高频电子线路试验指导书
- 格式:doc
- 大小:179.00 KB
- 文档页数:14
实验注意事项1、本实验系统接通电源前请确保电源插座接地良好。
2、每次安装实验模块之前应确保主机箱右侧的交流开关处于断开状态。
为保险起见,建议拔下电源线后再安装实验模块。
3、安装实验模块时,模块右边的双刀双掷开关要拨上,将模板四角的螺孔和母板上的铜支柱对齐,然后用黑色接线柱固定。
确保四个接线柱要拧紧,以免造成实验模块与电源或者地接触不良。
经仔细检查后方可通电实验。
4、各实验模块上的双刀双掷开关、拨码开关、复位开关、自锁开关、手调电位器和旋转编码器均为磨损件,请不要频繁按动或旋转。
5、请勿直接用手触摸芯片、电解电容等元件,以免造成损坏。
6、各模块中的3362电位器(蓝色正方形封装)是出厂前调试使用的。
出厂后的各实验模块功能已调至最佳状态,无需另行调节这些电位器,否则将会对实验结果造成严重影响。
若已调动请尽快复原;若无法复原,请与指导老师或直接与我公司联系。
7、在关闭各模块电源之后,方可进行连线。
连线时在保证接触良好的前提下应尽量轻插轻放,检查无误后方可通电实验。
拆线时若遇到连线与孔连接过紧的情况,应用手捏住线端的金属外壳轻轻摇晃,直至连线与孔松脱,切勿旋转及用蛮力强行拔出。
8、按动开关或转动电位器时,切勿用力过猛,以免造成元件损坏。
实验一:高频小信号调谐放大器实验学时:3学时实验类型:验证实验要求:必修一、实验目的1.掌握小信号调谐放大器的基本工作原理;2.掌握谐振放大器电压增益、通频带及选择性的定义、测试及计算;3.了解高频小信号放大器动态范围的测试方法。
二、实验内容1.测量单调谐小信号放大器的静态工作点;2.测量单调谐小信号放大器的增益;3.测量单调谐小信号放大器的通频带;4.测量单调谐小信号放大器的选择性。
三、实验原理及电路说明(一)单调谐放大器小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。
其实验单元电路如图1-1所示。
该电路由晶体管Q1、选频回路T1二部分组成。
实验一 LC 与晶体振荡器实验一、实验目的1)、了解电容三点式振荡器和晶体振荡器的基本电路及其工作原理。
2)、比较静态工作点和动态工作点,了解工作点对振荡波形的影响。
3)、测量振荡器的反馈系数、波段复盖系数、频率稳定度等参数。
4)、比较LC 与晶体振荡器的频率稳定度。
二、实验预习要求实验前,预习教材:“电子线路非线性部分”第3章:正弦波振荡器;“高频电子线路”第四章:正弦波振荡器的有关章节。
三、实验原理说明三点式振荡器包括电感三点式振荡器(哈脱莱振荡器)和电容三点式振荡器(考毕兹振荡器),其交流等效电路如图1-1。
1、起振条件1)、相位平衡条件:X ce 和X be 必 需为同性质的电抗,X cb 必需为异性质的电抗,且它们之间满足下列关系:2)、幅度起振条件: 图1-1 三点式振荡器式中:q m ——晶体管的跨导,LCX X X X Xc o C L ce be 1 |||| )(=-=+-=ω,即)(Au1* 'ie L oe m q q q Fu q ++>F U——反馈系数,A U——放大器的增益,q ie——晶体管的输入电导,q oe——晶体管的输出电导,q'L——晶体管的等效负载电导,F U一般在0.1~0.5之间取值。
2、电容三点式振荡器1)、电容反馈三点式电路——考毕兹振荡器图1-2是基本的三点式电路,其缺点是晶体管的输入电容C i和输出电容Co对频率稳定度的影响较大,且频率不可调。
L1L1(a)、考毕兹振荡器(b)、交流等效电路图1-2 考毕兹振荡器2)、串联改进型电容反馈三点式电路——克拉泼振荡器电路如图1-3所示,其特点是在L支路中串入一个可调的小电容C3,并加大C1和C2的容量,振荡频率主要由C3和L决定。
C1和C2主要起电容分压反馈作用,从而大大减小了C i和C o对频率稳定度的影响,且使频率可调。
(a )、克拉泼振荡器 (b )、交流等效电路图1-3 克拉泼振荡器3)、并联改进型电容反馈三点式电路——西勒振荡器电路如图1-4所示,它是在串联改进型的基础上,在L 1两端并联一个小电容C 4,调节C 4可改变振荡频率。
目录实验一调谐放大器(实验板1) (1)实验二丙类高频功率放大器(实验板2) (4)实验三 LR电容反馈式三点式振荡器(实验板1) (6)实验四石英晶体振荡器(实验板1) (8)实验五振幅调制器(实验板3) (10)实验六调幅波信号的解调(实验板3) (13)实验七变容二极管调频管振荡器(实验板4) (16)实验八相位鉴频器(实验板4) (18)实验九集成电路(压控振荡器)构成的频率调制器(实验板5) (20)实验十集成电路(锁相环)构成的频率解调器(实验板5) (23)实验十一利用二极管函数电路实现波形转换(主机版面) (25)实验一调谐放大器(实验板1)一、预习要求1、明确本实验的目的。
2、复习谐振回路的工作原理。
3、了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。
4、实验电路中,若电感量L=1uh,回路总电容C=220pf(分布电容包括在内),计算回路中心频率f0。
二、实验目的1、熟悉电子元器件和高频电路实验箱。
2、熟悉谐振回路的幅频特性分析—通频带预选择性。
3、熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。
4、熟悉和了解放大器的动态范围及其测试方法。
三、实验仪器1、双踪示波器2、扫描仪3、高频信号发生器4、毫秒仪5、万用表6、实验板1图 1-1 单调谐回路谐振放大器原理图四、实验内容(一)单调谐回路谐振放大器1、实验电路图见图1-1(1)按图1-1所示连接电路(注意接线前先测量+12V电源电压,无误后,关断电源再接线)。
(2)接线后,仔细检查,确认无误后接通电源。
2、静态测量实验电路中选R e=1K测量各静态工作点,计算并填表1-1*V E ,V B 是三极管的基极和发射极对地电压。
3.动态研究(1)测放大器的动态范围V i ~V 0(在谐振点)选R = 10K ,R 0 = 1K 。
把高频信号发生器接到电路输入端,电路输出端接毫伏表,选择正常放大区的输入电压V i ,调节频率f 使其为10.7MHZ ,调节C T 使回路谐振,使输出电压幅度为最大。
实验一 函数信号发生实验一、实验目的1)、了解单片集成函数信号发生器ICL8038的功能及特点。
2)、掌握ICL8038的应用方法。
二、实验预习要求参阅相关资料中有关ICL8038的内容介绍。
三、实验原理(一)、ICL8038内部框图介绍ICL8038是单片集成函数信号发生器,其内部框图如图2-1所示。
它由 恒流源I 2和I 1、电压比较器A 和B 、触发器、缓冲器和三角波变正弦波电路等组成。
外接电容C 可由两个恒流源充电和放电,电压比较器A 、B 的阀值分别为总电 源电压(指U CC +U EE )的2/3 和1/3。
恒流源I 2和I 1的大 小可通过外接电阻调节,但 必须I 2>I 1。
当触发器的输出为低电平时,恒流源I 2断开 图2-1 ICL8038原理框图,恒流源I 1给C 充电,它的两端电压u C 随时间线性上升,当达到电源电压的确2/3时,电压比较器A 的输出电压发生跳变,使触发器输出由低电平变外接电容E E为高电平,恒流源I 2接通,由于I 2>I 1(设I 2=2I 1),I 2将加到C 上进行反充电,相当于C 由一个净电流I 放电,C 两端的电压u C 又转为直线下降。
当它下降到电源电压的1/3时,电压比较器B 输出电压便发生跳变,使触发器的输出由高电平跳变为原来的低电平,恒流源I 2断开,I 1再给C 充电,……如此周而复始,产生振荡。
若调整电路,使I 2=2I 1,则触发器输出为方波,经反相缓冲器由引脚9输出方波信号。
C 上的电压u c ,上升与下降时间相等(呈三角形),经电压跟随器从引脚3输出三角波信号。
将三角波变为正弦波是经过一个非线性网络(正弦波变换器)而得以实现,在这个非线性网络中,当三角波电位向两端顶点摆动时,网络提供的交流通路阻抗会减小,这样就使三角波的两端变为平滑的正弦波,从引脚2输出。
1、ICL8038引脚功能图图2-2 ICL8038引脚图供电电压为单电源或双电源: 单电源10V ~30V 双电源±5V ~±15V2、实验电路原理图如图2-3 所示。
实验一高频小信号调谐放大器一、实验目的小信号调谐放大器是高频电子线路中的基本单元电路,主要用于高频小信号或微弱信号的线性放大。
通过本实验,我们希望同学们能重点掌握以下几方面内容:1.静态工作点(直流工作状态)的调试. 小信号调谐放大器必需工作在甲类.2.小信号(交流工作状态)的定义. 输入信号必需小于5 毫伏.3.并联谐振回路的特性. 谐振曲线,通频带,矩形系数.4.放大特性. 电压放大倍数,动态特性(输入 ---- 输出电压特性).二、实验内容1、调节谐振回路使谐振放大器谐振在10.7MHz。
2、测量谐振放大器的电压增益。
3、测量谐振放大器的通频带。
4、测量谐振放大器的输入---- 输出电压特性5、判断谐振放大器选择性的优劣。
三、实验仪器1、20MHz模拟示波器一台2、数字万用表一块3、高频信号源一台四、实验原理图1-1所示电路为共发射极接法的晶体管高频小信号调谐放大器。
它不仅要放大高频信号,而且还要有一定的选频作用,因此晶体管的集电极负载为LC并联谐振回路。
在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响放大器输出信号的频率和相位。
晶体管的静态工作点由电阻R B1,R B2及R E决定,其计算方法与低频单管放大器相同。
图1-1 小信号调谐放大器放大器在高频情况下的等效电路如图1-2所示,晶体管的4个y 参数ie y ,oe y ,fe y 及re y 分别为输入导纳 ()e b e b b b e b e b ie jwc g r jwc g y '''''1+++≈(1-1) 输出导纳 ()e b e b e b b b e b b b m oe jwc jwc g r jwc r g y ''''''1+++≈ (1-2)正向传输导纳 ()e b e b b b m fe jwc g r g y '''1++≈ (1-3) 反向传输导纳 ()e b e b b b eb re jwc g r jwc y ''''1++-≈(1-4)图1-2 放大器的高频等效回路式中,m g ——晶体管的跨导,与发射极电流的关系为{}S mA I g E m 26= (1-5) e b g /——发射结电导,与晶体管的电流放大系数β及I E 有关,其关系为 {}S mA I r g E e b e b β261''== (1-6) b b r /——基极体电阻,一般为几十欧姆;c b C /——集电极电容,一般为几皮法;e b C /——发射结电容,一般为几十皮法至几百皮法。
目录实验1单调谐回路谐振放大器 (1)实验2高频功率放大与发射 (6)实验3幅度调制与解调 (15)实验4变容二极管调频与鉴频 (31)实验5发送部分联试实验 (35)实验6接收部分联试实验 (37)实验7发射与接收完整系统的联调 (39)附录 (51)实验1单调谐回路谐振放大器—>实验准备1.做本实验时应具备的知识点:•放人器静态工作点•LC并联谐振回路•单调谐放大器幅频特性2.做木实验吋所用到的仪器:•单调谐回路谐振放大器模块•双踪刀1波器•万用表•频率计•高频信号源二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐冋路谐振放人器的基木工作原理;3.熟悉放人器静态工作点的测量方法;4.熟悉放大器静态丄作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的彫响;5.学握测量放大器幅频特性的方法。
三、实验内容1.用万用表测量晶体管各点(对地)电压VB、VE、VC,并计算放大器静态工作点;2.用示波器测量单调谐放大器的幅频特性;3.用扫频仪观察静态工作点对单调谐放人器幅频特性的影响;4.用扫频仪观察集电极负载对单调谐放人器幅频特性的影响。
四、基本原理1. 单调谐回路谐振放大器原理小信号谐振放人器是通信接收机的询端电路,主要用于高频小信号或微弱信号的线性 放人和选频。
单调谐回路谐振放人器原理电路如图1-1所示。
图屮,R BI >乩2、R E 用以保证晶 体管工作于放人区域,从而放人器工作于甲类。
G ・:是R E 的旁路电容,G 、Cc 是输入、输岀耦 合电容,L 、C 是谐振回路,Rc 是集电极(交流)电阻,它决定了回路Q 值、带宽。
为了减轻 晶体管集电极电阻对凹路Q 值的影响,采用了部分回路接入方式。
]Ec RblCbIN ---------------Rb2 Re —I —Ce图1-1单调谐回路放人器原理电路OUT >图1-2单调谐回路谐振放大器实验电路图2.单调谐回路谐振放大器实验电路单调谐冋路谐振放人器实验电路如图1-2所示。
高频电子线路实验箱简介THCGP-1型仪器介绍●信号源:本实验箱提供的信号源由高频信号源和音频信号源两部分组成,两种信号源的参数如下:1)高频信号源输出频率范围:0.4MHz~45MHz(连续可调);频率稳定度:10E–4;输出波形:正弦波;输出幅度:1Vp-p 输出阻抗:75Ω。
2)低频信号源:输出频率范围:0.2kHz~20 kHz(连续可调);频率稳定度:10E–4;输出波形:正弦波、方波、三角波;输出幅度:5Vp-p;输出阻抗:100Ω。
信号源面板如图所示使用时,首先按下“POWER”按钮,电源指示灯亮。
高频信号源的输出为RF1、RF2,频率调节步进有四个档位:1kHz、20kHz、500kHz、1MHz档。
按频率调节选择按钮可在各档位间切换,为1kHz、20kHz、500kHz档时相对应的LED亮,当三灯齐亮时,即为1MHz档。
旋转高频频率调节旋钮可以改变输出高频信号的频率。
另外可通过调节高频信号幅度旋钮来改变高频信号的输出幅度。
音频信号源可以同时输出正弦波、三角波、方波三种波形,各波形的频率调节共用一个频率调节旋钮,共有2个档位:2kHz、20kHz档。
按频率档位选择可在两个档位间切换,并且相应的指示灯亮。
调节音频信号频率调节旋钮可以改变信号的频率。
分别改变三种波形的幅度调节旋钮可以调节输出的幅度。
本信号源有内调制功能,“FM”按钮按下时,对应上方的指示灯亮,在RF1和RF2输出调频波,RF2可以外接频率计显示输出频率。
调频波的音频信号为正弦波,载波为信号源内的高频信号。
改变“FM频偏”旋钮调节输出的调频信号的调制指数。
按下“AM”按钮时,RF1、RF2输出为调幅波,同样可以在RF2端接频率计观测输出频率。
调节“AM调幅度”可以改变调幅波的幅度。
面板下方为5个射频线插座。
“RF1”和“RF2”插孔为400kHz ——45MHz的正弦波输出信号,在做实验时将RF1作为信号输出,RF2接配套的频率计观测频率。
目录实验一调谐放大器(实验板1 (1实验二丙类高频功率放大器(实验板2 (4实验三LR电容反馈式三点式振荡器(实验板1 (6实验四石英晶体振荡器(实验板1 (9实验五振幅调制器(实验板3 (11实验六调幅波信号的解调(实验板3 (14实验七变容二极管调频管振荡器(实验板4.............................. 错误!未定义书签。
实验八相位鉴频器(实验板4...................................................... 错误!未定义书签。
实验九集成电路(压控振荡器构成的频率调制器(实验板5 (17实验十集成电路(锁相环构成的频率解调器(实验板5 (20实验十一利用二极管函数电路实现波形转换(主机版面 ....... 错误!未定义书签。
实验一调谐放大器(实验板1一、预习要求1、明确本实验的目的。
2、复习谐振回路的工作原理。
3、了解谐振放大器的电压放大倍数、动态范围、通频带及选择性相互之间关系。
4、实验电路中,若电感量L=1uh,回路总电容C=220pf(分布电容包括在内,计算回路中心频率f0。
二、实验目的1、熟悉电子元器件和高频电路实验箱。
2、熟悉谐振回路的幅频特性分析—通频带预选择性。
3、熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。
4、熟悉和了解放大器的动态范围及其测试方法。
三、实验仪器1、双踪示波器2、扫描仪3、高频信号发生器4、毫秒仪5、万用表6、实验板1图1-1 单调谐回路谐振放大器原理图四、实验内容(一单调谐回路谐振放大器1、实验电路图见图1-1(1按图1-1所示连接电路(注意接线前先测量+12V电源电压,无误后,关断电源再接线。
(2接线后,仔细检查,确认无误后接通电源。
2、静态测量实验电路中选R e=1K测量各静态工作点,计算并填表1-1表 1-1E B 3.动态研究(1测放大器的动态范围V i ~V 0(在谐振点选R = 10K ,R 0 = 1K 。
目录第一章高频Ⅲ型实验系统介绍一、高频III型实验系统概述 (2)二、实验箱箱体结构 (2)三、箱体各组成部分说明 (3)四、高频模块介绍及实验说明 (6)第二章高频电路实验部分实验一电容反馈三点式振荡器实验 (8)实验二石英晶体振荡器实验 (11)实验三单调谐回路谐振放大器及通频带展宽实验 (13)实验四双调谐回路谐振放大器实验 (16)实验五幅度调制器实验 (18)实验六调幅波信号的解调实验 (20)实验七高频功率放大器实验 (23)实验八变容二极管频率调制电路实验 (25)实验九频率解调电路实验 (27)实验十小功率调频发射、接收实验 (29)实验十一相位调制器实验 (32)实验十二锁相环及压控振荡器电路实验 (34)实验十三频率合成电路实验 (39)实验十四集成混频器电路实验 (43)第一章高频Ⅲ型实验系统介绍一、高频Ⅲ型实验系统概述本系统由实验箱体和外接实验模块两部分组成,其中外接模块采用插拔式结构设计,便于功能的扩展。
箱体上带有一个20Hz~100KHz的低频信号源和部分模拟、数字电路器件,可进行部分数字电路和模拟电路实验。
而插上选配的高频模块,则可进行高频电路实验。
二、实验箱箱体结构箱体结构如图一所示,主要由以下几部分组成:●电源开关●扬声器●显示单元区●函数波形发生器●直流电压输出区●电位器及可调直流电平●单脉冲源●逻辑电平区●附加电源输出区●外接实验模块区图 1三、箱体各组成部分说明1、电源开关电源接通时,电源指示灯亮。
2、扬声器扬声器输入口的标志为“SPEAKER”。
3、显示单元区显示单元由四位七段数码管和16位LED指示灯组成。
数码管采用共阴数码管,“com”为公共端,当“com”端输入为低电平时才能点亮数码管。
LED1和LED2为带译码的数码管,其输入由高位到低位依次为D、C、B、A。
由于我们采用BCD译码器,故只能显示的数值为0─9。
当输入值大于“1001”时,数码管无显示。
实验一模拟乘法混频一、实验目的1.了解集成混频器的工作原理2.了解混频器中的寄生干扰二、实验内容1.研究平衡混频器的频率变换过程2.研究平衡混频器输出中频电压V i与输入本振电压的关系3.研究平衡混频器输出中频电压V i与输入信号电压的关系4.研究镜象干扰。
三、实验原理及实验电路说明在高频电子电路中,常常需要将信号自某一频率变成另一个频率。
这样不仅能满足各种无线电设备的需要,而且有利于提高设备的性能。
对信号进行变频,是将信号的各分量移至新的频域,各分量的频率间隔和相对幅度保持不变。
进行这种频率变换时,新频率等于信号原来的频率与某一参考频率之和或差。
该参考频率通常称为本机振荡频率。
本机振荡频率可以是由单独的信号源供给,也可以由频率变换电路内部产生。
当本机振荡由单独的信号源供给时,这样的频率变换电路称为混频器。
混频器常用的非线性器件有二极管、三极管、场效应管和乘法器。
本振用于产生一个等幅的高频信号V L,并与输入信号V S经混频器后所产生的差频信号经带通滤波器滤出。
本实验采用集成模拟相乘器作混频电路实验。
因为模拟相乘器的输出频率包含有两个输入频率之差或和,故模拟相乘器加滤波器,滤波器滤除不需要的分量,取和频或者差频二者之一,即构成混频器。
图4-1所示为相乘混频器的方框图。
设滤波器滤除和频,则输出差频f 信号。
图4-2为信号经混频前后的频谱图。
我们设信号是:载波频率为S的普通调幅波。
本机振荡频率为L f 。
设输入信号为t V v S S S ωcos =,本机振荡信号为t V v L L L ωcos = 由相乘混频的框图可得输出电压tV tV V K K v S L S L S L M F )cos()cos(2100ωωωω-=-=式中 S L M F V V K K v 210=定义混频增益M A 为中频电压幅度0V 与高频电压S V 之比,就有L M F S M V K K V V A 210==图4-3为模拟乘法器混频电路,该电路由集成模拟乘法器MC1496完成。
高频电子线路实验指导书通信技术专业适用高频电子线路实验是通信技术专业学生在学习通信电子技术时必须掌握的一项基础实验,本文将介绍一份适用于通信技术专业的高频电子线路实验指导书。
第一章实验介绍本章介绍实验目的和基本内容,包括实验原理、实验器材和实验要求。
在实验原理中,我们要强调实验的目的是让学生了解高频电路的基本原理和设计方法,提高学生的实际操作能力。
在实验器材中,要详细列出所需的仪器和设备,并说明各器材的功能和特点。
在实验要求中,要求学生严格按照实验流程操作,保证实验的准确性和安全性。
第二章实验内容本章介绍实验的详细内容,包括实验前准备、实验步骤、实验数据处理和实验结果分析。
在实验前准备中,要求学生掌握实验原理、理解实验要求、熟悉实验器材。
在实验步骤中,要求学生按照实验流程逐步操作,注意实验器材的调整和使用。
在实验数据处理中,要求学生根据实验数据进行计算和分析,得出结论。
在实验结果分析中,要求学生对实验结果进行总结和分析,发现其中的问题和改进方案。
第三章经验总结本章介绍学生在实验中遇到的问题和解决方案,以及实验过程中需要注意的事项。
在遇到问题时,要求学生及时向老师和同学请教,寻求解决方案,在实验中要注意安全问题,确保自身安全和实验器材的安全。
第四章实验报告本章介绍实验报告的要求和格式,包括实验报告的基本结构、实验数据分析、结论和建议。
在实验报告中,要求学生清晰明了地描述实验过程和结果,注重数据分析和实验过程中遇到的问题和解决方案,发表自己的见解和建议。
结语通过可靠的实验指导和系统的实践操作,学生能够更好地掌握实际操作技能,从而提高综合素质,为今后的学习和工作打下基础。
本文所介绍的高频电子线路实验指导可以成为通信技术专业学生实践操作的重要参考资料,让学生能够更好地理解实验原理和方法,提高实际操作能力。
实验一高频小信号调谐放大器实验一、实验目的1、掌握谐振放大器静态工作点、电压增益、通频带及选择性的测试、计算;2、掌握高频小信号放大器动态范围的测试方法;3、熟悉高频实验箱、示波器、信号源及万用表的使用方法。
二、实验仪器高频实验箱1台;双踪示波器1台;数字万用表1块;高频信号发生器1台;G1实验板一块。
三、实验内容及步骤(一)、单调谐回路谐振放大器1、电路连线根据电路原理图弄清实验板电路,并在电路板上找出与原理图相对应的的各测试点及可调器件,电路原理图参见图1。
图1单调谐回路谐振放大器电路图2、静态测量选Re = 1K,在不加输入信号时用万用表测量各静态工作点,将测量数据填入表1中。
根据表1测试结果判断三极管(9018)是否工作在放大区并说明原因。
提示:I CQ ≈I EQ;I EQ = V E / Re (Re = 1K)。
3、输入动态范围和Re变化对放大性能影响的测试(1)将谐振回路电阻R(10K)接入谐振回路,选R e = 1k。
将高频信号发生器输出接到电路输入端(IN段),高频信号发生器波形选择正弦波,频率调整到10.7MHz(谐振回路的谐振频率),把示波器探头接到电路的输出端(OUT端)。
(2)从小到大调整高频信号发生器输出信号,观察示波器显示波形,分别记下开始出现正常信号(正弦波)和最后出现失真时的输入信号值,将出现最小信号的输入信号值填入表2输入电压(U i)栏的第一个格里,出现失真时的电压值填入最后一个格里(两者之差即为放大器的输入动态范围),中间的格按等分填入。
(3)用信号源输入表2中输入电压(U i)的值,在Re为1K、500Ω、2K时将示波器显示的输出值(U o)填入表2中。
(4)根据测试结果分析Re变化对放大性能的影响。
4、放大器频率特性测试(1)选回路电阻R=10K,输入电压Ui取表2中的中间值,将高频信号发生器输出端接至电路输入端。
调节频率f使其为10.7MHz,调节C T(微调电容器)使回路谐振(输出电压幅度为最大),此时的回路谐振频率为f0=10.7MHz(为中心频率)。
⾼频电⼦线路实验指导书第⼀部分实验内容实验⼀调谐放⼤器⼀、实验⽬的1.熟悉电⼦元器件和⾼频电路实验箱;2. 通过实验进⼀步熟悉⾼频⼩信号调谐放⼤器的⼯作原理;3. 掌握调谐放⼤器的电压放⼤倍数、动态范围、通频带及选择性的测试⽅法;4. 掌握使⽤频率特性测试仪调整调谐放⼤器谐振特性的⽅法。
⼆、实验仪器1.双踪⽰波器(TDS2012)2.扫频仪(BT-3GⅡ)3.⾼频信号发⽣器(QF1055A)4.毫伏表(DA36A)5.万⽤表6.实验板1三、预习要求1.复习谐振回路的⼯作原理;2.了解谐振放⼤器的电压放⼤倍数、动态范围、通频带及选择性相互之间的关系;3.频率特性测试仪调整调谐放⼤器谐振特性的⽅法;4.实验⽤电⼦仪器的基本原理和使⽤⽅法。
四、实验原理(⼀)实验电路⼩信号调谐放⼤器的主要特点是晶体管的集电极负载不是纯电阻,⽽是由LC组成的并联谐振回路。
由于LC并联谐振回路的阻抗是随频率⽽变的,在谐振频率处其阻抗是纯电阻,达到最- 1 -- 2 -⼤值。
因此,⽤并联谐振回路作集电极负载的调谐放⼤器在回路的谐振频率上具有最⼤的放⼤电压增益。
稍离开此频率,电压增益迅速减⼩。
我们⽤这种放⼤器可以放⼤所需要的某⼀频率范围的信号,⽽抑制不需要的信号或外界⼲扰信号。
因此,调谐放⼤器在⽆线电通信系统中被⼴泛⽤作⾼频和中频放⼤器。
图1-1所⽰电路为实验电路,它是由共发射极组态的晶体管和并联谐和振回路组成的单级单调谐放⼤器。
本实验电路要求完成单级调谐放⼤器的技术指标:中⼼频率MHz f o 7.10=,通频带MHz f 127.0=?,增益dB A uo 20≥。
电路主要元件参数:晶体管C DG 63,查⼿册知在MHz f o 30=,mA I EQ 2=,V V ce 9=条件下测得Y 参数为mS g ie 2=,pF C ie 12=,S g oe µ250=,pF C oe 4=,mS y fe 40=,S y re µ350=。
《高频电子线路》实验指导书湖南工业大学电气与信息工程学院实验一高频单调谐回路放大器一、实验类型验证型实验二、实验目的与任务1、熟悉谐振放大器的幅频特性、通频带和选择性;2、熟悉信号源内阻及负载对谐振回路的影响,了解展宽频带的方法;3、掌握放大器的动态范围及其测试方法。
三、实验基本原理1. 单调谐回路放大器实验电路如图 1-1 所示图1-1单调谐小信号放大器在图 1-1 中 ,L2、C5、C6为π型滤波电路,其作用是为了减少交流高频信号对直流电源的影响。
+12V电源、R1、R2和R6、R7、R8为放大电路提供直流静态工作点,C3为发射极旁路电容。
L1、C2和Ct为选频回路(也称为谐振回路),改变Ct的值,可以改变回路的谐振频率。
三极管T及其输出阻抗相当于谐振回路的信号源和信号源内阻,R3、R4、R5相当于负载,改变R3、R4、R5的阻值,将对谐振回路产生影响。
C4为隔直电容,它能够有效防止不同放大级之间直流信号的相互影响,又可使交流信号顺利通过。
若忽略三极管输出电容和负载电容的影响,谐振频率为:LCf o π21=对于放大电路而言,L1、C2和Ct 回路相当于负载,当发生谐振时,选频回路的阻抗最大,为纯电阻性,这时放大电路的电压放大倍数最大;改变信号源频率,选频回路就会失谐,其阻抗值迅速减小,电压放大倍数也迅速减小,通常小信号调谐放大器就工作在谐振频率处,它允许与其频率一致的信号通过并进行放大,对于与其谐振频率不一致的频率信号,则不进行放大而被禁止通过,这就是“选频”的含义。
改变电容Ct ,可以改变选频回路的谐振频率,从而使得不同频率的信号通过。
调谐放大器的谐振频率,一般有两种测量方法,一是扫频法 ;一种是逐点法。
所谓扫频法,一般采用频率特性测试仪,先将频率特性测试仪提供的扫频信号接到单级放大器的输入端,单级放大器的输出端接到频率特性测试仪的输入端,然后调节中心频率旋钮,屏幕上就可显示出放大器的谐振曲线。
实验须知1.实验不得无故缺席,否那么取消期未考试资格;2.实验前认真做好预习,明确实验目的和原理,了解实验内容和步骤,以及考前须知;3.实验过程中必须服从指导教师的指导,严格遵守平安及设备操作规章制度;4.损坏设备、仪器根据情节轻重按学校规定进展全部或局部赔偿;5.在实验过程中认真记录好实验数据,实验完毕后,实验数据及结果经指导教师认可并签字前方能离开实验室;6.实验报告格式在本指导书后;目录实验一单调谐回路谐振放大器及通频带展宽1 实验二高频功率放大器3实验三LC电容反应三点式振荡器4实验四振幅调制器〔集成模拟乘法器〕7实验五调幅波信号的解调9实验六变容二极管频率调制电路实验11图〔1━1〕单调谐放大器电路 实验一单调谐回路谐振放大器及通频带展宽一、实验目的1. 熟悉高频电路实验箱的组成及其电路中各电子元器件的作用。
2. 熟悉并联谐振回路的幅频特性分析、频带与选择性。
3. 熟悉信号源内阻及负载对谐振回路的影响,从而了解频带扩展。
4. 熟悉和了解单谐振回路谐振放大器的性能指标及其测试方法。
二、预习要求1.复习选频网络的特性分析方法; 2.复习谐振回路的工作原理;3.了解谐振放大器的电压放大倍数、动态范围、通频带及选择性等分析方法和知识。
三、实验原理小信号调谐放大器是接收机和各种电子设备中广泛应用的一种电压放大器。
它的主要特点是晶体管的集电极〔共发射极电路〕负载不是纯电阻,而是由L 、C 组成的并联谐振回路。
调谐放大器具有较高的电压增益,良好的选择性,当元件器件性能适宜和构造布局合理时,其工作频段可以做得很高。
小信号调谐放大器的类型很多,按调谐回路区分:由单调谐回路,双调谐回路和参差调谐回路放大器。
按晶体管连接方法区分,有共基极、共发射极和共集电极放大器。
实用上,构成形式根据设计要求而不同。
典型的单调谐放大器电路如图〔1━1〕所示。
图中W 、R1,R2和Re1、Re2是直流偏置电阻,调节W 可改变直流工作点。
C2、L1构成谐振回路,R3 为回路电阻,RL 为负载电阻。
其它有关内容请仔细阅读教科书。
四、实验仪器1. RVO-2100P 采样仪、微机;2.万用表;3.高频电路实验箱五、实验内容及步骤1、测量谐振放大器的谐振频率:1〕拨动开关K3至“RL 〞档;2〕拨动开关K1至“OFF 〞档,断开R3; 3〕拨动开关K2 ,选中Re2; 4〕检查无误后接通电源;5〕高频信号发生器接至电路输入端TP1,示波器接电路输出端TP3; 6〕使高频信号发生器的正弦信号输出幅度为300mV 左右(峰峰值),调节其频率在2~11MHz 之间变化,找到谐振放大器输出电压幅度最大,且波形不失真的频率并记录下来;〔注意:如找不到不失真的波形,应同时调节W 来配合〕。
参考数据〔3.0--5.2MH Z 〕 2、测量放大器在谐振点的动态范围: 1) 拨动开关K1,接通R3; 2) 拨动开关K2,选中Re1;3)高频信号发生器接到电路输入端TP1,示波器接电路输出端TP3;4)调节高频信号发生器的正弦信号输出频率为“放大器的谐振频率〞,调节C2使谐振放大器输出电压幅度uo最大且波形不失真。
此时调节高频信号发生器的信号输出幅度由300mV 变化到1V,使谐振放大器的输出经历由不失真到失真的过程,记录下最大不失真的uo值〔如找不到不失真的波形,可同时微调一下W和C2来配合〕,填入表1-1:6〕在一样的坐标上画出不同Ic(有不同的Re决定)时的动态范围曲线,并进展分析和比拟。
3.测量放大器的通频带1〕拨动开关K1,接通R3;2〕拨动开关K2,选中Re2;3〕拨动开关K3至“RL〞档;4〕高频信号发生器接到电路输入端TP1,示波器接电路输出端TP3;5〕调节高频信号发生器的正弦信号输出频率为“放大器的谐振频率〞,信号输出幅度由300mV 左右,调节C2使谐振放大器输出电压幅度uo最大且波形不失真〔注意检查一下此时谐振放大器如无放大倍数可调节W〕。
以此时的回路的谐振频率“放大器的谐振频率〞为中心频率,保持高频信号发生器的信号输出幅度不变,改变频率由中心频率向两边偏离,测得在不同频率时对应的的输出电压uo值,频率偏离的范围根据实际情况确定,将测量的结果记录下来,并计算回路的谐振频率为“放大器的谐振频率〞时电路的电压放大倍数和回路的通频带;填入表1-2:六、实验报告要求1.画出实验电路的交流等效电路;2.整理各实验步骤所得的数据和图形,绘制出单调谐回路接与不接回路电阻时的幅频特性和通频带,整理并分析原因;3.讨论Ic的大小不同对放大器的动态范围所造成的影响;4.试验心得体会。
实验二高频功率放大器一、实验目的1.了解谐振功率放大器的根本工作原理,掌握高频功率放大器的计算与设计方法。
2.了解电源电压与集电极负载对功率放大器功率和效率的影响。
二、预习要求1.复习功率谐振放大器原理及特点。
2.分析图2-1所示的实验电路,说明各元器件作用。
三、实验电路说明实验电路如图2-1所示:图2-1功率放大器原理图本电路由两级组成:Q1等构成前级推动放大,Q2为负偏压丙类功率放大器,R4、R5提供基极偏压〔自己偏压电路〕,L1为输入耦合电路,主要作用是使谐振功放的晶体三极管的输入电抗与前级电路的输出阻抗相匹配。
L2为输出耦合回路,使晶体三极管集电极的最正确负载电阻与实际负载电阻相匹配。
RL为负载电阻。
四、实验仪器1.双踪示波器;2.万用表;3.数字频率计;4.高频电路实验箱。
五、实验内容及步骤1.将开关拨到接通RL的位置,万用表选直流毫安的适当档位,红表笔接P2,黑表笔接P3;2.检查无误后翻开电源开关,调整W使电流表的指示最小〔时刻注意监控电流不要过大,否那么损坏晶体三极管〕;3.将示波器接在TP1和地之间,在输入端P1接入8MH Z幅度约为500mV的高频正弦信号〔可从实验箱自带的高频信号源接入〕,缓慢增大高频信号的幅度,直到示波器出现波形。
这时调节L1、L2,同时通过示波器及万用表的指针来判断集电极回路是否谐振,即示波器的波形为最大值,电流表的指示I O为最小值时集电极回路处于谐振状态。
用示波器监测此时波形应不失真。
4.根据实际情况选两个适宜的输入信号幅值,分别测量各工作电压和峰值电压及电流,并根据测得的数据分别计算:1〕电源给出的总功率;2〕放大电路的输出功率;3〕三极管的损耗功率;iV0:输出电压峰-峰值I0:电源给出总电流P D:电源给出总功率(P D=V c I0) (V c:为电源电压);P0:输出功率P C:为管子损耗功率(P C=I c V ce)六、实验报告要求1.根据实验测量结果,计算以下各项的结果:P0、、P D、P C、η。
2.说明电源电压、输出电压、输出功率的相互关系。
实验三LC电容反应三点式振荡器一、实验目的1.通过实验理解LC电容反应三点式振荡电路的根本原理,掌握LC电容反应式三点式振荡器的构成及电路各元件的作用;2.分析不同静态工作点对振荡器起振、振荡幅度和振荡波形的影响;3.学习使用示波器和频率计测量高频振荡器振荡频率的方法;4.观测电源电压和负载变化对振荡幅度和振荡频率及频率稳定性的影响。
二、预习要求1.复习LC振荡器的工件原理,了解影响振荡器起振、波形和频率的各种因素;2.了解实验电路中各元件作用。
三、实验电路说明图3-1 LC电容反应三点式振荡器实验电路如图3-1所示:C2、C3、C4、C5和L1组成振荡回路。
Q1的集电极直流负载为R3,偏置电路由R1、R2、W和R4构成,改变W可改变Q1的静态工作点。
静态电流的选择既要保证振荡器处于截止平衡状态也要兼顾开场建立振荡时有足够大的电压增益。
Q2与R6、R8组成射随器,起隔离作用。
振荡器的交流负载实验电阻为R5。
R7的作用是为了用频率计〔一般输入阻抗为几十Ω〕测量振荡器工作频率时不影响电路的正常工作。
四、实验仪器1.双踪示波器2.频率计3.万用表4.高频电路实验箱五、实验内容及步骤1.研究晶体三极管静态工作点不同时对振荡器输出幅度和波形的影响:1〕将开关K1和K2均拨至1X档,负载电阻R5暂不接入,接通+12V电源,调节W使振荡器振荡,此时用示波器在TP1观察不失真的正弦电压波形;2〕调节W使Q1静态电流在0.5-4mA之间变化〔可用万用表测量R4两端的电压来计算相eQ2.研究外界条件变化时对振荡频率的影响及正确测量振荡频率:1〕选择以适宜的稳定工作点电流I eQ,使振荡器正常工作,利用示波器在TP3点和TP2点分别估测振荡器的振荡频率;2〕用频率即重测,比拟在TP3点和TP2点测量有何不同?3)将负载电阻R5接入电路〔将开关K3拨至R5档〕,用频率计测量振荡频率的变化〔为估计振表3-14〕分别将开关K3拨至“OFF〞档和“R5”档,比拟负载电阻R5不接入电路和接入电路两种情况下,输出振幅和波形的变化。
用示波器在TP1点观察并记录。
3.将开关K1和K2均拨至2X档。
比拟选取电容值不同的C2、C3和C2X、C3X,反应系数不同时的起振情况。
注意改变电容值时应保持静态电流值不变。
六、实验报告要求1.整理各实验步骤所得的数据和波形,绘制输出振幅随静态电流变化的实验曲线。
2.答复以下问题:1〕为什么静态工作点电流不适宜时会影响振荡器的起振?2〕振荡器负载的变化为什么会引起输出振幅和频率的变化?3〕在TP3点和TP2点用同一种仪器〔频率计或示波器〕所测得的频率不同是什么原因?那一点测得的结果更准确?3.绘出实验电路的交流通路并说明本振荡电路的特点。
实验四振幅调制器〔集成模拟乘法器〕一、实验目的1.掌握集成模拟乘法器的根本工作原理;2.掌握集成模拟乘法器构成的振幅调制电路的工作原理及特点;3.学习调制系数m及调制特性〔m~UΩm〕的测量方法,了解m<1和m=1及m>1时调幅波的波形特点。
二、预习要求1.预习幅度调制器的有关知识。
2.认真阅读实验指示书,了解实验原理及内容,分析实验电路中用1496乘法器调制的工作原理,并分析计算各引出脚的直流电压。
3.分析全载波调幅信号的特点,并画出其频谱图。
4.了解调幅系数的意义及测量方法。
5.了解实验电路中各元件的作用。
三、实验电路说明1.幅度调制就是载波的振幅受调制信号的控制作周期性变化。
变化的周期与调制信号周期一样。
即振幅变化与调制信号的振幅成正比。
通常称高频信号为载波信号,低频信号为调制信号,调幅器即为产生调幅信号的装置。
本实验采用集成模拟乘法器1496来构成调幅器。
2.实验电路如下图图中MC1496芯片引脚1和引脚4接两个51Ω和两个75Ω电阻及51K电位器用来调节输入馈通电压,调偏W,有意引入一个直流补偿电压,由于调制电压uΩ与直流补偿电压相串联,相当于给调制信号uΩ叠加了某一直流电压后与载波电压uc相乘,从而完成普通调幅,如需产生抑制载波的双边带调幅波,那么应仔细调节W,使MC1496输入端电路平衡。