2015年中考模拟试卷数学卷
- 格式:doc
- 大小:559.50 KB
- 文档页数:12
2015年中考模拟考试数学试卷说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟. 2.本卷分为试题卷和答题卷,答案要求写在答题卷上,在试题卷上作答不给分. 一、选择题(本大题共6小题,每小题3分,共18分)每小题只有一个正确的选项,请把正确选项的代号填涂在答题卷的相应位置上. 1. 3-的相反数是A .3B .31C .3-D .31-2.下列运算正确的是 A . 523x x x =+ B .x x x =-23C .623x x x=⋅ D .x x x =÷233. 直线y=x -1的图像经过的象限是A. 第二、三、四象限B.第一、二、四象限C. 第一、三、四象限D.第一、二、三象限 4.下列几何体各自的三视图中,只有两个视图相同的是 A .①③ B .②④ C .③④ D .②③ 5. 如图,点A 、B 、C 的坐标分别为(0, -1),(0,2),(3,0).从下面四个点M (3,3),N (3,-3),P (-3,0),Q (-3,1)中选择一个点,以A 、B 、C 与该点为顶点的四边形是中心对称图形的个数有 A .1个 B .2个 C .3个 D .4个(第4题图 )6.类比二次函数图象的平移,把双曲线y=x 1向右平移2个单位,再向上平移1个单位,其对应的函数解析式变为A .2x 3x y ++=B .2x 1x y -+=C .2x 1x y ++=D .2x 1x y --=二、填空题(本大题共8小题,每小题3分,共24分)①正方体 ②圆锥体 ③球体7.国家统计局初步测算,2011年中国国内生产总值(GDP )约为470000亿元.将“470000亿元”用科学记数法表示为********* 亿元. 8.函数x y 24-=的自变量的取值范围是********* .9.分解因式:22a b ab b -+= ********* .10.如图,已知AB ∥CD ,∠A =50°,∠C =∠E .则∠C =********* . 11. 若不等式3(2)x x a --≤的解为1-≥x ,则a 的值为********* .12. 如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是********* .13. 如图,直径AB 为12的半圆,绕A 点逆时针旋转60°,此时点B 到了点B ’,则图中阴影部分的面积是********* .14.如图,△ABC 是一个直角三角形,其中∠C=90゜,∠A=30゜,BC=6;O 为AB 上一点,且OB=3, ⊙O 是一个以O 为圆心、OB 为半径的圆;现有另一半径为333-的⊙D 以每秒为1的速度沿B →A →C →B 运动,设时间为t ,当⊙D 与⊙O 外切时,t 的值为 ****** . (本题为多解题,漏写得部分分,错写扣全部分) 三、(本大题共4小题,每小题6分,共24分)15计算:()1260cos 2218π-+︒-⎪⎪⎭⎫⎝⎛+--16. 先化简,再求值 ()xx x x x 224422+÷+++ ,其中 x = 2(第12题图) BA(第13题图)A B C D E 50°(第10题图)17.新余某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M 到广场的两个入口A 、B 的距离相等,且到广场管理处C 的距离等于A 和B 之间距离的一半,A 、B 、C 的位置如图所示.请在答题卷的原图上利用尺规作出音乐喷泉M 的位置.(要求:不写已知、求作、作法和结论,只保留作图痕迹,必须用铅笔作图)18.甲乙丙三个同学在打兵乓球时,为了确定哪两个人先打,商定三人伸出手来,若其中两人的手心或手背同时向上,则这两个人先打,如果三个人手心或手背都向上则重来. (1)求甲乙两人先打的概率; (2)求丙同学先打的概率.四、(本大题共2小题,每小题8分,共16分)19. 如图,在Rt △ABC 中,∠C 为直角,以AB 上一点O 为圆心,OA 长为半径的圆与BC 相切于点D ,分别交AC 、AB 于点E 、F .(1)若AC=8,AB=12,求⊙O 的半径;(2)连接OE 、ED 、DF 、EF .若四边形BDEF 是平行四 边形,试判断四边形OFDE 的形状,并说明理由.20.如图:把一张给定大小的矩形卡片ABCD 放在间距为10mm 的横格纸中(所有横线互相平行),恰好四个顶点都在横格线上,AD 与l2交于点E, BD 与l4交于点F. (1)求证:△ABE ≌△CDF ;(2)已知α=25°,求矩形卡片的周长.(可用计算器求值,答案精确到1mm ,参考数据: sin25°≈0.42,cos25°≈0.91, tan25°≈0.47)五、(本大题共2小题,每小题9分,共18分)21. 某公司为了解顾客对自己商品的总体印象,采取随机抽样的方式,对购买了自己商品的年龄在16~65岁之间的400个顾客,进行了抽样调查.并根据每个年龄段的抽查人数和该年龄段对商品总体印象感到满意的人数绘制了下面的图(1)和图(2). 根据上图提供的信息回答下列问题:(1)被抽查的顾客中,人数最多的年龄段是 岁;(2)已知被抽查的400人中有83%的人对商品总体印象感到满意,请你求出31~40岁年龄段的满意人数,并补全图(2);FE A(3)比较31~40岁和41~50岁这两个年龄段对商品总体印象满意率的高低(四舍五入到1%).注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数⨯100%.22. 某超市经销甲、乙两种商品. 现有如下信息:请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价各多少元?(2)该超市平均每天卖出甲商品50件和乙商品20件.经调查发现,甲、乙两种商品零售单价分别每降0.2元,这两种商品每天可各多销售10件.为了使每天获取更大的利润,超市决定把甲、乙两种商品的零售单价都下降m 元.设总利润为n 元,请用含m 的式子表示超市每天销售甲、乙两种商品获取的总利润n ,在不考虑其他因素的条件下,当m 定为多少时,才能使超市每天销售甲、乙两种商品获取的总利润最大?每天的最大利润是多少? 六、(本大题共2小题,每小题10分,共20分)23. 已知抛物线22232y x mx m m =-++. (1)若抛物线经过原点,求m 的值及顶点坐标,并判断抛物线顶点是否在第三象限的平分线所在的直线上;(2)是否无论m 取任何实数值,抛物线顶点一定不在第四象限?说明理由;当实数m 变化时,列出抛物线顶点的纵、横坐标之间的函数关系式,并求出该函数的最小函数值.51~60岁7%21~30岁 39% 31~40岁 20% 16~20岁16%61~65岁3%41~50岁 15%图(1)24.已知:如图(1),△OAB 是边长为2的等边三角形,0A 在x 轴上,点B 在第一象限内;△OCA 是一个等腰三角形,OC =AC ,顶点C 在第四象限,∠C =120°.现有两动点P 、Q 分别从A 、O 两点同时出发,点Q 以每秒1个单位的速度沿OC 向点C 运动,点P 以每秒3个单位的速度沿A →O →B 运动,当其中一个点到达终点时,另一个点也随即停止. (1)求在运动过程中形成的△OPQ 的面积S 与运动的时间t 之间的函数关系,并写出自变量t 的取值范围; (2)在OA 上(点O 、A 除外)存在点D ,使得△OCD 为等腰三角形,请直接写出所有符合条件的点D 的坐标;(3)如图(2),现有∠MCN =60°,其两边分别与OB 、AB 交于点M 、N ,连接MN .将∠MCN 绕着C 点旋转(0°<旋转角<60°),使得M 、N 始终在边OB 和边AB 上.试判断在这一过程中,△BMN 的周长是否发生变化?若没有变化,请求出其周长;若发生变化,请说明理由.参考答案一、选择题(本大题共6小题,每小题3分,共18分)二、填空题(本大题共8小题,每小题3分,共24分)7、54.710⨯ 8、2≤x 9、()21-a b 10、25゜ 11、8 12、7413、24π 14、3612或3312或333+++(每写对一个1分,但写错0分) 三、(本大题共4小题,每小题6分,共24分)15、解:原式=1212222+⨯-+ …………………………………………………3分=222+ ……………………………………………………………6分16、解:原式=()()21222+⋅++x x x x=x 1 ……………………………………………4分 将2=x 代入得: 221=x………………………………………………………6分17.………………………………………………6分18、 甲: 手心向上 手背向上乙:手心向上手背向上手心向上手背向上……2分丙:手心向上 手背向上 手心向上 手背向上 手心向上 手背向上 手心向上手背向上 (1)P(甲乙两人先打)=0.25 …………………………………………………………4分 (2)P(丙同学先打)=0.5………………………………………………………………6分 四、(本大题共2小题,每小题8分,共16分) 19、(1)设⊙O 的半径为r.∵BC 切⊙O 于点D ∴OD ⊥BC∵∠C=90° ∴OD ∥AC ∴△OBD ∽△ABC. …………………………2分∴OD AC = OBAB,即12128r r-=解得:524=r∴⊙O 的半径为524………………………4分(2)四边形OF DE 是菱形 ………………5分 ∵四边形BDEF 是平行四边形 ∴∠DEF=∠B. ∵∠DEF=12∠DOB ∴∠B=12∠DOB.∵∠ODB=90° ∴∠DOB+∠B=90° ∴∠DOB=60°∵DE ∥AB ,∴∠ODE=60°.∵OD=OE ,∴△ODE 是等边三角形∴OD=DE ∵OD=OF ∴DE=OF ∴四边形OFDE 是平行四边形 ………7分 ∵OE=OF ∴平行四边形OFDE 是菱形. …………………………………8分 20、(1) ∵l2∥l4 BC ∥AD ∴四边形BFDE 是平行四边形∴BE=FD ……………………………………………………………………2分A∵AB=CD ,∠BAE=∠FCD=90゜∴△ABE ≌△CDF ……………………………………………………………4分 (2)(批改时注意若学生用计算器计算,中间答案会有 少许不同,但最终答案一样) 过A 作AG ⊥l4,交l2于H ∵α=25° ∴∠ABE=25°∴sin 0.42AHABE AB∠=≈解得:AB ≈47.62 ………………5分∵∠ABE+∠AEB=90゜ ∠HAE+∠AEB=90゜ ∴∠HAE=25゜∴91.0cos ≈=∠AD AGDAG 解得:AD ≈43.96 ………………7分∴矩形卡片ABCD 的周长为(47.62+43.96)×2≈183(mm ) ………8分五、(本大题共2小题,每小题9分,共18分)21、(1) 被抽查的顾客中,人数最多的年龄段是21~30岁 ……………………2分(2)总体印象感到满意的人数共有83400332100⨯=(人)31~40岁年龄段总体印象感到满意的人数是332(5412653249)66-++++=(人) ………………………………4分图略 …………………………………………………………………………6分(3) 31~40岁年龄段被抽人数是2040080100⨯=(人)总体印象的满意率是66100%82.5%83%80⨯=≈ ………………………7分41~50岁被抽到的人数是1540060100⨯=人,满意人数是53人,总体印象的满意率是5388.3%88%60=≈ …………………………………8分∴41~50岁年龄段比31~40岁年龄段对商品总体印象的满意率高 ……9分22、(1)设甲商品的进货单价是x 元,乙商品的进货单价是y 元. ………………1分 根据题意,得⎩⎨⎧x+y=53(x+1)+2(2y-1)=19 解得⎩⎨⎧x=2y=3………………………3分答:甲商品的进货单价是2元,乙商品的进货单价是3元. ………………4分(2)设商店每天销售甲、乙两种商品获取的利润为n 元,则………………5分 n=(1-m)(50+10×m 0.2)+(5-3-m)(20+10×m0.2)F E GH即 n=-100m2+80m+90 =-100(m-0.4)2+106. ……………………………7分 ∴当m=0.4时,n 有最大值,最大值为106. ………………………………8分答:当m 定为0.4时,才能使商店每天销售甲、乙两种商品获取的利润最大,每天的最大利润是106元. ………………………………………………………………9分 六、(本大题共2小题,每小题10分,共20分)23、解:∵()m m m x m m mx x y 222322222++-=++-= ∴抛物线顶点为()m mm 22,2+(1)将(0,0)代入抛物线解析式中解得:m=0或m=32-………………………1分当m=0时,顶点坐标为(0,0)当m=32-时,顶点坐标为(32-,94-) ……………………………………3分∵第三象限的平分线所在的直线为y=x∴(0,0)在该直线上,(32-,94-)不在该直线上 ……………………………4分(2)∵m>0时,m m222+>0∴抛物线顶点一定不在第四象限 …………………………………………6分设顶点横坐标为m ,纵坐标为n ,则m m n 222+= …………………8分∵212122222-⎪⎪⎭⎫ ⎝⎛+=+=m m m n∴当21-=m 时,n 有最小值21-…………………………………10分24、解:(1)过点C 作CD OA ⊥于点D .(如图①) ∵OC AC =,120ACO ∠=︒,∴30AOC OAC ∠=∠=︒. ∵OC AC =,CD OA ⊥, ∴1OD DA ==.在Rt ODC ∆中,1cos cos30OD OC AOC ===∠︒(1)当203t <<时,OQ t =,3AP t =,23OP OA AP t =-=-;过点Q 作QE OA ⊥于点E .(如图①)在Rt OEQ ∆中,∵30AOC ∠=︒,∴122t QE OQ ==, ∴21131(23)22242OPQ t S OP EQ t t t∆=⋅=-⋅=-+. 即23142S t t=-+ .………………………………………2分 (图①) (2)当23t <≤时,(如图②)OQ t =,32OP t =-.∵60BOA ∠=︒,30AOC ∠=︒,∴90POQ ∠=︒.∴2113(32)222OPQ S OQ OP t t t t∆=⋅=⋅-=-. 即232S t t=-.故当203t <<时,23142S t t =-+,当23t <≤时,232S t t=-(2),0)或2(,0)3 …………………6分(3)BMN ∆的周长不发生变化.延长BA 至点F ,使AFOM =,连结CF .(如图③) ∵90,MOC FAC OC AC ∠=∠=︒=,∴MOC ∆≌FAC ∆. ∴MC CF =,MCO FCA ∠=∠ …………………7分∴FCN FCA NCA MCO NCA ∠=∠+∠=∠+∠60OCA MCN =∠-∠=. ∴FCN MCN ∠=∠. 又∵,MC CF CN CN ==.∴MCN ∆≌FCN ∆.∴MN NF = ……………………………………9分 ∴BM MN BN BM NF BN ++=++AF BA OM BO ++-=BA BO =+4=. ∴BMN ∆的周长不变,其周长为4 ……………………………………10分x。
陕西省2015年中考数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.计算:(﹣)0=(),求出(﹣(﹣2.(3分)(2015•陕西)如图是一个螺母的示意图,它的俯视图是()B4.(3分)(2015•陕西)如图,AB∥CD,直线EF分别交直线AB,CD于点E,F.若∠1=46°30′,则∠1的度数为()5.(3分)(2015•陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的6.(3分)(2015•陕西)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线.若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()DBC=∠7.(3分)(2015•陕西)不等式组的最大整数解为()8.(3分)(2015•陕西)在平面直角坐标系中,将直线l1:y=﹣2x﹣2平移后,得到直线l2:9.(3分)(2015•陕西)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,10.(3分)(2015•陕西)下列关于二次函数y=ax2﹣2ax+1(a>1)的图象与x轴交点的判二、填空题(共5小题,每小题3分,计12分,其中12、13题为选做题,任选一题作答)11.(3分)(2015•陕西)将实数,π,0,﹣6由小到大用“<”号连起来,可表示为﹣6.≈12.(3分)(2015•陕西)正八边形一个内角的度数为135°.每一个内角的度数为×13.(2015•陕西)如图,有一滑梯AB,其水平宽度AC为5.3米,铅直高度BC为2.8米,则∠A的度数约为27.8°(用科学计算器计算,结果精确到0.1°).A==≈14.(3分)(2015•陕西)如图,在平面直角坐标系中,过点M(﹣3,2)分别作x轴、y 轴的垂线与反比例函数y=的图象交于A,B两点,则四边形MAOB的面积为10.y==y=|ab|=2|cd|=215.(3分)(2015•陕西)如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M,N分别是AB,BC的中点,则MN长的最大值是3.MN=AD=6MN=AD=3.三、解答题(共11小题,计78分,解答时写出过程)16.(5分)(2015•陕西)计算:×(﹣)+|﹣2|+()﹣3.+2+2+2.17.(5分)(2015•陕西)解分式方程:﹣=1.x=x=18.(5分)(2015•陕西)如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC 分成面积相等的两部分.(保留作图痕迹,不写作法)19.(5分)(2015•陕西)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在良好等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.20.(7分)(2015•陕西)如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作AE∥BD,CE⊥AC,且AE,CE相交于点E,求证:AD=CE.21.(7分)(2015•陕西)晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)22.(7分)(2015•陕西)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.23.(7分)(2015•陕西)某中学要在全校学生中举办“中国梦•我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局,若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)∴小亮掷得向上一面的点数为奇数的概率是:==,24.(8分)(2015•陕西)如图,AB是⊙O的直径,AC是⊙O的弦,过点B作⊙O的切线DE,与AC的延长线交于点D,作AE⊥AC交DE于点E.(1)求证:∠BAD=∠E;(2)若⊙O的半径为5,AC=8,求BE的长.BE=.25.(10分)(2015•陕西)在平面直角坐标系中,抛物线y=x2+5x+4的顶点为M,与x轴交于A,B两点,与y轴交于C点.(1)求点A,B,C的坐标;(2)求抛物线y=x2+5x+4关于坐标原点O对称的抛物线的函数表达式;(3)设(2)中所求抛物线的顶点为M′,与x轴交于A′,B′两点,与y轴交于C′点,在以A,B,C,M,A′,B′,C′,M′这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积.,根据,,MD=,26.(12分)(2015•陕西)如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为24;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.=4AE=24;,=2CD=2AE=8,=,>﹣4 OQ=BOQ==的值为.。
2015年中考模拟试卷数学卷和答案
2015年中考模拟试卷数学卷
考生须知:
1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟。
2.答题时,应该在答题卷指定位置内写明校名,姓名和准考证号。
3.所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应。
4.考试结束后,上交试题卷和答题卷
试题卷
一、仔细选一选(本题有10个小题,每小题3分,共30分)
下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.
1.如果,那么,两个实数一定是()
A.一正一负
B.相等的数
C.互为相反数
D.互为倒数
2.下列调查适合普查的是()
A.调查2011年3月份市场上西湖龙井茶的质量
B.了解萧山电视台188热线的收视率情况
C.网上调查萧山人民的生活幸福指数
D.了解全班同学身体健康状况
3.函数,一次函数和正比例函数之间的包含关系是()
4.已知下列命题:①同位角相等;②若a0,则;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2-2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等。
从中任选一个命题是真命题的概率为()
A.B.C.D.
精心整理,仅供学习参考。
绝密★启用前河北省2015年初中毕业生升学文化课考试数学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题共42分)一、选择题(本大题共16小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:32(1)-⨯-=( )A.5B.1C.1-D.62.下列说法正确的是( )A.1的相反数是1-B.1的倒数是1-C.1的立方根是1±D.1-是无理数3.一张菱形纸片按图1、图2依次对折后,再按图3打出一个圆形小孔,则展开铺平后的图案是 ( )图1图2 图3AB CD4.下列运算正确的是( )A.111()22-=-B.76106000000⨯=C.22(2)2a a=D.325a a a=5.右图中的三视图所对应的几何体是( )A BC D6.如图,,AC BE是O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是( )A.ABE△B.ACF△C.ABD△D.ADE△7.在数轴上标注了四段范围,如图,( )A.段①B.段②C.段③D.段④8.如图,AB EF∥,CD EF⊥,50BAC∠=,则ACD∠=( )A.120B.130C.140D.1509.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30和南偏西45方向上.符合条件的示意图是( )A BC D毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第1页(共26页)数学试卷第2页(共26页)数学试卷 第3页(共26页) 数学试卷 第4页(共26页)10.一台印刷机每年印刷的书本数量y (万册)与它的使用时间x (年)成反比例关系,当2x =时,20y =,则y 与x 的函数图象大致是( )AB C D 11.利用加减消元法解方程组2510, 536, x y x y +=-⎧⎨-=⎩①②下列做法正确的是( )A .要消去y ,可以将52⨯+⨯①②B .要消去x ,可以将3(5)⨯+⨯-①②C .要消去y ,可以将53⨯+⨯①②D .要消去x ,可以将(5)2⨯-+⨯①②12.若关于x 的方程220x x a ++=不存在实数根,则a 的取值范围是( )A .1a <B .1a >C .1a ≤D .1a ≥13.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是( )A .12B .13C .15D .1614.如图,直线l :233y x =--与直线y a =(a 为常数)的交点在第四象限,则a 可能在( )A .12a <<B .20a -<<C .32a --≤≤D .104a --<<15.如图,点A ,B 为定点,定直线l AB ∥,P 是l 上一动点,点M ,N 分别为,PA PB 的中点,对于下列各值: ①线段MN 的长; ②PAB △的周长; ③PMN △的面积;④直线,MN AB 之间的距离; ⑤APB ∠的大小.其中会随点P 的移动而变化的是( )A .②③B .②⑤C .①③④D .④⑤16.如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则( )A .甲、乙都可以B .甲、乙都不可以C .甲不可以,乙可以D .甲可以,乙不可以第Ⅱ卷(非选择题 共78分)二、填空题(本大题共4小题,每小题3分,共12分.把答案填写在题中的横线上) 17.若0||2015a =,则a = .18.若20a b =≠,则222a b a ab--的值为 .19.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则312∠+∠-∠=.20.如图,9BOC ∠=,点A 在OB 上,且1OA =.按下列要求画图:以A 为圆心,1为半径向右画弧交OC 于点1A ,得第1条线段1AA ; 再以1A 为圆心,1为半径向右画弧交OB 于点2A ,得第2条线段12A A ; 再以2A 为圆心,1为半径向右画弧交OC 于点3A ,得第3条线段23A A ; ……这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n =.数学试卷 第5页(共26页) 数学试卷 第6页(共26页)三、解答题(本大题共6小题,共66分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分10分)老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:2351x x x -=-+.(1)求所捂的二次三项式;(2)若1x ,求所捂二次三项式的值.22.(本小题满分10分)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图的四边形ABCD ,并写出了如下不完整的已知和求证. (1)在方框中填空,以补全已知和求证; (2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为 .23.(本小题满分10分)水平放置的容器内原有210毫米高的水,如图.将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出.设水面高为y 毫米. (1)只放入大球,且个数为x 大,求y 与x 大的函数关系式(不必写出x 大的范围); (2)仅放入6个大球后,开始放入小球,且小球个数为x 小. ①求y 与x 小的函数关系式(不必写出x 小的范围);②限定水面高不超过260毫米,最多能放入几个小球?24.(本小题满分11分)某厂生产,A B 两种产品,其单价随市场变化而做相应调整.营销人员根据前三次单价变化的情况,绘制了如下统计表及不完整的折线图:,A B 产品单价变化折线图第三次并求得了产品三次单价的平均数和方差:5.9A x =;2222143[(6 5.9)(5.2 5.9)(6.5 5.9)]3150A S =-+-+-=. (1)补全图中B 产品单价变化的折线图.B 产品第三次的单价比上一次的单价降低了 %;(2)求B 产品三次单价的方差,并比较哪种产品的单价波动小;(3)该厂决定第四次调价,A 产品的单价仍为6.5元/件,B 产品的单价比3元/件上调(0)m m >%,使得A 产品这四次单价的中位数是B 产品四次单价中位数的2倍少1,求m 的值.我的想法是:利用三角形全等,依据“两组对边分别平行的四边形是平行四边形”来证明.嘉淇毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共26页) 数学试卷 第8页(共26页)25.(本小题满分11分)如图,已知点)(0,0O ,0()5,A -,()2,1B ,抛物线l :2()1y x h =--+(h 为常数)与y 轴的交点为C .(1)l 经过点B ,求它的解析式,并写出此时l 的对称轴及顶点坐标;(2)设点C 的纵坐标为C y ,求C y 的最大值,此时l 上有两点11(,)x y ,22(,)x y ,其中120x x >≥,比较1y 与2y 的大小;(3)当线段OA 被l 只分为两部分,且这两部分的比是1:4时,求h 的值.26.(本小题满分14分)平面上,矩形ABCD 与直径为QP 的半圆K 如图1摆放,分别延长DA 和QP 交于点O ,且60DOQ ∠=,3OQ OD ==,2OP =,1OA AB ==.让线段OD 及矩形ABCD 位置固定,将线段OQ 连带着半圆K 一起绕着点O 按逆时针方向开始旋转,设旋转角为(060)αα≤≤.发现 (1)当0α=,即初始位置时,点P 直线AB 上(填“在”或“不在”). 求当α是多少时,OQ 经过点B ?(2)在OQ 旋转过程中,简要说明α是多少时,点P ,A 间的距离最小?并指出这个最小值;(3)如图2,当点P 恰好落在BC 边上时,求α及S 阴影.图2图3图4拓展 如图3,当线段OQ 与CB 边交于点M ,与BA 边交于点N 时,设()0BM x x =>,用含x 的代数式表示BN 的长,并求x 的取值范围. 探究 当半圆K 与矩形ABCD 的边相切时,求sin α的值.图15 / 13河北省2015年初中毕业生升学文化课考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】32(1)3(2)325-⨯-=--=+=,故选A . 【考点】有理数的运算 2.【答案】A【解析】1的相反数是1-,1的倒数是1,1的立方根是1,1-是有理数,故选A . 【考点】相反数、倒数、立方根及无理数的概念 3.【答案】C【解析】将菱形按图依次对折后,在菱形的钝角处有两个对称的圆孔,故选C . 【考点】图形的折叠 4.【答案】D【解析】111()2122-==,761060000000⨯=,()2224=a a ,325∙=a a a ,故选D .【考点】幂的运算 5.【答案】B【解析】从正面看到的是几何体的主视图,由主视图可推断只有B 符合,故选B . 【考点】几何体的三视图 6v 【答案】B【解析】△ABE ,△ABD ,△ADE 的顶点都在O 上,其外心都是点O ,而△AC F 的顶点F 不在O 上,所以△ACF 的外心不是点O ,故选B . 【考点】三角形的外心 7.【答案】C2 1.414 2.828=⨯=C .数学试卷 第11页(共26页)数学试卷 第12页(共26页)【考点】数轴与无理数的估算 8.【答案】C【解析】如图,过点C 作∥CH AB ,∵∥A B E F ,∴∥C H E F ,∴ 50∠=∠=︒H C A C A B ,180∠+∠=︒HCD CDE ,∵ ⊥CD EF ,∴90∠=︒CDE ,2∴90∠=︒HCD ,。
2015年中考数学模拟试题参考答案1-10:DADBBDAABB(11)2(12)1.49×810(13 )83(14)1425 (15)8(16)75° 17(1)y=-2x+4 (2)x ≤118(1)略 (2)105°19(1)P P 略P 略略略略PPPP略略P 略PPPPPp 凭PPPPPPp(2)树形图略P=81520(1)(2)略.(3)P(0,1), y=-12x+7421(1)连接BD ,OD ,作OG ⊥CD 于G ,DE ⊥AB 于E.则OG=DE=125,22221127-=2510DG OD OG =-=()()725DC DG ∴==(2)连接BD,由tan ∠BAC=12。
设BC=a,则AC=2a,222=A 2+(=52a)Baa=25 a=5 作DH ⊥BC 于H ,则3cos DCH cos 5BAD ∠=∠=设DC=x,则CH=35x ,45DH x =.由勾股定理得:222435554x x ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭解得5x =,负值舍去。
5DC ∴=.22.(1)设调整价格后的标价是y.元.80757520100100100100160160y -⨯=⨯⨯180y ∴=(2)(x 120)(2x 400)3000--+=12150,170x x ∴==(3)6a ≤<1023.解:⑴当k=2时AB=BC=2CD ,又E 是BC 的中点.∴BC=2BE ,∴BE=CD.又∠ABC=∠BCD.∴△ABE ≌△BCD.∴∠CBD=∠BAE ,∴∠AFB=∠CBD +∠AEB=∠BAE +∠AEB=180°-∠ABC=60°.⑵作BH ⊥AC 于H ,则CH=21AC ,又AG=3GC ,∴AC=4GC. ∴CH=2GC.∴GH=GC ,∵AB=BC ,∠ABC=120°,∴∠ACB=30°.∴∠ACD=120°-30°=90°, ∴BH ∥CD.∴1==GCGHCD BH ,∴BH=CD 设CD=BH=1,则AB=k , 又Rt △ABH 中∠BAH=30°,∴AB=2BH=2,即k=2.⑶由∠ABC=∠BCD=∠APD=120°可证△ABP ∽△PCD ∴CD BP PC AB =设CD=1,PB=x 则AB=BC=k ,PC=k -x.∴1xx k k =- ∴x 2-kx +k =0由点P 的唯一性可知方程有两个相等的实根,∴△=k 2-4k =0,∴k =4.24.解:⑴将A (-t ,0),B (3t ,0),C (0,-3)代入可求321)3)((1222--=-+=x tx t t x t x t y ⑵作DG ⊥x 轴于G ,EH ⊥x 轴于H.由y D =y C =-3得332122-=--x tx t ,∴x=0或x=2t.∴x D =2t.∴AG=3t.设E (x E ,y E ),则y E =21t (x E +t)(x E -3t),易证△AGD ∽△AHE ,∴EHDGAH AG =∴)3)((1332t x t x t t x t E E E -+=+∴x E =4t ,∴AH=5t ,∴5353===t t AH AG AE AD . ⑶t=1时y=x 2―2x ―3,设PM 的解析式为:y=kx +m ,由⎩⎨⎧--=+=322x x y m kx y 得x 2-(k +2)x -m -3=0,△=(k +2)2+4(m +3)=0,∴k +2=±23--m ,设x M >0,x N <0则x m =322--=+m k , y M =―m ―3―233---m ,x N =-3-m ,y N =-m -3+233---m .由x M +x N =0知Q为MN的中点.可得y Q =6)122(21)(21--=--=+m m y y N M ,∴QC=y Q -y C =―m ―6―(―3)=―m ―3.CP =―3―m ,∴CP =CQ.。
2014—2015学年度第二学期综合测试九年级数学参考答案一、选择题(本题共10小题,每小题3分,共30分):1B 、 2B 、 3C 、 4C 、 5D 、 6A ; 7B 、 8D 、 9D 、 10B二、填空题(本题共6小题,每小题4分,共24分):11; 12、26(1)x +; 13、120; 14、12y x =- ; 15、42°; 16、4123π-三、解答题(本题共3小题,每小题6分,共18分):17、解:原式=2(1)12(1)(1)2x x x x x x x +-⨯-++-+……………………………………………………2分 =122x x x x +-++ ……………………………………………………3分 =12x + ……………………………………………………4分……………………………………………………5分…………………………………6分(解答到此给6分)1……………………(试卷讲评时要求分母有理化至最简结果)19、解:(1)作图(略)给分说明:作对一条线段得1分,作对∠C 得1分,作对△ABC 得1分,本问满分4分。
(2)过点A 作AD ⊥BC 于点D在△ACD 中,sin sin AD AC C b β=∠=∠ ………………………………………………5分∴△ABC的面积:111sin 642222S BC AD a b β===⨯⨯⨯= ……………………6分21、(1)样本平均数是__2.6___万元; ……………………………………………………2分(2)根据样本平均数估计这个商场四月份的月营业额约为___78__万元; ………………3分(3)解:设每月营业额增长率为x ,依题意,得方程:………………………………………4分 278(1)78(1)18.72x x +-+= ……………………………………………………5分 化简,得:2-0.24=0x x + 配方,得:2+0.5)0.49x =( 解得:120.2, 1.2x x ==-(舍去) ……………………………………………………6分 答:每月营业额增长率是20%。
2015年中考数学模拟试卷(一)一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为圆弧 角 扇形菱形等腰梯形A. B. C. D.(第9题图)(第11题图)(第7题图)A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分) 3121--+x x≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌(第21题图)(第23题图)(第24题图)凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2015年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ=21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x%)201(2400+ = 8; 17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m n m ++-n m n +)·mn m 22- …………2分(第26题图)=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分= 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、 数1,5,0,2-中最大的数是()A 、1-B 、5C 、0D 、2 2、9的立方根是()A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2015年北京市丰台区中考数学二模试卷副标题一、选择题(本大题共10小题,共30.0分)1.的倒数等于()A. 3B.C.D.2.一根头发丝的直径约为0.00 006纳米,用科学记数法表示0.00 006,正确的是()A. B. C. D.3.下面的几何体中,主视图为三角形的是()A. B.C. D.4.函数中,自变量x的取值范围是()A. B. C. D. 或5.妈妈在端午节煮了10个粽子,其中5个火腿馅,3个红枣馅,2个豆沙馅(除馅料不同外,其它都相同).煮好后小明随意吃一个,吃到红枣馅粽子的概率是()A. B. C. D.6.下面的几何图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.7.如图,A,B是函数y=的图象上关于原点对称的任意两点,BC∥x轴,AC∥y轴,如果△ABC的面积记为S,那么()A.B.C.D.8.甲、乙、丙、丁四位同学角逐“汉字听写大赛”的决赛资格,表中统计了他们五次测试成绩的平均分和方差.如果从这四位同学中,选出一位成绩较好且状态稳定的同“”)甲乙 C. 丙 D. 丁9.某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,那么适合该地下车库的车辆限高标志牌为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A. B. C. D.10.如图,点N是以O为圆心,AB为直径的半圆上的动点,(不与点A,B重合),AB=4,M是OA的中点,设线段MN的长为x,△MNO的面积为y,那么下列图象中,能表示y与x的函数关系的图象大致是()A. B.C. D.二、填空题(本大题共6小题,共18.0分)11.因式分解:a3-4a=______.12.如图,在△ABC中,D为AB边上一点,DE∥BC交AC于点E,如果=,AE=6,那么EC的长为______.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是______m.14.将二次函数y=x2-4x+5化为y=(x-h)2+k的形式,那么h+k=______.15.在四边形ABCD中,如果AB=AD,AB∥CD,请你添加一个条件,使得该四边形是菱形,那么这个条件可以是______.16.如图,在平面直角坐标系xOy中,直线l的表达式是y=x,点A1坐标为(0,1),过点A1作y轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交y 轴于点A2;再过点A2作y轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交y轴于点A3,…,按此作法进行下去,点B4的坐标为______,OA2015=______.三、计算题(本大题共2小题,共10.0分)17.计算:(-1)2015+-|-|+2cos45°.18.已知=3,求代数式(1-)•的值.四、解答题(本大题共11小题,共62.0分)19.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.20.解不等式组:.21.已知关于x的方程mx2-(m+3)x+3=0(m≠0).(1)求证:方程总有两个实数根;(2)如果方程的两个实数根都是整数,且有一根大于1,求满足条件的整数m的值.22.列方程或方程组解应用题:为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车.已知小张家距上班地点10千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍.小张用骑公共自行车方式上班平均每小时行驶多少千米?23.如图,在▱ABCD中,E为BC边上的一点,将△ABE沿AE翻折得到△AFE,点F恰好落在线段DE上.(1)求证:∠FAD=∠CDE;(2)当AB=5,AD=6,且tan∠ABC=2时,求线段EC的长.24.某校九年级有200名学生参加《中小学生国家体质健康标准》测试赛活动.为了解本次测试的成绩分布情况,从中抽取了20名学生的成绩进行分组整理.现已完成前15个数据的整理,还有后5个数据尚未累计:62,83,76,87,70,(1)请将剩余的5个数据累计在“学生测试成绩频数分布表”中,填上各组的频数与频率,并补全“学生测试成绩频数分布直方图”;(2)这20个数据的中位数所在组的成绩范围是______;(3)请估计这次该校九年级参加测试赛的学生中约有多少学生成绩不低于80分.25.如图,AB是⊙O的直径,以AB为边作△ABC,使得AC=AB,BC交⊙O于点D,联结OD,过点D作⊙O的切线,交AB延长线于点E,交AC于点F.(1)求证:OD∥AC;(2)当AB=10,cos∠ABC=时,求BE的长.26.问题背景:在△ABC中,AB,BC,AC三边的长分别为,3,,求这个三角形的面积.小军同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需要求出△ABC的高,借用网格就能计算出它的面积.(1)请你直接写出△ABC的面积______;思维拓展:(2)如果△MNP三边的长分别为,2,,请利用图2的正方形网格(每个小正方形的边长为1)画出相应的格点△MNP,并直接写出△MNP的面积.27.在平面直角坐标系xOy中,抛物线y=ax2+bx+1经过A(1,3),B(2,1)两点.(1)求抛物线及直线AB的解析式;(2)点C在抛物线上,且点C的横坐标为3.将抛物线在点A,C之间的部分(包含点A,C)记为图象G,如果图象G沿y轴向上平移t(t>0)个单位后与直线AB只有一个公共点,求t的取值范围.28.已知△ABC是锐角三角形,BA=BC,点E为AC边的中点,点D为AB边上一点,且∠ABC=∠AED=α.(1)如图1,当α=40°时,∠ADE=______°;(2)如图2,取BC边的中点F,联结FD,将∠AED绕点E顺时针旋转适当的角度β(β<α),得到∠MEN,EM与BA的延长线交于点M,EN与FD的延长线交于点N.①依题意补全图形;②猜想线段EM与EN之间的数量关系,并证明你的结论.29.对某一个函数给出如下定义:如果存在实数M,对于任意的函数值y,都满足y≤M,那么称这个函数是有上界函数,在所有满足条件的M中,其最小值称为这个函数的上确界.例如,图中的函数是有上界函数,其上确界是2.(1)分别判断函数y=-(x<0)和y=2x-3(x<2)是不是有上界函数?如果是有上界函数,求其上确界;(2)如果函数y=-x+2(a≤x≤b,b>a)的上确界是b,且这个函数的最小值不超过2a+1,求a的取值范围;(3)如果函数y=x2-2ax+2(1≤x≤5)是以3为上确界的有上界函数,求实数a的值.答案和解析1.【答案】A【解析】解:∵3×=1,∴的倒数等于3.故选:A.根据倒数的定义求解.主要考查了倒数的定义:两个乘积为1的数互为倒数,0没有倒数.2.【答案】B【解析】解:0.00006=6×10-5,故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】C【解析】解:A、主视图是长方形,故A选项错误;B、主视图是长方形,故B选项错误;C、主视图是三角形,故C选项正确;D、主视图是正方形,中间还有一条线,故D选项错误;故选:C.主视图是从几何体的正面看所得到的图形,根据主视图所看的方向,写出每个图形的主视图及可选出答案.4.【答案】B【解析】解:根据题意得:x-2≥0,解得:x≥2.故选:B.根据二次根式的性质,被开方数大于等于0,就可以求解.本题考查的知识点为:二次根式的被开方数是非负数.5.【答案】C【解析】解:∵共10个粽子,红枣馅的有3个,∴P(吃到红枣馅粽子)=,故选:C.用红枣馅的粽子个数除以所有粽子的个数即可利用概率公式求得概率.本题考查了利用列表法与树状图法求概率的方法:先列表展示所有等可能的结果数n,再找出某事件发生的结果数m,然后根据概率的定义计算出这个事件的概率=.6.【答案】D【解析】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选:D.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.【答案】A解:设点A的坐标为(x,y),则B(-x,-y),xy=2.∴AC=2y,BC=2x.∴△ABC的面积=2x×2y÷2=2xy=2×2=4.故选:A.本题可根据A、B两点在曲线上可设出A、B两点的坐标以及取值范围,再根据三角形的面积公式列出方程,即可得出答案.本题主要考查了反比例函数的比例系数k的几何意义:反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系,即S=|k|.解决本题的关键是根据反比例函数关系式得到所求三角形的两直角边的积.8.【答案】D【解析】解:由于丁的方差较小、平均数较大,故选丁.故选:D.此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的运动员参赛.本题考查平均数和方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9.【答案】A【解析】解:如图,过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠EHG=∠HEF=90°,∵∠AEF=143°,∴∠AEH=∠AEF-∠HEF=53°,∠EAH=37°,在△EAH中,∠EHA=90°,∠EAH=37°,AE=1.2米,∴EH=AE•sin∠EAH≈1.2×0.60=0.72(米),∵AB=1.2米,∴AB+EH≈1.2+0.72=1.92≈1.9米.故选:A.过点A作BC的平行线AG,过点E作EH⊥AG于H,则∠BAG=90°,∠EHA=90°.先求出∠AEH=53°,则∠EAH=37°,然后在△EAH中,利用正弦函数的定义得出EH=AE•sin∠EAH,则栏杆EF段距离地面的高度为:AB+EH,代入数值计算即可.本题考查了解直角三角形在实际中的应用,难度适中.关键是通过作辅助线,构造直角三角形,把实际问题转化为数学问题加以计算.10.【答案】D【解析】解:∵AB=4,∴OA=OB=2,∵M是OA的中点,∴OM=AM=1,∵点N是以O为圆心,AB为直径的半圆上的动点,(不与点A,B重合),线段MN的长为x,∴1<x<3,故B选项错误;连结AN,BN,过点N作NP⊥AB于P,∠ANB=90°,设PM=a,则AP=1-a,BP=a+3.易证△ANP∽△NBP,∴=,∴NP2=AP•BP=(1-a)(a+3)=-a2-2a+3,∵NP2=MN2-PM2=x2-a2,∴x2-a2=-a2-2a+3,∴a=,∴NP2=x2-a2=x2-()2==,∵y=OM•NP=×1×=,∴当x=时,NP有最大值2,此时y=1.最大A选项中,y与x是一次函数关系,不符合题意;C选项中,y取最大值时,x<2,不符合题意;只有D选项符合题意.故选:D.先求出自变量x的取值范围是1<x<3,得出B选项错误;再连结AN,BN,过点N作NP⊥AB于P,求出y与x的函数关系式为y=,进而判断D选项正确.本题考查了动点问题的函数图象,求出y与x的函数关系式是解题的关键,有一定难度.11.【答案】a(a+2)(a-2)【解析】解:a3-4a=a(a2-4)=a(a+2)(a-2).故答案为:a(a+2)(a-2).首先提取公因式a,进而利用平方差公式分解因式得出即可.此题主要考查了提取公因式法和公式法分解因式,熟练掌握平方差公式是解题关键.12.【答案】10【解析】解:∵DE∥BC,∴==,∵AE=6,∴EC=10,故答案为:10.根据DE∥BC,可得==,再根据AE=6可得EC=AE÷=10,进而可选出答案.本题主要考查了平行线分线段成比例定理,关键是掌握平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.13.【答案】【解析】解:根据题意,可得,∴(m),即的长是m.故答案为:.首先根据题意,可得,然后根据圆的周长公式,求出直径是2m的圆的周长是多少;最后用直径是2m的圆的周长除以3,求出的长是多少即可.此题主要考查了弧长的计算,以及圆的周长的计算方法,要熟练掌握,解答此题的关键是判断出,并求出直径是2m的圆的周长是多少.14.【答案】3【解析】解:y=x2-4x+5=(x-2)2+1,则h=2,k=1,所以h+k=2+1=3.故答案是:3.利用配方法把二次函数的一般形式配成二次函数的顶点式.本题考查了二次函数的三种形式,二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x-h)2+k;(3)交点式(与x轴):y=a(x-x1)(x-x2).15.【答案】AB=CD【解析】解:条件可以为AB=CD,理由是:∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,∵AB=AD,∴四边形ABCD是菱形,故答案为:AB=CD.此题是一道开放型的题目,答案不唯一,如AD∥BC或AC⊥BC等.本题考查了菱形的判定定理,平行四边形的判定的应用,能正确运用菱形的判定定理进行推理是解此题的关键,注意:菱形的判定定理有:①有一组邻边相等的平行四边形是菱形,②四条边都相等的四边形是菱形,③对角线互相垂直的平行四边形是菱形.16.【答案】(8,8);22014【解析】解:直线y=x,点A1坐标为(0,1),过点A1作y轴的垂线交直线l于点B1,可知B1点的坐标为(,1),以原点O为圆心,OB1长为半径画弧交y一轴于点A2,OA2=OB1=2OA1=2,点A2的坐标为(0,2),这种方法可求得B2的坐标为(2,2),故点A3的坐标为(0,4),B3的坐标为(4,4),点A4的坐标为(0,8),B4的坐标为(8,8),此类推便可求出点A n的坐标为(0,2n-1).所以点A2015的坐标为(0,22014).所以OA2015=22014.故答案为:(8,8),22014.先根据一次函数方程式求出B1点的坐标,在根据B1点的坐标求出A2点的坐标,由此得到点A4的坐标,以此类推总结规律便可求出点A n的坐标,进而求得OA2015的值.本题主要考查了一次函数的应用,做题时要注意数形结合思想的运用,是各地的中考热点,学生在平常要多加训练,属于中档题.17.【答案】解:原式=-1+2-+2×=1.【解析】原式第一项利用乘方的意义化简,第二项利用立方根的定义计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.【答案】解:原式=•=•=,由=3,得到x=3y,则原式==.【解析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式变形后代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.【答案】证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即:∠EAD=∠BAC,在△EAD和△BAC中,∴△ABC≌△AED(ASA),∴BC=ED.【解析】由∠1=∠2可得:∠EAD=∠BAC,再有条件AB=AE,∠B=∠E可利用ASA证明△ABC≌△AED,再根据全等三角形对应边相等可得BC=ED.此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定方法:SSS、SAS、ASA、AAS、HL.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.20.【答案】解:∵解不等式①得:x≤-2,解不等式②得:x<0,∴不等式组的解集为x≤-2.【解析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.本题考查了解一元一次不等式(组)的应用,解此题的关键是能根据不等式的解集找出不等式组的解集,难度适中.21.【答案】(1)证明:∵m≠0,∴方程mx2-(m+3)x+3=0(m≠0)是关于x的一元二次方程,∴△=(m+3)2-4×m×3=(m-3)2,∵(m-3)2≥0,即△≥0,∴方程总有两个实数根;(2)解:∵x=,∴x1=1,x2=,∵方程的两个实数根都是整数,且有一根大于1,∴为大于1的整数,∵m为整数,∴m=1.【解析】(1)先计算判别式得到△=(m+3)2-4×m×3=(m-3)2,利用非负数的性质得到△≥0,然后根据判别式的意义即可得到结论;(2)利用公式法可求出x1=1,x2=,然后利用整除性即可得到m的值.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了解一元二次方程.22.【答案】解:设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意列方程得:=4×,解得:x=15,经检验x=15是原方程的解且符合实际意义.答:小张用骑公共自行车方式上班平均每小时行驶15千米.【解析】首先设小张用骑公共自行车方式上班平均每小时行驶x千米,根据题意可得等量关系:骑公共自行车方式所用的时间=自驾车方式所用的时间×4,根据等量关系,列出方程,再解即可.此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程,注意不要忘记检验.23.【答案】(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠ADC,∵将△BAE沿AE翻折得到△FAE,点F恰好落在线段DE上,∴△ABE≌△AFE,∴∠B=∠AFE,∴∠AFE=∠ADC,∵∠FAD=∠AFE-∠1,∠CDE=∠ADC-∠1,∴∠FAD=∠CDE;(2)过点D作DG⊥BE,交BE的延长线于点G.∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,CD=AB=5,∴∠2=∠B,∠3=∠EAD,由(1)可知,△ABE≌△AFE,∴∠B=∠AFE,∠3=∠4,∴∠4=∠EAD,∴ED=AD=6,在Rt△CDG中,tan∠2=tan∠ABC==2,∴DG=2CG,∵DG2+CG2=CD2,∴(2CG)2+CG2=52,∴CG=,DG=2,在Rt△EDG中,∵EG2+DG2=DE2,∴EG=4,∴EC=4-.【解析】(1)由平行四边形的性质和翻折的性质得出∠B=∠ADC,∠B=∠AFE,得出∠AFE=∠ADC,即可得出结论;(2)过点D作DG⊥BE,交BE的延长线于点G.由平行四边形的性质得出∠2=∠B,∠3=∠EAD,由翻折的性质得出∠B=∠AFE,∠3=∠4,得出∠4=∠EAD.得出ED=AD=6,由三角函数得出DG=2CG,根据勾股定理得出DG2+CG2=CD2,求出CG、DG,再根据勾股定理求出EG,即可得出EC.本题考查了平行四边形的性质、全等三角形的判定与性质、翻折变换、勾股定理;熟练掌握平行四边形和翻折变换的性质,并能进行推理计算是解决问题的关键.24.【答案】2;0.10;4;0.20;6;0.30;80≤x<90【解析】解:(1)如表和图:(3)200×(0.30+0.25)=110.(1)根据尚未累计的5个数所在的组,以及频数的计算公式即可补全图表;(2)根据中位数的定义,就是大小处于中间位置的数即可做出判断;(3)利用总人数乘以对应的频率即可求解.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.25.【答案】解:(1)∵AB=AC,∴∠ABC=∠C,∵OB=OD,∴∠OBD=∠ODB,∴∠C=∠ODB,∴OD∥AC,(2)连接AD,∵AB为直径,∴AD⊥BD,∴∠ADC=90°,∵AB=10,cos∠ABC=,∴BD=BD=AB•cos∠ABC=2,∵DF是圆的切线,∴OD⊥DF,∴∠ODF=90°,在Rt△CDF中,cos C==,∴CF=2.∴AF=8.∵OD∥AC,∴△ODE∽△AFE,∴=,∴=,∵OB=OA=OD=AB=5,∴BE=.【解析】(1)若要证明OD∥AC,则可转化为证明∠C=∠ODB即可;(2)连接AD,首先利用已知条件可求出BD的长,再证明△ODE∽△AFE,利用相似三角形的性质,对应边的比值相等即可求出BE的长.本题考查了圆的切线性质,及解直角三角形的知识和相似三角形的判定和性质.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.26.【答案】4.5【解析】解:(1)△ABC的面积是4.5,理由是:S△ABC=S-S△CMA-S△AOB-S△BNC矩形MONC=4×3-×4×1-×2×1-×3×3=4.5,故答案为:4.5;(2)如图2的△MNP,-S△MON-S△PAN-S△MBPS△MNP=S矩形MOAB=5×3-×5×1-×2×4-×3×1=7,即△MNP的面积是7.-S△CMA-S△AOB-S△BNC,根据面积公式求(1)根据图形得出S△ABC=S矩形MONC出即可;(2)先画出符合的三角形,再根据图形和面积公式求出即可.本题考查了勾股定理和三角形的面积公式的应用,解此题的关键是能正确画出格点三角形,难度不是很大.27.【答案】解:(1)∵抛物线y=ax2+bx+1经过A(1,3),B(2,1)两点.∴ ,解得,.∴抛物线的表达式是y=-2x2+4x+1.设直线AB的表达式是y=mx+n,∴ ,解得,,∴直线AB的表达式是y=-2x+5;(2)∵点C在抛物线上,且点C的横坐标为3.∴C(3,-5).点C平移后的对应点为点C′(3,t-5),代入直线表达式y=-2x+5,解得t=4.结合图象可知,符合题意的t的取值范围是0<t≤4.【解析】(1)把点A、B分别代入二次函数解析式,列出关于a、b的方程组,通过解方程组求得系数a、b的值;同理,求得直线方程;(2)结合图象解题.本题考查了待定系数法求函数解析式,二次函数图象的几何变换,要熟练掌握画图的能力和识别图形的能力.28.【答案】70【解析】解:(1)70;∵AB=BC,∠ABC=α=40°,∴∠A=70°,∵∠AED=α=40°∴∠ADE=70°;(2)①见右图;②EM=EN.证明:∵∠ABC=∠AED=α.BA=BC,∴∠A=∠EDA=∠ACB=90°-,∴EA=ED,∵E是AC中点,∴EA=EC,∴EA=EC=ED,∴∠ADC=90°,∵∠EAM=180°-∠EAD=180°-(90°-)=90°+,∵点F是BC中点,∴FB=FD,∴∠FDB=∠ABC=α,∴∠EDN=∠EDA+∠ADN=∠EDA+∠FDB=90°-+α=90°+,∴∠EAM=∠EDN,∵∠AED绕点E顺时针旋转适当的角度,得到∠MEN,∴∠AED=∠MEN,∴∠AED-∠AEN=∠MEN-∠AEN,即∠MEA=∠NED,在△EAM和△EPN中,∴△EAM≌△EPN(ASA),∴EM=EN.(1)根据等腰三角形的性质和三角形的内角和定理可求;(2)①根据题意画图即可;②首先证明EA=ED=EC,得到∠ADC=90°,然后求出∠EAM=∠EDN,易证△EAM≌△EDN,所以EM=EN.本题主要考查了等腰三角形的性质和判定,直角三角形斜边中线等于斜边的一半,如果三角形一边中线等于这条边的一半,那么这个三角形是直角三角形,三角形内角和定理以及三角形全等的性质与判定,挖掘三角形全等的条件是解决问题的关键.29.【答案】解:(1)根据有界函数定义,y=(x<0)不是有上界函数;y=2x-3(x<2)是有上界函数,上确界是1;(2)∵在y=-x+2中,y随x的增大而减小,∴上确界为2-a,即2-a=b,又b>a,所以2-a>a,解得a<1,∵函数的最小值是2-b,∴2-b≤2a+1,得a≤2a+1,解得a≥-1,综上所述:-1≤a<1;(3)函数的对称轴为x=a,①当a≤3时,函数的上确界是25-10a+2=27-10a,∴27-10a=3,解得a=,符合题意;②当a>3时,函数的上确界是1-2a+2=3-2a,∴3-2a=3,解得a=0,不符合题意.综上所述:a=.【解析】(1)根据有界函数函数的定义和上确界定义分析即可;(2)根据函数的上确界和函数增减性得到2-a=b,函数的最小值为2-b,根据b >a,函数的最小值不超过2a+1,列不等式求解集即可;(3)根据对称轴方程x=a和上确界为3,分类讨论a≤3时和a>3时,列方程求解.本题主要考查了对定义函数的理解和一次函数的性质的灵活运用;一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降;能够正确理解有界函数和上确界是解决问题的关键.。
2015年福建省泉州市晋江市中考数学一模试卷一、选择题(每小题3分,共21分.每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分.)1.(3分)﹣的相反数是()A.﹣B.C.2015D.﹣2015 2.(3分)下列运算正确的是()A.a3+a2=a5B.3a2﹣a2=22C.a3•a2=a5D.a6÷a3=a2 3.(3分)如图所示的立体图形的主视图是()A.B.C.D.4.(3分)对于解不等式,正确的结果是()A.B.C.x>﹣1D.x<﹣1 5.(3分)下列四边形不是轴对称图形的是()A.正方形B.矩形C.菱形D.平行四边形6.(3分)若一个多边形的内角和900°,则这个多边形的边数为()A.5B.7C.9D.127.(3分)若二次函数y=ax2+bx+c(a<0)的图象如图所示,且关于x的方程ax2+bx+c=k有两个不相等的实根,则常数k的取值范围是()A.0<k<4B.﹣3<k<1C.k<﹣3或k>1D.k<4二、填空题(每小题4分,共40分):在答题卡上相应题目的答题区域内作答.8.(4分)据报道,春节期间微信红包收发高达3270000000次,则3270000000用科学记数法表示为.9.(4分)如图,直线AO⊥OB于点O,OT平分∠AOB,则∠AOT=.10.(4分)化简:=.11.(4分)已知点A(2,﹣3)在双曲线上,则k=.12.(4分)在学生演讲比赛中,六名选手的成绩(单位:分)分别为:80、85、86、88、90、93,则这组数据的中位数为分.13.(4分)如图,直线a∥b,直线c与直线a、b都相交,∠1=115°,则∠2=°.14.(4分)在△ABC中,AB=AC,∠A=100°,则∠B=°.15.(4分)如图,在菱形ABCD中,对角线AC与BD相交于点O,点M是CD边的中点,连结OM,若OM=cm,则菱形ABCD的周长为cm.16.(4分)如图,在矩形ABCD中,DE⊥AC于点E,AB=12,AC=20,则cos ∠ADE=.17.(4分)如图,CD是半圆O的直径,弦AB∥CD,且CD=6,∠ADB=30°,则∠AOB=°,若用扇形AOB围成一个圆锥,则该圆锥的底面圆的半径为.三、解答题(共89分):在答题卡上相应题目的答题区域内作答.18.(9分)计算:.19.(9分)先化简,再求值:(a+4)2+(a+3)(a﹣3),其中.20.(9分)如图,AB∥CD,AB=CD,点E、F在AD上,且AE=DF.求证:△ABE≌△DCF.21.(9分)如图(一)(二),现有两组扑克牌,每组3张扑克,第一组分别是红桃5、红桃6、红桃7,第二组分别是梅花3、梅花4、梅花5.(1)现把第一组扑克牌背面朝上并搅匀,如图(一)所示,若从第一组中随机抽取一张牌,求“抽到红桃6”的概率;(2)如图(一)(二),若把两组扑克牌背面朝上各自搅匀,并分别从两组中各抽取一张牌,试求“抽出一对牌(即数字相同)”的概率(要求用树状图或列表法求解).22.(9分)如图,在等腰△OAB中,OA=OB,以点O为圆心,作圆与底边AB 相切于点C.(1)求证:AC=BC;(2)若AB=24,OC=9,求等腰△OAB的周长.23.(9分)如图,某校合作学习小组随机抽样统计部分高年级男同学对必修球类“篮球、足球、排球”三大球的喜爱程度的人数,绘制出不完整的统计图表如下:(1)试把表格中的数据填写完整:(2)试利用上述表格中的数据,补充完成条形统计图的制作(用阴影部分表示);(3)若再随机抽查该校高年级男学生一人,则该学生喜爱的三大球最大可能是什么.24.(9分)一队学生从学校出发去劳动基地军训,行进的路程与时间的图象如图所示,队伍走了0.9小时后,队伍中的通讯员按原路加快速度返回学校拿材料,通讯员经过0.5小时后回到学校,然后随即按原来加快的速度追赶队伍,恰好在劳动基地追上学生队伍.设学生队伍与学校的距离为d1,通讯员与学校的距离为d2,试根据图象解决下列问题:(1)填空:学生队伍的行进速度v=千米/小时;(2)当0.9≤t≤3.15时,求d2与t的函数关系式;(3)已知学生队伍与通讯员的距离不超过3千米时,能用无线对讲机保持联系,试求在上述过程中通讯员离开队伍后他们能用无线对讲机保持联系时t的取值范围.25.(13分)已知抛物线y=+bx+c与直线BC相交于B、C两点,且B(6,0)、C(0,3).(1)填空:b=,c=;(2)长度为的线段DE在线段CB上移动,点G与点F在上述抛物线上,且线段EF与DG始终平行于y轴.①连结FG,求四边形DGFE的面积的最大值,并求出此时点D的坐标;②在线段DE移动的过程中,是否存在DE=GF?若存在,请直接写出此时点D的坐标;若不存在,试说明理由.26.(13分)已知直线y=x+b与x轴,y轴分别交于A,B两点,点D在x轴正半轴,且OD=6,点C,M是线段OD的三等分点(点C在点M的左侧)(1)若直线AB经过点(4,6)①求直线AB的解析式;②求点M到直线AB的距离;(2)若点Q在x轴上方的直线AB上,且∠CQD是锐角,试探究:在直线AB 上是否存在符合条件的点Q,使得sin∠CQD=?若存在,求出b的取值范围;若不存在,请说明理由.2015年福建省泉州市晋江市中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共21分.每小题有四个答案,其中有且只有一个答案是正确的,请在答题卡上相应题目的答题区域内作答,答对的得3分,答错或不答的一律得0分.)1.(3分)﹣的相反数是()A.﹣B.C.2015D.﹣2015【解答】解:﹣的相反数是.故选:B.2.(3分)下列运算正确的是()A.a3+a2=a5B.3a2﹣a2=22C.a3•a2=a5D.a6÷a3=a2【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、合并同类项系数相加字母部分不变,故B错误;C、同底数幂的乘法底数不变指数相加,故C正确;D、同底数幂的除法底数不变指数相减,故D错误;故选:C.3.(3分)如图所示的立体图形的主视图是()A.B.C.D.【解答】解:从正面看是一个大正方形,在正方体内部右上角是一个小正方形,故A正确;故选:A.4.(3分)对于解不等式,正确的结果是()A.B.C.x>﹣1D.x<﹣1【解答】解:去分母得,﹣4x>9,x的系数化为1得,x<﹣.故选:A.5.(3分)下列四边形不是轴对称图形的是()A.正方形B.矩形C.菱形D.平行四边形【解答】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、是轴对称图形,故错误;D、不是轴对称图形,故正确.故选:D.6.(3分)若一个多边形的内角和900°,则这个多边形的边数为()A.5B.7C.9D.12【解答】解:设这个多边形的边数为n,则有(n﹣2)×180°=900°,解得:n=7.故这个多边形的边数为7.故选:B.7.(3分)若二次函数y=ax2+bx+c(a<0)的图象如图所示,且关于x的方程ax2+bx+c=k有两个不相等的实根,则常数k的取值范围是()A.0<k<4B.﹣3<k<1C.k<﹣3或k>1D.k<4【解答】解:由图象可知,抛物线的对称轴为x=﹣1,∴顶点坐标为(﹣1,4),设抛物线的解析式为:y=a(x+1)2+4,把(1,0)代入解析式得,a=﹣1,∴解析式为:y=﹣x2﹣2x+3,方程=﹣x2﹣2x+3=k有两个不相等的实根,△=4+12﹣4k>0,解得:k<4.故选:D.二、填空题(每小题4分,共40分):在答题卡上相应题目的答题区域内作答.8.(4分)据报道,春节期间微信红包收发高达3270000000次,则3270000000用科学记数法表示为 3.27×109.【解答】解:将3270000000用科学记数法表示为3.27×109.故答案为:3.27×109.9.(4分)如图,直线AO⊥OB于点O,OT平分∠AOB,则∠AOT=45°.【解答】解:∵AO⊥OB,∴∠AOB=90°,∵OT平分∠AOB,∴∠AOT=∠AOB=×90°=45°,故答案为:45°.10.(4分)化简:=1.【解答】解:原式==1.故答案为:1.11.(4分)已知点A(2,﹣3)在双曲线上,则k=﹣6.【解答】解:把点A(2,﹣3)代入双曲线得,k=2×(﹣3)=﹣6,故答案为:﹣6.12.(4分)在学生演讲比赛中,六名选手的成绩(单位:分)分别为:80、85、86、88、90、93,则这组数据的中位数为87分.【解答】解:将这组数据按从小到大的顺序排列为:80、85、86、88、90、93,处于中间位置的两个数是86和88,那么由中位数的定义可知,这组数据的中位数是(86+88)÷2=87.故答案为:87.13.(4分)如图,直线a∥b,直线c与直线a、b都相交,∠1=115°,则∠2=65°.【解答】解:∵直线a∥b,∠1=115°,∴∠2=180°﹣115°=65°.故答案为:65.14.(4分)在△ABC中,AB=AC,∠A=100°,则∠B=40°.【解答】解:∵AB=AC,∴∠B=∠C,∵∠A=100°,∴∠B==40°.故答案为:40.15.(4分)如图,在菱形ABCD中,对角线AC与BD相交于点O,点M是CD边的中点,连结OM,若OM=cm,则菱形ABCD的周长为20cm.【解答】解:在菱形ABCD中,BO=DO,∵点M是CD的中点,∴OM是△OCD的中位线,∴CD=2OM=2×2.5=5cm,∴菱形ABCD的周长=4×5=20cm.故答案为:20.16.(4分)如图,在矩形ABCD中,DE⊥AC于点E,AB=12,AC=20,则cos∠ADE=.【解答】解:∵四边形ABCD是矩形,∴CD=AB=12,∠ADC=90°,∴∠ADE+∠CDE=90°,∵DE⊥AC于E,∴∠DEC=90°,∴∠ACD+∠CDE=90°,∴∠ADE=∠ACD,∴cos∠ADE=cos∠ACD===;故答案为:.17.(4分)如图,CD是半圆O的直径,弦AB∥CD,且CD=6,∠ADB=30°,则∠AOB=60°,若用扇形AOB围成一个圆锥,则该圆锥的底面圆的半径为.【解答】解:∵AB∥CD,∠ADB=30°,∴∠AOB=2∠ADB=60°,∴设圆锥的底面半径为r,则2πr=,解得r=,故答案为:60°;.三、解答题(共89分):在答题卡上相应题目的答题区域内作答.18.(9分)计算:.【解答】解:原式=8﹣1+4﹣5=6.19.(9分)先化简,再求值:(a+4)2+(a+3)(a﹣3),其中.【解答】解:原式=a2+8a+16+a2﹣9=2a2+8a+7当时,原式===.20.(9分)如图,AB∥CD,AB=CD,点E、F在AD上,且AE=DF.求证:△ABE≌△DCF.【解答】证明:∵AB∥CD,∴∠A=∠D,在△ABE和△DCF中∴△ABE≌△DCF(SAS).21.(9分)如图(一)(二),现有两组扑克牌,每组3张扑克,第一组分别是红桃5、红桃6、红桃7,第二组分别是梅花3、梅花4、梅花5.(1)现把第一组扑克牌背面朝上并搅匀,如图(一)所示,若从第一组中随机抽取一张牌,求“抽到红桃6”的概率;(2)如图(一)(二),若把两组扑克牌背面朝上各自搅匀,并分别从两组中各抽取一张牌,试求“抽出一对牌(即数字相同)”的概率(要求用树状图或列表法求解).【解答】解:(1)第一组分别是红桃5、红桃6、红桃7,∴P(抽到红桃6)=;(2)方法一:画树状图如下:∵由树状图可知,共有9种机会均等的情况,其中抽出一对牌(即数字相同)只有一种情况,∴P(抽出一对牌)=.方法二:列表如下:∵由树状图可知,共有9种机会均等的情况,其中抽出一对牌(即数字相同)只有一种情况,∴P(抽出一对牌)=.22.(9分)如图,在等腰△OAB中,OA=OB,以点O为圆心,作圆与底边AB 相切于点C.(1)求证:AC=BC;(2)若AB=24,OC=9,求等腰△OAB的周长.【解答】(1)证明:连结OC,如图,∵AB与⊙O相切于点C,∴OC⊥AB,又∵△OAB为等腰三角形,∴AC=BC;(2)解:AC=BC=AB=12,在Rt△AOC中,∵AC=12,OC=9,∴OA==15,∴等腰△OAB的周长=OA+OB+BC=15+15+24=54.23.(9分)如图,某校合作学习小组随机抽样统计部分高年级男同学对必修球类“篮球、足球、排球”三大球的喜爱程度的人数,绘制出不完整的统计图表如下:(1)试把表格中的数据填写完整:(2)试利用上述表格中的数据,补充完成条形统计图的制作(用阴影部分表示);(3)若再随机抽查该校高年级男学生一人,则该学生喜爱的三大球最大可能是什么.【解答】解:(1)(2)补全条形统计图如图所示:(3)该学生喜爱的三大球最大可能是:篮球.24.(9分)一队学生从学校出发去劳动基地军训,行进的路程与时间的图象如图所示,队伍走了0.9小时后,队伍中的通讯员按原路加快速度返回学校拿材料,通讯员经过0.5小时后回到学校,然后随即按原来加快的速度追赶队伍,恰好在劳动基地追上学生队伍.设学生队伍与学校的距离为d1,通讯员与学校的距离为d2,试根据图象解决下列问题:(1)填空:学生队伍的行进速度v=5千米/小时;(2)当0.9≤t≤3.15时,求d2与t的函数关系式;(3)已知学生队伍与通讯员的距离不超过3千米时,能用无线对讲机保持联系,试求在上述过程中通讯员离开队伍后他们能用无线对讲机保持联系时t的取值范围.【解答】解:(1)根据函数图象可得:当t=0.9h时,学生队伍走的路程s=4.5km,∴学生队伍行进的速度为:4.5÷0.9=5(km/h),故答案为:5.(2)∵通讯员经过0.5小时后回到学校,0.9+0.5=1.4,∴B点的坐标为(1.4,0)设线段AB的解析式为:d2=kt+b(k≠0),(0.9≤t≤1.4),又过点A(0.9,4.5)、B(1.4,0),∴,解得,∴线段AB的解析式为:d2=﹣9t+12.6,(0.9≤t≤1.4).∵通讯员按原来的速度随即追赶队伍,∴速度为4.5÷0.5=9千米/小时.设线段BC的解析式为:d2=9t+m,(1.4≤t≤3.15),又过点B(1.4,0),∴0=9×1.4+m,解得:m=﹣12.6,∴线段BC的解析式为:d2=9t﹣12.6,(1.4≤t≤3.15),∴.(3)设线段OC的解析式为:d1=nt(n≠0),又过点A(0.9,4.5),∴4.5N=0.9,∴n=5.∴线段OC的解析式为:d1=5t,设时间为t小时,学生队伍与通讯员相距不超过3千米,下面分两种情况讨论:①当0.9≤t≤1.4时,d1﹣d2≤3,即5t﹣(﹣9t+12.6)≤3,解得:,∴.②当1.4≤t≤3.15时,d1﹣d2≤3即5t﹣(9t﹣12.6)≤3,解得:t≥2.4,∴2.4≤t≤3.15.故通讯员离开队伍后他们能用无线对讲机保持联系时t的取值范围为或2.4≤t≤3.15.25.(13分)已知抛物线y=+bx+c与直线BC相交于B、C两点,且B(6,0)、C(0,3).(1)填空:b=﹣,c=3;(2)长度为的线段DE在线段CB上移动,点G与点F在上述抛物线上,且线段EF与DG始终平行于y轴.①连结FG,求四边形DGFE的面积的最大值,并求出此时点D的坐标;②在线段DE移动的过程中,是否存在DE=GF?若存在,请直接写出此时点D的坐标;若不存在,试说明理由.【解答】解:(1)∵y=+bx+c与直线BC相交于B、C两点,且B(6,0)、C(0,3),∴,∴;故答案为:﹣,3;(2)①设直线BC的解析式为:y=mx+n(m≠0),又过点B(6,0)、C(0,3),∴,解得:,∴直线BC的解析式为:y=﹣x+3.∵点D、E在直线y=﹣x+3上,∴设D(p,﹣p+3)、E(q,﹣q+3),其中q>p,如图,过点E作EH⊥DG于点H,则EH=q﹣p,EH∥x轴,则∠DEH=∠CBO ∴tan∠DEH=tan∠CBO,,,在Rt△DHE中,令DH=t,则EH=2t,由勾股定理得:DH2+EH2=DE2,即,解得:t=1(舍去负值),则DH=1,EH=2.q﹣p=2;∵DG∥y轴∥EF,∴,∴,.∴把q=p+2代入上式,得:.当p =2时,S有最大值,最大值为.四边形DGFE∴此时点D的坐标为(2,2);②符合条件的点D的坐标为(2,2)或.26.(13分)已知直线y=x+b与x轴,y轴分别交于A,B两点,点D在x轴正半轴,且OD=6,点C,M是线段OD的三等分点(点C在点M的左侧)(1)若直线AB经过点(4,6)①求直线AB的解析式;②求点M到直线AB的距离;(2)若点Q在x轴上方的直线AB上,且∠CQD是锐角,试探究:在直线AB 上是否存在符合条件的点Q,使得sin∠CQD=?若存在,求出b的取值范围;若不存在,请说明理由.【解答】解:(1)①∵直线AB经过点(4,6),∴6=×4+b,则b=3,∴直线AB的解析式为y=x+3.②如图1,设点M到直线AB的距离为MN,由直线AB的解析式为y=x+3可知A(﹣4,0),B(0,3),∴OA=4,OB=3,AB=5,∵OD=6,点C,M是线段OD的三等分点,∴AM=4+4=8,∵∠BAO=∠MAN,∠AOB=∠ANM=90°,∴△AOB∽△ANM,∴=,∴MN===.(2)存在;在CD的垂直平分线上取点I(4,1.5)以I为圆心,ID为半径作圆,则⊙I必过点C,在Rt△MID中,由勾股定理,得:ID==2.5,sin∠MID==,当直线AB与⊙I相切(切点在第一象限)时,直线AB上存在唯一一个符合条件的点Q(切点),使得sin∠CQD=(∠CQD=∠MID),此时设CD的垂直平分线交直线AB于点N,在直线y=x+b中,令y=0,则x=﹣b,∴OA=|b|,令x=0,则y=b,∴OB=|b|,由勾股定理,得:AB=|b|.∵∠QNI=ABO,∠IQN=∠AOB=90°,∴△IQN∽△AOB,∴=,=,NI=,∴NM=+=,N(4,),则把N(4,)代入y=x+b中,得:b=,此时直线AB的解析式为:y=x+.若直线AB过点C,则把C(2,0)代入y=x+b中,得:b=﹣,若直线AB过点D,则把D(6,0)代入y=x+b中,得:b=﹣,∴当b>或b≤﹣时,点Q不存在;当b=或﹣<b≤﹣时,存在符合条件的一个点Q;当﹣<b<时,存在符合条件的两个点Q.。
2015年中考模拟试卷数学卷考生须知:1、 本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟.2、 答题前,必须在答题卷密封区内填写校名、姓名和准考证号.3、 所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.4、 考试结束后,上交试题卷和答题卷.一.仔细选一选(本大题共10道小题,每小题3分,共30分.)下面给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确的答案.1.2sin 30o的倒数是 ( ) A 、 0.5 B 、14C 、4D 、-4 2.16的平方根是 ( ) A . 4 B. 4± C. 2 D. 2±3.下列各式计算结果正确的是 ( )A 、a +a =a 2B 、(3a )2=6a 2C 、(a +1)2=a 2+1D 、a ·a =a 24.两圆的半径分别为3和7,圆心距为6,则两圆的交点个数为 ( )A. 1个 B. 2个 C. 0个 D. 以上都不对 5.投掷2个骰子,得到的两个点数都是质数的概率是 ( )A.14 B. 49 C. 59 D. 126.在反比例函数1ky x-=的每一条曲线上,y 都随着x 的增大而减小,则k 的值可以是( )A 、-1B 、0C 、1D 、27.某商场对上周女装的销售情况进行了统计,如下表:颜色 黄色 绿色 白色 紫色 红色 数量(件)10018022080520经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是 ( )A .平均数B .中位数C .众数D .方差8.已知二次函数2y ax bx c =++的图像如图,则下列5个代数式:,,42,2,2ac a b c a b c a b a b ++-++-,其值大于0的个数为 ( )A 、3B 、2C 、5D 、49.如图,正方形ABCD 中,E 是BC 边上一点,以E 为圆心,EC 为半径的半圆与以A 为圆心,AB 为半径的圆弧外切,则sin EAB ∠的值为 ( ) A 、43 B 、34 C 、45 D 、3510.关于函数232131,(0)y x x a a a a ⎛⎫=+-+-≠ ⎪⎝⎭,给出下列结论: ①当2a =时,该函数的顶点坐标为21(,)36--; ②当0a ≠时,该函数图象经过同一点; ③当0a <时,函数图象截x 轴所得线段长度大于43; ④当0a >时,函数在13x >时,y 随x 的增大而增大。
其中正确的结论有 ( ) A. ①②④ B. ②③④ C. ①③ D. ①②③④二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案。
11.分解因式23216______.m m --= 12.如图,AB 是O 的直径,ACD ∆为正三角形,则______.BAC ∠=13.关于x 的不等式组2425x a x b ->⎧⎨-<⎩的解集为02x <<,那么a b +的值等于____ ____。
14.当______x =时,函数()()23221my m xm x -=-+-+是一次函数。
第12题图OEDCBA第16题图Pxy第15题图NMEDCBA15.如图,ABC CDE Rt ∆∆∆和为等腰,,AC DE M AB CD N 与相交于点和相交于点,则对于下列结论:①AE BD =②ED ∥BC ③CNB AMD ∠=∠,其中正确的结论有_______(把正确的结论序号全部都写上). 16.如图,已知P 的半径是1,圆心P 在抛物线221y x x =-+向上运动,当P 与x 轴相切时,圆心P 的坐标为___________.三.全面答一答(本题共有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤. 如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以. 17、(本小题满分6分)102201115tan 45213π-⎛⎫-⨯+-⨯- ⎪⎝⎭()()18、(本小题满分8分)在一次研究性学习活动中,李平同学看到了工人师傅在木板上画一个直角三角形,方法是(如图所示):画线段AB ,分别以点A 、B 为圆心,以大于12AB 的长为半径画弧,两弧相交于点C ,连结AC ;再以点C 为圆心,以AC 长为半径画弧,交AC 的延长线于D ,连结DB .则△ABD 就是直角三角形. ⑴ 请你说明其中的道理;⑵ 请利用上述方法作一个直角三角形,使其一个锐角为30°(不写作法,保留作图痕迹). 19、(本小题满分8分)如图,一次函数12y x =-与x 轴交点A 恰好是二次函数与x 的其中一个交点,已知二次函数图象的对称轴为1x =,并与y 轴的交点为()0,1.(1)求二次函数的解析式;(2)设该二次函数与一次函数的另一个交点为C 点,连接BC ,求三角形ABC 的面积。
D C BA20、(本题满分10分)如图,AB 为⊙O 的直径,点C 在⊙O 上,过点C 作⊙O 的切线交AB 的延长线于点D ,已知∠D =30°.⑴求∠A 的度数;⑵若点F 在⊙O 上,CF ⊥AB ,垂足为E ,CF =34,求图中阴影部分的面积.21、(本小题满分10分) 为了让广大青少年学生走向操场、走 进自然、走到阳光下,积极参加体育锻炼, 我国启动了“全国亿万学生阳光体育运动”. 短跑运动,可以锻炼人的灵活性,增强人 的爆发力,因此小明和小亮在课外活动中, 报名参加了短跑训练小组.在近几次百米 训练中,所测成绩如图所示,请根据图中所示解答以下问题.(1)请根据图中信息,补齐下面的表格;(2)分别计算他们的平均数、极差和方差,若你是他们的教练,将小明与小亮的成绩比较后,你将分别给予他们怎样的建议?22、(本小题满分12分)阅读下列材料:在 ABC 中,D 为BC 边的中点,E 为AC 边上的任意一点,BE 交AD 于点O 。
某学生在研究这一问题时,发现了如下的事实:第1次 第2次 第3次 第4次 第5次小明 13.3 13.4 13.3 13.3 小亮 13.213.113.513.3第1次 第2次 第3次 第4次 第5次 次数13.6 13.5 13.4 13.3 13.2 13.1 时间(秒)小明 小亮(第22题)E DCBAOF(1)当AE AC ==+12111时,有AO AD ==+23221(如图1); (2)当AE AC ==+13112时,有AO AD ==+24222(如图2); (3)当AE AC ==+14113时,有AO AD ==+25223(如图3);在图4中,当AE AC n =+11时,参照上述研究结论,请你猜想用n 表示AO AD 的一般结论,并给出证明(其中n 是正整数)23、(本小题满分12分)如图,已知在矩形ABCD 中,2,3,AB BC ==P 是线段AD 边上的任意一点(不含端点,A D ),连接PC ,过点.P PE PC AB E ⊥作交于(1)在线段AD 上是否存在不同于P 的点Q ,使得?CQ QE ⊥若存在,求线段AP AQ 与之间的数量关系;若不存在,请说明理由;(2)当P 点在AD 上运动时,对应的点E 也随之在AB 上运动,求BE 的取值范围。
2015年中考模拟试卷数学答题卷(满分120分,考试时间100分钟)一.仔细选一选(本大题共10道小题,每小题3分,共30分.)下面给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确的答案. 二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案。
11、 12、 13、 14、 15、16、三.全面答一答(本题共有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤. 如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以. 17、(本小题满分6分)102201115tan 45213π-⎛⎫-⨯+-⨯- ⎪⎝⎭()()题号 1 2 3 4 5 6 7 8 9 10 答案18、(本小题满分8分)19、(本小题满分8分)20、(本题满分10分)21、(本小题满分10分)第1次 第2次 第3次 第4次第5次 小明 13.3 13.4 13.3 13.3 小亮13.213.113.513.3D C BAE DCBAO F22、(本小题满分12分)23、(本小题满分12分)2014年中考模拟试卷数学参考答案及评分标准一、仔细选一选(每题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案 CDDBABABDD二、认真填一填(本题有6个小题,每小题4分,共24分)11.()()238m m +- 12. 30 13. 0,-1,-2 14. -3 15. ①③ 16. (0,1)或(2,1)三.全面答一答(本题共有7个小题,共66分) 17、(本题6分)解:………………………………………………(4分) ………………………………………………(6分)18、(本题8分)解:(1)连接BC 由作图可知:AC=BC=DC 易证:︒=∠90ABD (5分)(2)略 …………………………………………………………(8分) 19、(本题8分)()22211,0220,1111,,0212111022438348133y x x A y ax bx x A b a a b a b y x x ⎛⎫=- ⎪⎝⎭∴=++⎛⎫= ⎪⎝⎭⎧-=⎪⎪⎨⎛⎫⎪++= ⎪⎪⎝⎭⎩⎧=⎪⎪⎨⎪=-⎪⎩∴=-+解:由已知可得与轴的交点坐标二次函数过设二次函数解析式为二次函数的对称轴为且过故解得二次方程解析式为22122211248(2)(1)1(1,0)334813010,,33223,021*******14,270497,441317722248ABC y x x A y x x x x B y x y x x x x y y C S ∆=-+=-+===⎛⎫ ⎪⎝⎭⎧=-⎪⎪⎨⎪=-+⎪⎩⎧=⎧⎪=⎪⎪⎨⎨⎪⎪==⎩⎪⎩⎛⎫ ⎪⎝⎭⎛⎫∴=-⋅=⎪⎝⎭由知函数过当时,解得故由解得故20、(本题10分)解:⑴ 连结OC ,∵CD 切⊙O 于点C ,∴∠OCD =90°. ∵∠D =30°,∴∠COD =60°. ∵OA =OC ,∴∠A =∠ACO =30°. ⑵ ∵CF ⊥直径AB , CF =34,∴CE =23, ∴在Rt △OCE 中,OE =2,OC =4. ∴2BOC 60483603S ππ⨯扇形==,EOC 12232S ⨯⨯==23.E DCBAO F……………………(2分) ……………………(4分)……………………(3分)……………………(8分)……………………(6分)……………………(1分)(2分)(4分) (6分)……………………(8分)AE AC n=+11AO AD n=+22 ∴EOCBOC 23S S Sπ阴影扇形8=-=-321、(本题10分) 解:(1)(2)小明:平均分为13.3 极差为 0.2 方差为 0.004 小亮:平均分为 13.3 极差为 0.4方差为 0.0222S S <小明小亮∴小明同学的成绩较为稳定,但是他的最高成绩没有小亮高,爆发力不够,有待提高。