第三章概率第3课时 概率的基本性质
- 格式:ppt
- 大小:1.99 MB
- 文档页数:13
第三章 概率一.随机事件的概率1、基本概念:⎧⎧⎪⎨⎨⎩⎪⎩不可能事件确定事件事件必然事件随机事件(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件;(2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(5)事件:确定事件和随机事件统称为事件,一般用大写字母A ,B ,C ……表示。
2、概率与频数、频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)= A n n为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A) 稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。
频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值A n n ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个事件的概率。
二.概率的基本性质1、各种事件的关系:(1)并(和)事件(2)交(积)事件(3)互斥事件(4)对立事件2、概率的基本性质:(1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;(2)P(E)=1(E 为必然事件);(3)P(F)=0(F 为必然事件);(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);(5)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);三.古典概型(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。
概率的基本性质概率是用来描述随机事件发生的可能性的数学工具。
在统计学和数学中,概率具有一些基本的性质。
本文将介绍概率的基本性质,包括概率的定义、概率的性质以及概率的运算性质。
一、概率的定义:1. 随机事件:随机事件是对结果不确定的事件的称呼,例如掷硬币的结果可能是正面或反面,这就是一个随机事件。
2. 样本空间:所有可能结果的集合称为样本空间,用S表示。
例如,掷硬币的样本空间是{正面,反面}。
3. 事件:样本空间的子集称为事件,用A、B等表示。
例如,正面朝上是一个事件。
4. 概率:概率是随机事件发生的可能性的度量,用P(A)表示。
概率的取值范围在0到1之间,其中0表示不可能事件,1表示必然事件。
二、概率的性质:1. 非负性:对于任何事件A,有0≤P(A)≤1。
2. 必然事件的概率:对于样本空间S,有P(S) = 1,即必然事件发生的概率为1。
3. 不可能事件的概率:对于空集∅,有P(∅) = 0,即不可能事件发生的概率为0。
4. 互斥事件的概率:如果两个事件A和B不可能同时发生,称它们为互斥事件,则有P(A∪B) = P(A) + P(B)。
5. 加法定理:对于任意两个事件A和B,有P(A∪B) = P(A) + P(B) - P(A∩B)。
这个公式表示事件A和B同时发生的概率等于各自发生的概率之和减去它们共同发生的概率。
6. 对立事件的概率:对于事件A的对立事件,记为A',有P(A') = 1 - P(A)。
这个公式表示事件A不发生的概率等于1减去事件A发生的概率。
三、概率的运算性质:1. 乘法规则:对于任意两个事件A和B,有P(A∩B) = P(B|A)P(A),其中P(B|A)表示在事件A发生的条件下事件B发生的概率。
2. 全概率公式:对于一组互斥的事件B1,B2,...,Bn,它们的并集为样本空间S,有P(A) = ΣP(A|Bi)P(Bi),其中Σ表示求和。
3. 贝叶斯公式:对于一组互斥的事件B1,B2,...,Bn,它们的并集为样本空间S,有P(Bi|A) = P(A|Bi)P(Bi)/ΣP(A|Bj)P(Bj),其中P(Bi|A)表示在事件A发生的条件下事件Bi发生的概率。
概率的基本性质(第三课时)1. 引言概率是数学中的一个重要概念,它描述了事件发生的可能性。
在前面的两节课中,我们学习了概率的基础知识以及概率的运算法则。
在本节课中,我们将进一步学习概率的基本性质,以帮助我们更好地理解和运用概率。
2. 完备性完备性是概率的一个基本性质。
对于同一样本空间中的所有事件,它们的概率之和等于1。
这可以表示为以下公式:$$P(\\Omega) = 1$$其中,$\\Omega$代表样本空间。
完备性的意义在于,所有可能的事件发生的总和必须等于1,这是由于在每次试验中,事件要么发生,要么不发生,因此所有事件必须覆盖了全部的可能性。
3. 非负性非负性是概率的另一个基本性质。
概率是非负的,即概率值不会小于0。
对于任何事件A来说,它的概率保持非负性:$$P(A) \\geq 0$$非负性的意义在于,概率是一个度量事件发生可能性的指标,它不能为负数。
4. 加法性加法性是概率的一个重要性质。
如果事件A和事件B是两个互不相容(即不可能同时发生)的事件,则它们的并事件的概率等于它们各自概率的和:$$P(A \\cup B) = P(A) + P(B)$$这个性质可以推广到多个事件的情况。
如果有n个互不相容的事件A1,A2,...,A n,则它们的并事件的概率等于它们各自概率的和:$$P(A_1 \\cup A_2 \\cup ... \\cup A_n) = P(A_1) + P(A_2) + ... + P(A_n)$$加法性的意义在于,对于互不相容的事件,我们可以通过将它们的概率进行累加来计算并事件的概率。
5. 乘法性乘法性是概率的又一个基本性质。
如果事件A和事件B是两个相互独立(即它们之间没有相互影响)的事件,则它们的交事件的概率等于它们各自概率的乘积:$$P(A \\cap B) = P(A) \\cdot P(B)$$这个性质同样可以推广到多个事件的情况。
如果有n个相互独立的事件A1,A2,...,A n,则它们的交事件的概率等于它们各自概率的乘积:$$P(A_1 \\cap A_2 \\cap ... \\cap A_n) = P(A_1) \\cdot P(A_2) \\cdot ... \\cdotP(A_n)$$乘法性的意义在于,对于相互独立的事件,我们可以通过将它们的概率进行相乘来计算交事件的概率。
保持积极心态的九个好习惯保持积极心态对于我们的生活和工作来说至关重要。
积极心态能帮助我们更好地应对困难和挑战,改善生活质量,提升自我成长。
然而,积极心态并不是一蹴而就的,它需要我们养成一些良好的习惯。
在本文中,我将介绍九个保持积极心态的好习惯。
一、培养感恩的心态感恩是一种能够帮助我们保持积极心态的强大力量。
每天花点时间思考并记录自己所感恩的事情,感激身边的人和事,能够让我们更加乐观和满足。
当我们把注意力放在积极的事物上时,我们就能够更好地应对生活中的压力和困难。
二、保持身心健康身心健康是保持积极心态的基础。
要保持积极心态,我们需要注重锻炼身体,保持良好的饮食习惯,并且合理安排休息时间。
此外,学会放松自己,通过冥想、旅行或者看书等活动来缓解压力,有助于保持积极心态。
三、树立目标和计划树立明确的目标和制定计划是保持积极心态的关键。
设定目标能够帮助我们保持动力和专注,而制定计划则能够让我们更好地规划自己的时间和资源。
当我们看到自己不断实现目标的过程,我们就会更有信心和积极性。
四、与积极的人交往与积极的人交往有助于我们保持积极心态。
积极的人能够带给我们更多的正能量,鼓励我们、支持我们,并分享他们的成功经验。
在与积极的人交往中,我们也能够学到更多的知识和技能,提高自己的能力。
五、学会积极思考积极思考是保持积极心态的基本要素之一。
将注意力放在解决问题和寻找解决方案上,而不是将其放在消极的情绪或困难上。
学会积极思考能够让我们更加乐观和自信,更好地应对生活中的挑战。
六、保持学习和成长保持学习和成长的心态是保持积极心态的关键。
通过不断学习新知识、掌握新技能,我们能够拓宽自己的视野,提高自己的能力。
不断进步和成长会让我们更加有自信和积极。
七、培养自我爱护的习惯自我爱护是保持积极心态的基础。
要培养自我爱护的习惯,我们需要关注自己的情感和需要,给自己适当的奖励和休息,培养良好的自尊与自信心。
当我们对自己有一份充分的关怀时,我们就会更加积极且愿意面对挑战。
一、随机事件的概率1.事件与随机事件在一定条件下必然发生的事件叫;在一定条件下不可能发生的事件叫;在一定条件下可能发生也可能不发生的事件叫。
2.事件的频率与概率⑴若在n次试验中事件A发生了m次, 则称为事件A的频率。
记做。
二、⑵若随着试验次数n的增大, 事件A的频率总接近某个常数p, 在它的附近作微小摆动, 则称为事件A的概率, 记做, 显然。
三、 3.概率从数量上反映了一个事件的大小。
四、概率的基本性质1.事件的关系与运算:(1)互斥事件:若为, 则称事件与事件互斥。
(2)对立事件:若为, 为, 则称事件与事件互为对立事件。
2.概率的几个基本性质:(1)概率的取值范围是: 。
(2)的概率为1;的概率为0。
五、(3)如果事件与事件互斥, 那么。
六、(4)如果事件与事件对立, 那么;;。
七、古典概型1.古典概型的特征:(1):一次试验中, 基本事件只有有限个;八、(2): 每个基本事件发生的可能性都相等。
九、2、求古典概率的常用方法: 列举法与列表法。
十、几何概型1.几何概型的特征:(1)几何概型的基本事件有无穷多个;(2)每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例。
2.求几何概率用到的一个方法: 线性规划。
练习题:1.甲盒中有红, 黑, 白三种颜色的球各3个, 乙盒子中有黄, 黑, 白, 三种颜色的球各2个, 从两个盒子中各取1个球, 求取出的两个球是不同颜色的概率.2.设关于的一元二次方程, 若是从区间任取的一个数, 是从区间任取的一个数,求上述方程有实数根的概率.3.将一颗质地均匀的正方体骰子(六个面的点数分别为1, 2, 3, 4, 5, 6)先后抛掷两次, 将得到的点数分别记为.将的值分别作为三条线段的长, 求这三条线段能围成等腰三角形的概率.1 / 1。