有广泛应用。
本文将介绍序列比对的算法原理和常用的评估指标,并对几种常见的序列比对算法进行比较。
一、序列比对算法1.全局比对算法全局比对算法用于比较整个序列的相似性,常见的算法有Needleman-Wunsch 算法和Smith-Waterman算法。
这两种算法都是动态规划算法,其中Needleman-Wunsch算法用于比较两个序列的相似性,而Smith-Waterman算法用于寻找局部相似的片段。
这些算法考虑了序列的整体结构,但在处理大规模序列时计算量较大。
2.局部比对算法局部比对算法用于找出两个序列中最相似的片段,常见的算法有BLAST (Basic Local Alignment Search Tool)算法和FASTA(Fast All)算法。
这些算法以快速速度和高敏感性著称,它们将序列切割成小的段落进行比对,并使用统计模型和启发式搜索来快速找到最佳匹配。
3.多序列比对算法多序列比对算法用于比较多个序列的相似性,常见的算法有ClustalW和MAFFT(Multiple Alignment using Fast Fourier Transform)算法。
这些算法通过多次序列比对来找到共有的特征和区域,并生成多序列的一致性描述。
二、评估指标1.一致性分数(Consistency Score)一致性分数是衡量序列比对结果一致性的指标,它反映了序列比对的精确性和准确性。
一致性分数越高,表示比对结果越可靠。
常用的一致性分数有百分比一致性(Percentage Identity)和序列相似度(Sequence Similarity)。
2.延伸性(Extension)延伸性是衡量序列比对结果的长度的指标。
序列比对的基本方法序列比对是生物信息学中重要的一项任务,它用于比较和分析不同生物序列之间的相似性和差异性。
序列比对方法既可以应用于DNA序列之间的比较,也可以用于蛋白质序列之间的比较。
本文将介绍序列比对的基本方法,包括全局比对、局部比对和多序列比对。
一、全局比对全局比对是将整个序列进行比对,得到两个序列之间的最佳匹配。
最常用的全局比对方法是Needleman-Wunsch算法,该算法用动态规划的方式计算两个序列之间的最佳匹配。
其基本思想是在两个序列中插入一个空位,并为每个空位赋予一定的惩罚分数,然后通过计算每种插入方式的得分来确定最佳插入位置,从而得到最佳匹配。
二、局部比对局部比对是在两个序列中寻找最佳匹配的子序列。
最常用的局部比对算法是Smith-Waterman算法,该算法也是基于动态规划的方法。
不同于全局比对,局部比对将得分为负值的子序列直接设为0,从而忽略掉匹配较差的部分。
该算法在序列比对中应用广泛,可以用于发现序列中的保守区域以及识别重复序列。
三、多序列比对多序列比对是指将多个序列进行比对,从而得到它们之间的相似性和差异性。
多序列比对方法有多种,包括ClustalW、MAFFT和Muscle等。
这些方法常用于计算进化关系,识别保守区域和功能位点等。
其中,ClustalW是最常用的多序列比对软件之一,它使用的是基于目标函数的方法,在多个序列中寻找最佳的全局匹配。
MAFFT和Muscle则分别使用多种算法来处理不同类型的序列,从而提高比对的准确性和效率。
四、快速比对算法传统的序列比对方法在处理大规模序列数据时效率较低。
为了提高比对速度,研究者提出了一系列快速比对算法,如BLAST、 FASTA和Smith-Waterman-Gotoh算法等。
这些算法常用于初步比对和预测,可以在较短的时间内找到相似序列,从而提高工作效率。
其中,BLAST是最常用的快速比对算法之一,其基本思想是将查询序列与参考数据库中的序列进行比对,并根据匹配得分对结果进行排序,从而找到相似序列。
生物信息学中的序列比对算法综述序列比对是生物信息学领域中的一个重要问题,指的是比较两个生物序列(DNA,RNA或蛋白质序列)之间的相似性和差异性。
序列比对是许多研究任务中的第一步,如基因识别、物种分类、进化关系的推断等等。
在本文中,我们将介绍序列比对算法的基本概念、方法和软件,包括全局比对、局部比对、多序列比对等方面。
一、序列比对的基本概念序列比对的目的是找出两个序列之间的相似性和差异性,根据相似性分析序列的结构、功能以及进化关系。
相似性可以被表示成一个比对得分,即正数表示相似性,负数表示差异性。
比对得分的计算取决于匹配分、替换分和缺失分。
匹配分是指在比对中找到相同的位置并且相等的分数。
替换分是指找到不同的位置并且不相等的分数。
缺失分是指在任意序列中找不到匹配的分数。
计算得分的方法有很多种,其中最流行的方法是 Needleman-Wunsch 算法和 Smith-Waterman 算法。
二、全局比对算法全局比对算法是一种比较两个序列的整个长度的算法,使得它们之间的相似性或差异性能够被准确地测量。
全局比对算法通常用于比较高度相似的序列或同一物种中相似的序列。
Needleman-Wunsch 算法与 Smith-Waterman 算法是全局比对中最为经典的算法。
Needleman-Wunsch 算法: Needleman-Wunsch 算法是最经典的全局比对算法之一。
该算法通过构建一个二维矩阵,其中每个元素代表在比对过程中两个序列的一个指定位置。
该算法通过分配一个比对得分并使用动态规划来计算所有可能的比对方式。
通过比对得分的计算,算法确定序列之间的最佳比对方式,使比对得分最大化。
该算法常用于比较高度相似的序列,或者已知序列的情况下以寻找相同物种中潜在基因组之间的相似性信息。
Smith-Waterman 算法: Smith-Waterman 算法是一种类似Needleman-Wunsch 算法的全局比对算法。
多序列比对方法多序列比对是生物信息学中一个常见的分析方法,用于比较多个序列之间的相似性和差异性。
本文将介绍多序列比对的基本原理、常用方法和软件工具,以及其在生物学研究中的应用。
一、多序列比对的基本原理多序列比对是指对多个生物序列进行比较和分析。
生物序列可以是蛋白质序列、DNA序列或RNA序列等。
多序列比对的主要目的是确定序列之间的保守区域和变异区域,并发现序列之间的结构和功能相关性。
多序列比对的基本原理是通过构建序列之间的相似性矩阵,确定最佳的比对结果。
相似性矩阵用于测量两个序列之间的相似性,通常使用BLOSUM、PAM或Dayhoff矩阵等。
基于相似性矩阵和动态规划算法,可以计算序列之间的最佳比对路径,以及比对的得分。
二、常用的多序列比对方法1. 基于全局比对的方法:该方法适用于序列之间的整体相似性比较,常用的算法有Needleman-Wunsch算法和Smith-Waterman算法。
这两种算法都采用动态规划策略,通过计算各种可能的比对路径来确定最佳比对结果。
全局比对方法的主要缺点是在序列相似性较低的情况下,比对结果可能不准确。
2. 基于局部比对的方法:该方法适用于序列之间的部分相似性比较,常用的算法有BLAST和FASTA。
局部比对方法主要通过搜索局部相似片段来进行比对,可以提高比对的敏感性和准确性。
BLAST和FASTA是两种常用的快速局部比对工具,可以快速比对大规模序列数据库。
3. 基于多重比对的方法:该方法适用于多个序列之间的比较和分析,常用的算法有ClustalW和MAFFT。
多重比对方法通过构建多个序列的比对结果,可以识别序列之间的共同保守区域和变异区域,以及序列的结构和功能相关性。
ClustalW和MAFFT是两种常用的多重比对工具,具有较高的准确性和可靠性。
三、常用的多序列比对软件工具1. ClustalW:ClustalW是一个常用的多重比对软件,主要用于比对蛋白质和DNA序列。
序列比对的理论基础是进化学说:如果两个序列之间具有足够的相似性,就推测二者可能有共同的进化祖先,经过序列内残基的替换、残基或序列片段的缺失、以及序列重组等遗传变异过程分别演化而来。
序列相似和序列同源是不同的概念,序列之间的相似程度是可以量化的参数,而序列是否同源需要有进化事实的验证。
物以类聚人以群分,就像你要了解一个人可以通过了解他的朋友一样,序列比对是从已知获得未知的一个十分有用的方法。
另外,物种亲缘树的构建都需要进行生物分子序列的相似性比较。
序列比对按照数目、范围和对象来分,可以分为:o两序列比对和多序列比对o全局比对和局部比对o核酸序列比对和氨基酸序列比对。
限于篇幅,今天只给大家介绍如何使用DNAMAN 8作核酸多序列比对。
多序列比对就是把两条以上可能有系统进化关系的序列进行比对的方法。
其意义在于它能够把不同种属的相关序列的比对结果按照特定的格式输出,并且在一定程度上反映它们之间的相似性。
首先,在解螺旋回复0628下载DNAMAN 8软件。
打开后可以看到以下界面:第一栏为主菜单栏,除了帮助菜单外,有十个常用主菜单;第二栏为工具栏;第三栏为浏览器栏。
打开File-New,将序列粘贴到弹出的窗口中,点击File-save,保存到指定的文件夹。
将所需比对的序列保存好以后,选中Sequence—Aligment—Multiple aligment sequence 进行多序列比较。
在弹出的窗口Sequence&Files中加载序列,File、Fold、channel、Database分别表示从文件、文件夹、channel和数据库中获取序列。
勾选窗口中的“DNA”,点击“下一步”。
在弹出的窗口Method中,“optimalaligment”最佳比对方式中有四个高大上的选项:Full Alignment(完全比对)、Prosile Aligment(轮廓比对)、New Swquence on Profile (轮廓上的新序列)、Fast Alignment(快速比对),本文选择了Fast Alignment,并且勾选了Try both strands(尝试使用双链)。
多重序列比对的数学模型与算法
自美国提出组织的人类基因组计划(Human Genome Proreet)简称为HGP
以来,美国每年拔出相当大的经费支持,日本、法国、英国、德国等纷纷响应,它们的工作使新的交叉学科生物信息论得以诞生和发展,生物信息论是用数理和信息科学的观点、理论和方法去研究生命现象,组织和分析呈指数增长的生物学数据。
生物信息学是一门综合学科,是计算机科学、数学、物理、生物学的结合。
生物信息学的基础是各种数据库的建立和分析工具的发展。
目前,生物学数据库已达500个以上,共有四大类:基因组数据库,核酸和蛋白质一级结构数据库、生物大分子三维空间结构数据库及其以她们为基础构建的二级数据库。
生物信息学主要研究基因组测序及其信息分析、生物大分子的结构与功能预测及其模拟和药物设计、大规模基因表达数据的分析与基因芯片设计,以及基因与蛋白质相互作用网络等四方面的问题。
多重序列比对是计算分子生物学中最重要的运算。
多重序列比对的基本问题就是找出适当安排删减与插入尽量少的空格,使得两个序列达到最大程度的一致的方案。
比如给出下列三个序列:
AC_G
AGTCC (1)
ACT
我们适当安排删减与插入空格得到:
ACG___
A_GTCC (2)
AC_T__
(2)就是多重序列的一个比对。
局部分段比对是其中更为常见的运算。
上世纪80年代,Smith-Waterman提出了两个序列的局部比对的明确的模型。
1998—1999年,相继出现利用k-tuple 的快速容错分段比对搜索法。
2002年开始出现对完整基因组及其异常基因的比
较研究以及多重序列比对问题的研究,2003年刘军Mayetri Gupta和刘军得到Motif的搜索算法。
人类基因组计划后,目前已经进入后基因时代,主要就是对人类基因组计划实施得到的基本数据库进行信息分析、加工和利用,提取有用信息,用来研究生命现象中的重大问题。
多重序列比对问题是生物信息学的基本问题,多重序列比对技术也是生物信息学的基本工具,有着十分广泛的应用,比如基因是否为同一个家族,癌症患者的基因与正常时的基因比对分析等等。
因此,请您们就基因的多重序列比对,设计合理的衡量比对好坏的定量描述模型,建立多重序列比对的基本问题的数学模型,并设计一种求解的算法。
最后就附录一中的12个序列,请您们利用你们得到的模型与算法,给出使序列有最大相似程度的比对。
附录一:
CATTTCTTTTTAGGGATTTTAAAAGTTGTCTTTTCTT
CATTTCTTTTTAAGGTTTTAAAAATTGTCTTTTTT
CATTTCTTTTTAAGGGTTTTAAAAATTGTCTTTTCTT
CATTTTTTCTTAAGTGTTTTGGTATTTATCTTTTTCTT
CATTTTTGCTTATGTATTTATAGTGGGTTGTCTTTTTGACTT
CATTTCTTTTGAAGTGATTTGAGATTTATCTTTTTCTT
CATTTCTTTTTAAGGGTTTTAAAAATTGTCTTTTCTT
CATTTCTTTTTATGTTGAGATATTTGTCTGTTTTCTT
CATTTTTACTATGTGTTGATTGTGGATTGTCTTTTCTT
CATTTCTTTTATTGAGTGAAGAAGAGATTTTGTCTTGTTTTGAT
CATTTTTCTTAGTGTTTTGGTATTTATCTTTTTCTT
CATTTCTTTTAAGGGTTTTAAAAATTGTCTTTTCTT。