高频电子线路实验报告3
- 格式:doc
- 大小:180.50 KB
- 文档页数:8
实验一 高频小信号放大器1.1 实验目的1、 掌握高频小信号谐振电压放大器的电路组成与基本工作原理。
2、 熟悉谐振回路的调谐方法及测试方法。
3、 掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。
1.2、实验容1.2.1 单调谐高频小信号放大器仿真1、根据电路中选频网络参数值,计算该电路的谐振频率ωp 。
MHz CLw p 936.2105801020011612=⨯⨯⨯==--2、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。
,708.356uV V I = ,544.1mV V O = 电压增益===357.0544.10I O v V V A 4.3253、利用软件中的波特图仪观察通频带,并计算矩形系数。
波特图如下:4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~A v 相应的图,f(KHz)65 75 165 265 365 465 1065 1665 2265 2865 3465 4065U0 (mv) 0.9771.0641.3921.4831.5281.5481.4571.2821.0950.4790.840.747A V 2.7362.9743.8994.1544.284.3364.0813.5913.0671.3412.3522.092BW0.7=6.372MHz-33.401kHz5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。
1.2.2 双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益A v0。
,285.28mV V I =,160.5V V O =33.1820283.0160.50===I O v V V A 输入端波形:输出端波形1、利用软件中的波特图仪观察通频带,并计算矩形系数。
BW0.7=11.411MHz-6.695MHz BW0.1=9.578MHz-7.544MHz 矩形系数K=0.431实验二高频功率放大器2.1 实验目的1、掌握高频功率放大器的电路组成与基本工作原理。
高频电子线路第二次实验报告实验三正反应LC振荡器3.1 实验目的1、掌握正反应LC振荡器的电路组成与根本工作原理。
2、熟悉正反应振荡器的判断方法。
3、掌握正反应LC振荡器各项主要技术指标意义与测试技能。
3.2 实验容3.2.1 电感三端式振荡器1、在Multisim中搭建测试总电路。
2、通过示波器观察其输出波形,并说明该电路的不足。
不足:振荡器的输出功率很低,输出信号是非常微小的值,未达到振幅起振条件3.2.2 电容三端式振荡器图3.2 电容三端式振荡器1、画出其等效交流电路图。
2、在Multisim中搭建测试总电路图。
3、通过示波器观察输出波形,与电感三端式振荡器比拟。
3.2.3 克拉泼振荡器1、在Multisim 中搭建测试总电路。
图3.3 克拉泼振荡器2、通过示波器观察输出。
3、在该电路的根底上,将其修改为西勒振荡器,并通过示波器观察波形。
R210kΩR31kΩR468kΩKey=A 50%L1500nHL222uHC1470pFC21nFC320pFC410nFC510nF C610nFL3100uH V112 VQ12N2222AR5560Ω7R15.1kΩ416530XSC1A BExt Trig++__+_2C7100pF Key=A50%80图3.4 席勒振荡器实验四晶体振荡器4.1 实验目的1、掌握晶体振荡器的电路组成与根本工作原理。
2、熟悉晶体振荡器的串并联型的判断方法。
3、掌握晶体振荡器各项主要技术指标意义与测试技能。
4.2 实验容〔A〕图4.1、上图分别是什么形式的振荡器?〔a〕是并联型型晶体振荡器,〔b〕是串联型单管晶体振荡器电路。
2、通过示波器观察波形,电路的振荡频率是多少?(a)的波形〔b〕的波形2、振荡器的电路特点?电路组成?答:振荡器的电路特点:不需要输入信号控制就能自动的将直流电源转变为特定频率和振幅的正弦交变能量的电路。
电路由振荡回路和直流信号源以与晶体管引入正反应网络组成。
南京信息工程大学高频电子线路实验报告实验一高频小信号放大器 (3)一、实验原理 (3)二、实验内容 (4)实验二振幅调制实验 (6)一、实验原理 (6)二:实验结果: (7)实验三调幅信号的解调 (9)一、实验原理 (9)二.实验内容 (12)实验四混频器 (14)一、实验原理 (14)二、实验内容 (15)实验一 高频小信号放大器一、实验原理高频小信号放大器的作用就是放大无线电设备中的高频小信号, 以便作进一步变换或处理。
所谓“小信号”,主要是强调放大器应工作在线性范围。
高频与低频小信号放大器的基 本构成相同,都包括有源器件(晶体管、集成放大器等)和负载电路,但有源器件的性能及负载电路的形式有很大差异。
高频小信号放大器的基本类型是以各种选频网络作负载的频带 放大器,在某些场合,也采用无选频作用的负载电路,构成宽带放大器。
频带放大器最典型的单元电路如图 1-1 所示, 由单调谐回路做法在构成晶体管调谐放大器。
图 1-1 电路中,晶体管直流偏置电路与低频放大器电路相同,由于工作频率高,旁路电 容C b.、C e 可远小于低频放大器中旁路电容值。
调谐回路的作用主要有两个:图 1-1 晶体管单调谐回路调谐放大器第一、选频作用,选择放大0f f =的信号频率,抑制其它频率信号。
第二、提供晶体管集电极所需的负载电阻,同时进行阻抗匹配变换。
高频小信号频带放大器的主要性能指标有:(1)中心频率 0f :指放大器的工作频率。
它是设计放大电路时,选择有源器件、计算谐振回路元件参数的依据。
(2)增益:指放大器对有用信号的放大能力。
通常表示为在中心频率上的电压增益和 功率增益。
电压增益 /VO O i A V V = (1—1)功率增益 /PO O i A P P = (1—2)式中 O V 、i V 分别为放大器中心频率上的输出、输入电压幅度, O P 、i P 分别为放大器中心频率上的输出、输入功率。
增益通常用分贝表示。
电子通信工程系《高频电子线路》实验报告专业: 电子信息工程__学号: XXXXXX .姓名: XXXX .指导教师: XXXX .2011年11月27日实验3 电容三点式LC振荡器一、实验准备1.做本实验时应具备的知识点:●三点式LC振荡器●西勒和克拉泼电路●电源电压、耦合电容、反馈系数、等效Q值对振荡器工作的影响2.做本实验时所用到的仪器:●LC振荡器模块●双踪示波器●万用表二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握电容三点式LC振荡电路的基本原理,熟悉其各元件功能;3.熟悉静态工作点、耦合电容、反馈系数、等效Q值对振荡器振荡幅度和频率的影响;4.熟悉负载变化对振荡器振荡幅度的影响。
三、实验电路基本原理1.概述LC振荡器实质上是满足振荡条件的正反馈放大器。
LC振荡器是指振荡回路是由LC元件组成的。
从交流等效电路可知:由LC振荡回路引出三个端子,分别接振荡管的三个电极,而构成反馈式自激振荡器,因而又称为三点式振荡器。
如果反馈电压取自分压电感,则称为电感反馈LC振荡器或电感三点式振荡器;如果反馈电压取自分压电容,则称为电容反馈LC振荡器或电容三点式振荡器。
在几种基本高频振荡回路中,电容反馈LC振荡器具有较好的振荡波形和稳定度,电路形式简单,适于在较高的频段工作,尤其是以晶体管极间分布电容构成反馈支路时其振荡频率可高达几百MHZ~GHZ。
2.LC振荡器的起振条件一个振荡器能否起振,主要取决于振荡电路自激振荡的两个基本条件,即:振幅起振平衡条件和相位平衡条件。
3.LC振荡器的频率稳定度频率稳定度表示:在一定时间或一定温度、电压等变化范围内振荡频率的相对变化程度,常用表达式:Δf0/f0来表示(f0为所选择的测试频率;Δf0为振荡频率的频率误差,Δf0=f02-f01;f02和f01为不同时刻的f0),频率相对变化量越小,表明振荡频率的稳定度越高。
由于振荡回路的元件是决定频率的主要因素,所以要提高频率稳定度,就要设法提高振荡回路的标准性,除了采用高稳定和高Q值的回路电容和电感外,其振荡管可以采用部分接入,以减小晶体管极间电容和分布电容对振荡回路的影响,还可采用负温度系数元件实现温度补偿。
高频电子线路实验报告学院计算机与电子信息学院专业班级姓名学号指导教师谢胜实验报告评分:_______正弦波振荡器仿真实验一、实验目的1、进一步熟悉正弦波振荡器的组成原理;2、观察输出波形,分析影响振荡器起振、稳定的条件;3、比较改进型正弦波振荡器与克拉泼振荡器的性能,分析电路结构及元件参数的变化对振荡器性能的影响。
4、了解晶体振荡器的工作原理及特点 ,掌握晶体振荡器的设计方法。
二、实验仪器设备三极管,示波器,电容,电感,晶体三、实验电路(1)电容三点式振荡器(又称考毕兹振荡器):观察振荡波形,测量振荡频率,并与理论计算频率比较;测量的频率值:计算的频率值:MHZf C C L 1.7501021)//(211010126212≈⨯⨯⨯==--ππ通过计算理论值跟测量值存在一定的误差,但是在误差允许的范围内,测量值还是比较准确的。
用实时监控法测量信号频率, 计算结果与测试结果对照,有一定的差异,这是测试误差所致,应属正常 。
(2)电容三点式改进型“克拉泼振荡器”: 克拉泼振荡器的频率LC f 1221π=(C1>>C3,C2>>C3)电路中 C3 为可变电容,调整之即可在一定范围内调整其振荡频率 。
输出信号的幅值、频率等用实时监测法测试,观察记录信号波形调整C2(C2=80%)观测振荡信号的波形和频率变化。
调整C2(C2=20%)观测振荡信号的波形和频率变化。
(1)改变克拉泼振荡器中C3、C4 的值,观察信号波形的变化(包括信号波形、频率、信号幅度等参数);(2)改变振荡器的负载,再次观察信号波形的变化。
(3)电容三点式的改进型“西勒振荡器”:振荡器的频率)(21821C C L f +=π(C1>>C6 , C2>>C6)输出信号的幅值、频率等用实时监测法测试,调整 C6、C3 观测振荡信号的波形和频率变化。
(1)改变 西勒振荡器中 C3、C24的值,观察信号波形的变化(包括信号波形、频率、信号幅度等参数);(2)(3)改变振荡器的负载,再次观察信号波形的变化;(4)分别调整C2、C8,再次观测波形的变化。
一、实验名称:高频电子线路实验二、实验目的:1. 掌握高频电子线路的基本原理和实验方法。
2. 熟悉高频电子线路中常用元件的性能和特点。
3. 培养实验操作技能,提高分析问题和解决问题的能力。
三、实验原理:高频电子线路是指频率在1MHz以上的电子线路,其设计原理与低频电子线路有所不同。
本实验主要研究高频放大器、振荡器和调制解调器等基本电路。
四、实验器材:1. 高频信号发生器2. 双踪示波器3. 万用表4. 高频电路实验板5. 高频电子元件(如晶体管、电容、电感等)五、实验步骤:1. 高频放大器实验:(1)搭建高频放大器电路,包括输入、输出匹配网络和晶体管放大电路。
(2)调节输入信号幅度和频率,观察输出信号的变化,分析放大器的频率响应和增益。
(3)测量放大器的输入输出阻抗,分析匹配网络的设计。
2. 振荡器实验:(1)搭建LC振荡器电路,包括LC谐振回路和晶体管振荡电路。
(2)调节LC回路参数,观察振荡频率的变化,分析振荡器的工作原理。
(3)测量振荡器的输出波形,分析振荡器的频率稳定性和幅度稳定性。
3. 调制解调器实验:(1)搭建AM调制器和解调器电路,包括调制信号源、调制电路、解调电路和滤波器。
(2)调节调制信号幅度和频率,观察调制信号的波形,分析调制和解调过程。
(3)测量调制信号的频率、幅度和相位,分析调制和解调效果。
六、实验结果及分析:1. 高频放大器实验:(1)通过调节输入信号幅度和频率,观察到输出信号随输入信号的变化而变化,说明放大器具有放大作用。
(2)测量放大器的输入输出阻抗,发现匹配网络对放大器的性能有重要影响。
(3)分析放大器的频率响应和增益,发现放大器的增益随着频率的升高而降低。
2. 振荡器实验:(1)通过调节LC回路参数,观察到振荡频率随LC回路参数的变化而变化,说明振荡器的工作原理。
(2)测量振荡器的输出波形,发现振荡器的频率稳定性和幅度稳定性较好。
(3)分析振荡器的频率稳定性和幅度稳定性,发现晶体管的静态工作点对振荡器的性能有重要影响。
实验报告课程:高频电子线路学院:电子与信息工程学院专业:电子与信息工程班级:电信17-1 班姓名:XXX XXX XXX学号:XX XX指导教师:李海军实验项目名称: LC 正弦波振荡电路实验 实验日期: 11月12日实验概述:【实验目的及实验设备】 1、实验目的:(1)进一步学习掌握正弦波振荡电路的相关理论;(2)掌握电容三点式LC 振荡电路的基本原理,熟悉其各元件功能,熟悉静态工作点、耦合电容、反馈系数等对振荡幅度和频率的影响。
2、实验设备及仪器名称:(1)LC 、晶体正弦波振荡电路实验板 (2)20MH 双踪示波器 (3)万用表3、实验原理LC振荡器实质上是满足振荡条件的正反馈放大器。
LC振荡器是指振荡回路是由LC元件组成的。
从交流等效电路可知:由LC振荡回路引出三个端子,分别接振荡管的三个电极,而构成反馈式自激振荡器,因而又称为三点式振荡器。
如果反馈电压取自分压电感,则称为电感反馈LC振荡器或电感三点式振荡器;如果反馈电压取自分压电容,则称为电容反馈LC振荡器或电容三点式振荡器。
在几种基本高频振荡回路中,电容反馈LC振荡器具有较好的振荡波形和稳定度,电路形式简单,适于在较高的频段工作,尤其是以晶体管极间分布电容构成反馈支路时其振荡频率可高达几百MHZ~GHZ。
普通电容三点式振荡器的振荡频率不仅与谐振回路的LC 元件的值有关,而且还与晶体管的输入电容i C 以及输出电容o C 有关。
当工作环境改变或更换管子时,振荡频率及其稳定性就要受到影响。
为减小i C 、o C 的影响,提高振荡器的频率稳定度,提出了改进型电容三点式振荡电路——串联改进型克拉泼电路、并联改进型西勒电路,分别如图4-1和4-2所示。
串联改进型电容三点式振荡电路——克拉泼电路振荡频率为:∑=LC 10ω其中∑C 由下式决定io C C C C C C ++++=∑211111 选C C >>1,C C >>2时,C C -∑~,振荡频率0ω可近似写成 LC10≈ω这就使0ω几乎与o C 和i C 值无关,提高了频率稳定度。
调频接收机设计与调试一设计目的通过本课程设计与调试,提高动手能力,巩固已学的理论知识,能建立无线电调频接收机的整机概念,了解调频接收机整机各单元电路之间的关系及相互影响,从而能正确设计、计算调频接收机的单各元电路:输入回路、高频放大、混频、中频放大、鉴频及低频功放级。
初步掌握调频接收机的调整及测试方法。
二调频接收机的主要技术指标1.工作频率范围接收机可以接受到的无线电波的频率范围称为接收机的工作频率范围或波段覆盖。
接收机的工作频率必须与发射机的工作频率相对应。
如调频广播收音机的频率范围为88~108MH,是因为调频广播收音机的工作范围也为88~108MHz2.灵敏度接收机接收微弱信号的能力称为灵敏度,通常用输入信号电压的大小来表示,接收的输入信号越小,灵敏度越高。
调频广播收音机的灵敏度一般为5~30uV。
3.选择性接收机从各种信号和干扰中选出所需信号(或衰减不需要的信号)的能力称为选择性,单位用dB(分贝)表示dB数越高,选择性越好。
调频收音机的中频干扰应大于50dB。
4.频率特性接收机的频率响应范围称为频率特性或通频带。
调频机的通频带一般为200KHz。
5.输出功率接收机的负载输出的最大不失真(或非线性失真系数为给定值时)功率称为输出功率。
三基本设计原理调频接收机的组成一般调频接收机的组成框图如图所示。
其工作原理是:天线接受到的高频信号,经输入调谐回路选频为f1,再经高频放大级放大进入混频级。
本机振荡器输出的另一高频 f2亦进入混频级,则混频级的输出为含有f1、f2、(f1+f2)、(f2-f1)等频率分量的信号。
混频级的输出接调频回路选出中频信号(f2-f1),再经中频放大器放大,获得足够高增益,然后鉴频器解调出低频调制信号,由低频功放级放大。
由于天线接收到的高频信号经过混频成为固定的中频,再加以放大,因此接收机的灵敏度较高,选择性较好,性能也比较稳定。
中放的任务,是把变频器输出的中频信号放大后,输入到检波器。
实验三单调谐回路谐振放大器及通频带展宽实验一、实验目的:1. 熟悉高频电路实验箱的组成及其电路中各元件的作用;2. 熟悉并联谐振回路的通频带与选择性等相关知识;3. 熟悉负载对谐振回路的影响,从而了解频带扩展;4. 熟悉和了解单调谐回路谐振放大器的性能指标和测量方法。
二、预习要求:1. 复习选频网络的特性分析方法;2. 复习谐振回路的工作原理;3. 了解谐振放大器的电压放大倍数、动态范围、通频带及选择性等分析方法和知识。
三、实验电路说明:本实验电路如图7-3所示。
图7-3W、R1、R2和Re1(Re2)为直流偏置电路,调节W可改变直流工作点。
C2、L1构成谐振回路,R3为回路电阻,RL为负载电阻。
四、实验仪器:1.双踪示波器2.数字频率计3.万用表4.实验箱及单、双调谐放大模块5.高频信号发生器五、实验内容和步骤:1.测量谐振放大器的谐振频率:1)拨动开关K3至“RL”档;2)拨动开关K1至“OFF”档,断开R3 ;3)拨动开关K2,选中Re2;4)检查无误后接通电源;5)调整谐振放大器的动态工作点;6)高频信号发生器接到电路输入端TP1,示波器接电路输出端TP3;7)使高频信号发生器的正弦信号输出幅度为300mV左右(本实验指导书中所说幅度都是指峰峰值),其频率在2—11MHz之间变化,找到谐振放大器输出电压幅度最大且波形不失真的频率并记录下来;(注意:如找不到不失真的波形,应同时调节W来配合;幅度最大不失真的输出频率在8.3MHZ左右。
)2.测量放大器在谐振点的动态范围:1)拨动开关K1,接通R3;2)拨动开关K2,选中Re1;3)高频信号发生器接到电路输入端TP1,示波器接电路输出端TP3;4)调节高频信号发生器的正弦信号输出频率为8MHz,调节C2使谐振放大器输出电压幅度u0 最大且波形不失真。
此时调节高频信号发生器的信号输出幅度由300mV变化到1V,使谐振放大器的输出经历由不失真到失真的过程,记录下最大不失真的u0值(如找不到不失真的波形,可同时微调一下W和C2来配合),填入表3-1:表3-15)再选Re1=2KΩ,重复第4)步的过程;6)在相同的坐标上画出不同Ic(由不同的Re决定)时的动态范围曲线,并进行分析和比较。
3.7 直接数字频率合成器3.7.1 实验目的(1)通过实验进一步加深理解DDS的基本工作原理。
(2)通过实验熟悉其编程原理。
3.7.2实验原理及电路3.7.2.1 DDS简介直接数字频率合成(Direct Digital Synthesizer)简称DDS,是继直接频率合成和间接频率合成之后发展起来的第三代频率合成技术。
由于它具有相对带宽很宽、频率转换时间很短、频率分辨率很高、便于集成以及频率、相位和幅度均可控制等优点,被广泛应用于雷达、电子对抗等军事通信系统和移动通信中,特别是在短波调频通信中,信号在较宽的频带上不断变化,并且要求在很小的频率间隔内快速地变换频率和相位。
本实验系统采用的AD7008是AD公司生产的CMOS型的DDS芯片,该芯片功能齐全,性价比高,容易开发,实现的成品性能较好。
其相位累加器为32位,频率分辨率可达0.012Hz。
频率转换速度和频率间隔、分辨率不相干,频率转换的速率仅受限于器件响应速度的快慢,通常为几十纳秒。
由于实现了高度数字化、集成化,输出频率的稳定度达到晶振频率稳定度的数量级。
适用于频率调制、相位调制、正交调幅调制和驱动倍频锁相环构成分辨率高、转换速度快的频率合成器等场合。
DDS的实际输出最高频率约为时钟频率的l/3,输出频率越高,噪声功率越高。
通常在时钟频率f c=50MHz,输出频率f o=5.1MHz的情况下,其最大谐波频率为15.3MHz,幅度低于51.8dB,一般可通过低通滤波器滤除。
3.7.2.2 DDS原理AD7008能实现全数字编程控制的频率合成,由以下几个部分组成:相位累加器、正弦函数表、D/A转换器、8个寄存器和相关控制逻辑,如图3.8所示。
可编成DDS系统的核心是相位累加器,它由一个加法器和一个N位相位寄存器组成,N一般为24-32位。
每来一个外部参考时钟,相位寄存器便以步长M增加。
相位寄存器的输出与相位控制字相加后可输入到正弦查询表地址上。
高频电子线路实验报告实验一、调谐放大器一、实验目的1.熟悉电子元器件和高频电路实验箱。
2.练习使用示波器、信号发生器和万用表。
3.熟悉谐振电路的幅频特性分析——通频带与选择性。
4.熟悉信号源内阻及负载对谐振电路的影响,从而了解频带扩展。
5.熟悉和了解放大器的动态范围及其测试方法。
二、实验仪器1.双踪示波器2.高频信号发生器3.万用表4.实验板G1三、实验电路图 1-1 单调谐回路谐振放大器原理图四、实验内容及步骤1、(1)按图1-1所示连接电路,使用接线要尽可能短(注意接线前先测量+12V电源电压,无误后,关断电源再接线,注意接地)(2)接线后仔细检查,确认无误后接通电源。
2.静态测量实验电路中选Re=1K,测量各静态工作点,并计算完成表1-1表1-1*Vb,Ve是三极管的基极和发射极对地电压。
3.动态研究(1)测量放大器的动态范围Vi ~ Vo(在谐振点上)a.选R=10K ,Re=1K 。
把高频信号发生器接到电路输入端,电路输出端接示波器。
选择正常放大区的输入电压Vi,调节频率f使其为,调节Ct,使回路“谐振”,此时调节Vi由变到,逐点记录Vo电压,完成表1-2的第二行。
(Vi的各点测量值也可根据情况自己选定)b.当Re分别为500Ω,2KΩ时,重复上述过程,完成表1-2的第三、四行。
在同一坐标纸上画出Ic不同时的动态范围曲线Vo—Vi,并进行比较与分析。
表1-2*Vi , Vo可视为峰峰值(2)测量放大器的频率特性a.当回路电阻R=10k时,选择正常放大区的输入电压V i,将高频信号发生器的输出端接至电路的输入端,调节频率f,使其为,调节Ct使回路谐振,使输出电压幅度为最大,此时的回路谐振频率f0=为中心频率,然后保持输入电压 V i不变,改变频率f由中心频率向两边逐点偏离(在谐振频率附近注意测量Vo变化快的点),测得在不同频率f时对应的输出电压Vo,完成表1-3的第一行(频率偏离范围自定,可以参照3dB带宽来确定,即信号的幅值为信号最大幅值的倍的两个频率之差为放大器的3dB带宽)。
一、实验目的1. 了解高频电子线路的基本原理和实验方法。
2. 掌握高频电子线路中LC振荡器、高频小信号放大器等电路的原理和设计方法。
3. 培养实验操作技能和数据分析能力。
二、实验原理1. LC振荡器:利用LC谐振电路产生正弦波信号,其振荡频率由LC电路的元件参数决定。
2. 高频小信号放大器:利用晶体管等电子元件,对高频信号进行放大,提高信号的幅度。
三、实验仪器1. 高频信号发生器:产生所需频率和幅度的高频信号。
2. 示波器:观察和分析实验信号。
3. 万用表:测量电压、电流等参数。
4. 高频电路实验板:进行实验操作。
四、实验步骤1. LC振荡器实验:(1)搭建LC振荡电路,根据元件参数计算振荡频率。
(2)用示波器观察振荡波形,分析波形特点。
(3)调整元件参数,观察振荡频率和波形的变化。
2. 高频小信号放大器实验:(1)搭建高频小信号放大电路,根据元件参数计算放大倍数。
(2)用示波器观察输入、输出信号波形,分析放大效果。
(3)调整元件参数,观察放大倍数和波形的变化。
五、实验数据与分析1. LC振荡器实验:(1)根据元件参数计算振荡频率,实际测量值与理论计算值基本一致。
(2)观察振荡波形,为正弦波,波形稳定。
2. 高频小信号放大器实验:(1)根据元件参数计算放大倍数,实际测量值与理论计算值基本一致。
(2)观察输入、输出信号波形,放大效果良好。
六、实验结论1. 通过实验,掌握了高频电子线路的基本原理和实验方法。
2. 培养了实验操作技能和数据分析能力。
3. 熟悉了LC振荡器、高频小信号放大器等电路的设计方法。
七、注意事项1. 实验过程中,注意安全操作,防止触电和火灾。
2. 实验数据要准确记录,便于分析。
3. 实验过程中,发现问题要及时解决,确保实验顺利进行。
八、实验报告评分标准1. 实验原理理解(20分)2. 实验步骤操作(20分)3. 实验数据与分析(40分)4. 实验结论与总结(20分)本实验报告得分:______分。
《高频电子线路》课程实验报告学院: 信息学院专业: 电子信息科学与技术班级:姓名学号:指导教师:实验一高频(单级、两级)小信号(单、双)调谐放大器一、实验目的1.掌握高频小信号调谐放大器的工作原理;2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法。
二、实验内容1.测量各放大器的电压增益;2.测量放大器的通频带与矩形系数(选做);3.测试放大器的频率特性曲线(选做)。
放大器:V i1p-p(V)0.4 2.54 4 32.5 16 18单级双调谐放大器高频小信号放大器的主要技术指标有那些?主要有谐振频率, 谐振增益, 通频带, 增益带宽积, 矩形系数.实验二场效应管谐振放大器一、实验目的1.了解双栅场效应管放大器的工作原理;2.了解场效应管调谐放大器与三极管放大器的优缺点。
二、实验内容1.观察场效应管调谐放大器的输出波形;2.测量场效应管放大器的电压增益。
三、实验结果数据和截图V ip-p(V)V op-p(V)电压增益(dB)0.5 5.92 21讨论场效应管调谐放大器与晶体管放大器的优缺点。
场效应晶体管放大器是电压控制器件, 具有输入阻抗高、噪声低、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽、热稳定性好等优点,的优点, 被广泛应用在电子电路中。
场效应管可应用于放大, 由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器。
场效应管可以用作电子开关, 场效应管很高的输入阻抗非常适合作阻抗变换, 常用于多级放大器的输入级作阻抗变换。
场效应管可以用作可变电阻,场效应管可以方便地用作恒流源.调谐放大器以电容器和电感器组成的回路为负载, 增益和负载阻抗随频率而变的放大电路。
这种回路通常被调谐到待放大信号的中心频率上。
由于调谐回路的并联谐振阻抗在谐振频率附近的数值很大, 放大器可得到很大的电压增益。
而在偏离谐振点较远的频率上, 回路阻抗下降很快, 使放大器增益迅速减小;因而调谐放大器通常是一种增益高和频率选择性好的窄带放大器。
高频电子线路实验报告(总10页)摘要高频电子线路是指在高频范围内运作的电子设备和电路,具有良好的信号传输和处理能力。
本实验以微带衰减器为例,研究了高频电路的设计和制作方法,并测试了衰减器的性能指标。
实验结果表明,在合理的设计和制作条件下,微带衰减器能够实现准确的信号衰减和频率响应。
关键词:高频电子线路;微带衰减器;设计;制作;测试AbstractHigh frequency electronic circuit refers to electronic devices and circuits that operate in the high frequency range and have good signal transmission and processing capabilities. In this experiment, a microstrip attenuator was taken as an example to study the design and manufacturing methods of high frequency circuits, and the performance indicators of the attenuator were tested. The experimental results show that under reasonable design and manufacturing conditions, microstrip attenuators can achieve accurate signal attenuation and frequency response.Keywords: high frequency electronic circuit; microstrip attenuator; design; manufacturing; testing1.实验目的通过设计和制作微带衰减器,学习高频电子线路的设计原理和制作方法。
高频电子线路实验总结20091103655 王志爽实验一 高频小信号调谐放大器实验1-1a 1-1b1. 单调谐放大器的作用:不仅可以用于高级小信号或微弱信号的先行放大,而且还有一定得选频作用。
2.2.双调谐放大器的频带宽,选择性较好。
双调谐回路谐振放大器是将单调谐回路放大器的单调谐回路改为双调谐回路。
3.电压放大倍数:放大器的谐振回路谐振时,所对应的电压放大倍数A V0称为调谐放大的电压放大倍数。
A V0的表达式为Gg p g p y p p g y p p v v A ie oe fe fei V ++-=-=-=∑22212121004.调谐放大器的各项性能指标:(1)调谐频率(2)电压放大倍数(3)通频带(4)矩形数5.通频带BW :由于谐振回路的选频作用,当工作频率偏离谐振频率时,放大器的电压放大倍数下降,习惯上称电压放大倍数A V 下降到谐振电压放大倍数A V0的0.707倍时所对应的频率偏移称为放大器的通频带BW ,其表达式为BW = 2△f 0.7 = f 0/Q L 式中,Q L 为谐振回路的有载品质因数。
实验二 集成选频放大器R72.7R62.7TH31TP11. 原理重点:跨接于运放U 1B 的输出端与反相输入端的电容C 18,其作用是进一步滤除控制信号中的调制频率分量。
二极管D 3可对U 1B 输出控制电压进行限幅。
W 2提供比较电压,反相放大器U 1A 的2,3两端电位相等(虚短),等于W 2提供的比较电压,只有当U 1B 输出的直流控制信号大于此比较电压时,U1A 才能输出AGC 控制电压。
2.简易图:3.测量电压增益A v0将拨码开关S1的1、2全拨下,将4.5M 左右的高频小信号从J2输入(V p-p ≈50mV ,在TH3处观测),调节W1,用示波器观测J3输出幅度,使输出幅度最大不失真。
用示波器分别观测输入和输出信号的幅度大小,则A v0即为输出信号与输入信号幅度之比。
高频电子线路第三次实验报告
通信二班黄欣雅 201208030210
实验五低电平调制
5.1 实验目的
1、掌握低电平调制电路组成与基本工作原理。
2、熟悉低电平调制种类。
3、掌握各种低电平调制电路各项主要技术指标意义及测试技能。
5.2 实验内容
5.2.1 二极管平衡电路调制
1、 观察电路的特点,V1,V2中哪一个是载波,哪一个是调制信号? 答:V3是载波,V1(V2)调制信号。
2、 通过示波器观察电路波形,并计算电路的调幅系数m 。
图5.1 二极管平衡调制电路
5.2.2 模拟乘法器调制电路
1、 通过示波器观察电路波形,并计算电路的调幅系数m 。
图5.2 模拟乘法器调制电路
2、乘法器原则上只能实现DSB调制,该电路为什么可以实现AM调制?
答:该电路的两个输入信号的量级差别不大,调制信号和载波信号能够同时输出。
实验六高电平调制
6.1 实验目的
1、掌握集电极、基级调幅电路的组成与基本工作原理。
2、熟悉集电极、基级调幅电路的测试方法。
3、掌握集电极、基级调幅电路调幅系数的计算方法。
6.2 实验内容
6.2.1 集电极调幅电路
图6.1 集电极调幅电路
1)完成电路的搭建、示波器的连接。
2)通过示波器观察电路波形,并计算电路的调幅系数ma。
3)将电路中的V4去掉,R1=30Ω,再通过示波器观察输出波形,通过瞬态分析,观察集电极电流波形说明此时电路是什么工作状态?(注意:
在设置输出变量时,选择vv3#branch即可)
答:工作在过电压状态。
6.2.2 基极调幅电路
图6.2 基极调幅电路
1)完成电路的搭建、示波器的连接。
、
2)通过示波器观察电路波形,并计算电路的调幅系数ma。
3)将电路中的V4去掉,R1=30Ω,再通过示波器观察输出波形,通过瞬态分析,观察集电极电流波形说明此时电路是什么工作状态?
答:工作在欠电压状态。