– (2)运用格林公式
• 有利于编程
– (3)用边界行程码或链码
• 程序复杂度与运用格林公式相当
下一页
home
上一页
• 2. 颗粒度的求解 • (1) 颗粒的检出
– 从图像中检出颗粒Y,然后消除噪声点。 – 对图像X进行了一次开运算。选取结构元素进行腐蚀运
算,去掉半径小于λ的噪声点,再进行膨胀运算。
而可以作为图像的抽象表示。 • 基于特征(内容)的图像检索利用不同特征定义
的相似度表示不同图像之间的相似程度。 • 基于内容的图像检索
– 首先要确定特征,以便让计算机自动地或半自动地从 图像中提取这些特征。
– 其次根据这些特征进行相似性度量,认为查询图像与 目标图像特征值越接近则两幅图像越相似。
下一页
• 国外已经处于“第二代PACS(Hi-PACS, Hospital integrated PACS)”阶段。
上一页
10.3.8 基于颜色和纹理特征的图像检索算法
• 1. 概述 • 2. 颜色特征的提取 • 3. 纹理特征的提取 • 4. 距离度量与相似检索 • 5. 实验结果
下一页
home
上一页
图10.8 不同特征的检索结果
下一页
home
上一页
10.4 数字化医院中的图像存档与通信系统
• 10.4.1 PACS概述 • 10.4.2 国内外发展现状 • 10.4.3 主要解决的问题和技术要点 • 10.4.4 DICOM图像格式 • 10.4.5 DICOM 3.0标准及其面向对象的实现 • 10.4.6 小结
• 以有噪医学图像为例采用开运算去除噪声,再根 据结构元素的变化定义并绘制图像面积函数和颗 粒度函数
• 研究图像中各个颗粒或“子目标图像”的分布状 况,得出的结论可供图像的颗粒度分析参考。