Geochemical behavior of rare-earth elements and other major and minor elements in soundproducing
- 格式:pdf
- 大小:422.17 KB
- 文档页数:11
•研究成果•矿物岩石地球化学通报Bulletin of Mineralogy,Petrology and GeochemistryVol.38No.2,Mar.,2019辽宁鞍山齐大山铁矿床地球化学特征及地质意义何保I李莹I,滕寿仁2,杨仲杰21.辽宁工程技术大学矿业学院,辽宁阜新,123000;2.辽宁省地质矿产调查院,沈阳110000摘要:为研究辽宁齐大山铁矿床的成矿物质来源及形成环境,选取典型铁矿石进行主量元素、微量元素和稀土元素分析测试。
结果显示,铁矿石主要由TFeO和SiO,组成,其他主量元素及微量元素、稀土元素含量均较低,页岩标准化稀土元素配分曲线呈轻稀土元素相对亏损、重稀土元素相对富集型,具有一定的Eu、Y、La的正异常和弱的Ce异常,以及较高的Y/Ho值。
研究表明,齐大山铁矿是由极少碎屑物质加入的化学沉积岩,其成矿物质主要来源于热水和海水的混合作用,是在海底一定缺氧的环境下形成的,矿床是与海相火山沉积有关的前寒武纪火山沉积型铁矿。
关键词:齐大山铁矿床;地球化学;沉积变质型;成矿物质;沉积环境中图分类号:P61&31文章编号:1007-2802(2019)02-0395-10doi:10.19658/j.issn.1007-2802.2019.38.008Geochemical Characteristics of the Qidashan Iron Deposit in Anshan,Liaoning Province and ItsGeological SignificanceHE Bao',LI Ying',TENG Shou-ren2,YANG Zhong-jie21.College of Mining Engineering,Liaoning Technical University t Fuxin Liaoning123000,China;2.Liaoning Survey Academy of Geology and Mineral Resources,Shenyang110000,ChinaAbstract:The Qidashan banded iron formation(BIF)is located in the Anshan area of Liaoning Province.In order to constrain the origin of ore-forming material and metallogenic environment,whole rock major and trace elements of typical iron ores and host rocks have been analyzed.The iron ores of this deposit are mainly composed of FeO and SiO2.Other elements are generally low.Shale-normalized patter n s of rare earth elements(REE)demonstrate that the iron ores are characterized by depletion of LREE,enrichment of HREE,apparent positive La-Eu-Y anomalies,negative Ce anomaly and high Y/Ho ratios.Such geochemical features indicate that iron ores of Qidashan were chemical sedimentary which involved with a few clastic components.The ore-forming material mainly originated from both hydrothermal fluids and seawater.The deposit is formed in a hypoxic environment on the sea floor,and is a meta-volcanic sedimentary type iron deposit related to Precambrian marine volcanism.Key words:Qidashan iron deposit;geochemistry;sedimentary-metamorphic type;ore-forming material;sedimentary environment鞍山-本溪地区是华北克拉通早前寒武纪变质基底的重要组成部分,为华北克拉通早期地壳形成和演化的缩影。
海南岛砖红壤中稀土元素含量及垂直分布特征作者:袁建平, 毕华, 余天虹, 唐本安, 陈春福, 邓广强, YUAN Jian-ping, BI Hua,YU Tian-hong, TANG Ben-an, CHEN Chun-fu, DENG Guang-qiang作者单位:海南师范学院资源环境与旅游系,海口,571158刊名:土壤英文刊名:SOILS年,卷(期):2008,40(2)引用次数:0次1.刘南威自然地理学 20012.毕华.刘强.朱维晃.杨元根稀土农用研究进展[期刊论文]-海南师范学院学报(自然科学版) 2003(4)3.丁士明.梁涛.张自立.孙琴稀土对土壤的生态效应研究进展[期刊论文]-土壤 2004(2)4.朱维晃.杨元根.毕华.刘强土壤中稀土元素地球化学研究进展[期刊论文]-矿物岩石地球化学通报 2003(3)5.袁建平.余龙师.邓广强.李婷.毕华.赵志忠海南岛地貌分区和分类[期刊论文]-海南大学学报(自然科学版)2006(4)6.海南岛西部地区砖红壤中稀土元素含量的空间分异特征[期刊论文]-土壤 2005(5)7.毕华.刘强.余龙师.高昌海.袁建平海南岛农业地貌[期刊论文]-大地构造与成矿学 2002(3)8.汪啸风.马大铨.蒋大海海南岛地质(一、二、三) 19919.袁建平.余龙师.毕华.赵广孺.赵志忠海南岛西部抱板群研究进展和问题[期刊论文]-海南师范学院学报(自然科学版) 2006(3)10.张学雷.陈杰.张甘霖.檀满枝.Juan José Ibá(N-)ez海南岛成土母质的地形多样性分析[期刊论文]-土壤学报2004(2)11.朱维晃.杨元根.毕华.刘强海南土壤中稀土元素含量及分布特征[期刊论文]-地球与环境 2004(2)12.王仁民.贺高品.陈珍珍.郑松彦.耿元生变质岩原岩图解判别法 198713.王中刚.于学元.赵振华稀土元素地球化学 198914.庞欣.王东红.彭安稀土元素在土壤中迁移、转化模型的建立及验证[期刊论文]-环境化学 2002(4)15.Huang CM.Gong ZT Geochemical implication of rare earth elements in process of soil development 2001(1)16.池汝安.朱永睿.何焙炯.徐景明稀土在混合黏土矿中的富集和迁移[期刊论文]-稀土 1992(5)17.Marker A.De Oliveira JJ The formation of rare earth element scavenger minerals in weathering in weathering products derived from alkaline rocks of Se-bahia 199018.Kent CC.Jessie D.Robert LC Behavior of rare earth elements in a paleoweathering profile on granodiorite in the Front Range,Colorado,USA 1995(2)19.Roaldsct E Mineralogical and chemical changes during wathering transport and sedimentation in different environments with particular reference to the distribution of yttrium and the lanthanide elements 197820.冉勇.刘铮稀土元素在土壤和氧化物表面的吸附和解吸研究 1993(3)1.期刊论文海南岛西部地区砖红壤中稀土元素含量的空间分异特征-土壤2005,37(5)砖红壤是海南岛西部地区占地面积大、发育典型的地带性土壤,对区内不同砖红壤剖面稀土元素的组成特征及稀土元素含量的纵向变化规律进行研究发现,成土母质决定着土壤中稀土元素的最初含量,同一土壤剖面上下层土壤之间的稀土元素具有一定的继承性.砖红壤在形成发育过程中发生了轻稀土元素富集,且由深部至浅部,稀土元素总量逐步减少,而Ce也呈现出由负异常向正异常演化之趋势,土壤的淋溶作用是导致稀土元素发生纵向分异的主要原因.2.期刊论文赵志忠.许德如.毕华.唐少霞.ZHAO Zhizhong.XU Deru.BI Hua.TANG Shaoxia海南岛东部地区砖红壤中稀土元素含量及其纵向分异研究-大地构造与成矿学2006,30(3)对海南岛东部地区发育典型的5个砖红壤剖面的REE组成特征及其纵向变化规律进行研究发现,基岩与成土母质决定着土壤中稀土元素的最初含量,由花岗岩风化而成的砖红壤的REE含量大于砂页岩风化而成的砖红壤的REE含量,土壤表层强烈的淋溶作用又导致由土壤剖面深部至浅部∑REE逐步减少.基岩及成土母质决定了砖红壤中呈现的LREE富集及Eu亏损的特点,而土壤发育过程中REE分异作用又使这些特征在成土母岩的基础上发生了一定程度的叠加.砖红壤剖面表层氧化和水解作用导致Ce在土壤表层中的富集,并导致由剖面深部至浅部,Ce呈现出由负异常向正异常演化之趋势.3.会议论文毕华.王薛平.刘强.赵志忠.杨元根.朱维晃海南岛花岗岩砖红壤中稀土元素地球化学特征2005海南岛花岗岩砖红壤中稀土、轻稀土、有效态稀土总量平均值均高于地壳的稀土总量平均值186μg·g-1;富集轻稀土;有效态稀土含量高,介于17.99﹪~80.25﹪之间,平均为43.35﹪,与稀土总量之间有显著的正相关关系,且与海南岛热带高温潮湿的气候、强烈的化学风化作用、酸性-弱酸性的土壤环境有关.水平空间上,海南岛花岗岩砖红壤中稀土、轻稀土、有效态稀土总量平均值从低山丘陵区→中部山地→台地平原降低;而重稀土总量平均值则从中部山地→低山丘陵→台地平原降低.在垂直空间上,海南岛砖红壤各发生层自下而上(从C→B→A),稀土、轻稀土的总量平均值逐渐降低;重稀土、有效态稀土总量平均值从B→C→A减少,但在台地平原区,与稀土、轻稀土的变化规律相同.海南岛花岗岩砖红壤属弱-中等铕亏损,为负铕异常.铈在各构造地貌单元花岗岩砖红壤近地表处(A层)及海拔较低的台地平原相对富集,为正异常;向土壤深处,由无异常到弱负异常.4.期刊论文毕华.刘强.朱维晃.杨元根稀土农用研究进展-海南师范学院学报(自然科学版)2003,16(4)在系统收集已有资料及课题研究的基础上,论述了国内外稀土农用的研究进展与意义,并对海南岛砖红壤中稀土农用研究的意义进行了探讨.5.期刊论文杨社锋.方维萱.胡瑞忠.王思德.魏宁.Yang Shefeng.Fang Weixuan.Hu Ruizhong.Wang Side.Wei Ning老挝Boloven高原玄武岩风化壳中稀土元素富集与主量元素关系-中国稀土学报2007,25(4)老挝南部Champasak省东北部Boloven高原玄武岩喷发于晚中生代-新生代,在长期热带季风型气候和热带季雨林植被条件下,高原玄武岩上已经发育砖红壤型风化壳.在一条风化壳剖面上采集了11件样品并在室内细碎到200目,使用X射线荧光光谱仪分析了11个样品中的主量元素含量,使用ICP-MS分析了11件样品REE含量.结果表明,玄武岩风化壳中主量元素Na2O和MgO淋失量最大,K2O和CaO淋失量次之,并在淋失一定程度后淋失速度减慢;样品LR157和LR158中TiO2,P2O5分别为6.07%,1.45%和8.43%,0.82%,为整个剖面中的最高值;CaO的含量是松散风化产物中的最高值.风化玄武岩(LR140,LR141)的∑REE较低,为57.8×10-6和87.9×10-6;随着玄武岩风化程度和成壤作用的加强,∑REE逐渐富集,并在风化壳表土下(LR157,LR158)达到最高值1003×10-6和775×10-6.风化壳中LREE/HREE值为3.59~14.9,稀土元素分布型式属轻稀土富集型.随着风化程度加深,Ce由弱负异常逐渐变为强正异常,而Eu由弱正异常逐渐变小并呈现出强负异常,整个剖面中Ce正负异常和Eu正负异常的变化幅度较大.REE在剖面中的分布与含TiO2,P2O5的矿物有明显的相关关系,并且在TiO2,P2O5含量最高的样品LR157和LR158中最为富集.REE富集和Ce正异常出现在pH值为5.23~6.12的酸性和Fe2+/Fe3+为0.007~0.13的氧化环境下,证明在酸性氧化环境也能出现REE富集.6.期刊论文2000年国家自然科学基金批准项目一览表 国家自然科学基金委员会地球科学部-地理学报2001,56(1) 批准号项目名称及申请单位名称申请者起止年月 40001001土壤风蚀的137Cs示踪研究 北京师范大学严 平 2001-1~2003-12 40001002辽河三角洲区域开发与生态环境保护相协调的空间调控 中国科学院沈阳应用生态研究所李秀珍 2001-1~2003-12 40001003 从黄河冲积扇淤积量反演黄土高原历史时期土壤侵蚀变化 北京师范大学谭利华 2001-1~2003-12 40001004 大陆型冰缘带岩石冷生风化过程与机制研究 中国科学院地理研究所朱立平 2001-1~2003-12 40001005 近地表风沙与风速廓线的互馈机制 中国科学院寒区旱区环境与工程研究所董治宝 2001-1~2003-12 40001006 高速铁路影响下的区域城市空间结构演化研究 南京大学徐逸伦 2001-1~2003-12 40001007 中国城镇密集地区城市与区域管治研究--以苏南地区为例 南京大学张京祥 2001-1~2003-12 40001008 土壤空间变异与景观模型支持下的土壤遥感解译技术研究浙江大学史 舟 2001-1~2003-12 40001009 西部膨润土资源的物化性质及其应用专属性评价研究 广东省生态环境与土壤研究所马北雁2001-1~2003-12 40001010 旱后复水及根源信号ABA对小麦根系水力传导度的影响 西北农林科技大学李秧秧 2001-1~2003-12 40001011 南极地衣的生物风化作用及其土壤发生学意义 中国科学院南京土壤研究所陈 杰 2001-1~2002-12 40001012 土壤中无机纳米微粒的研究吉林农业大学吴景贵 2001-1~2003-12 40001013 铜污染土壤超积累植物修复的络合强化机制及环境风险 中国科学院沈阳应用生态研究所吴龙华 2001-1~2003-12 40001014 土壤侵蚀水力学机理实验研究 北京师范大学张光辉 2001-1~2003-12 40001015 极化和干涉雷达数据反演积雪参数 中国科学院遥感应用研究所李 震 2001-1~2003-12 40001016 海洋油气藏烃类渗漏形成表面油膜的时空变化特征研究 中国科学院遥感应用研究所黄晓霞 2001-1~2003-12 续表 批准号项目名称及申请单位名称申请者起止年月 40001017多种类型大型空间数据库集成方法 武汉测绘科技大学朱 庆 2001-1~2003-12 40001018 基于三角网的整体影像匹配与三维表面重建方法研究 武汉测绘科技大学江万寿2001-1~2003-12 40001019 基于遗传算法的地名注记自动化和智能化 武汉测绘科技大学樊 红 2001-1~2003-12 40001020 沉积物早期成岩过程中铁循环的环境磁学研究 华东师范大学张卫国 2001-1~2003-12 40001021 氮/水输入-产量-淋失量响应及氮迁移转化模型研究中国科学院地理研究所张国梁 2001-1~2003-12 40001022 湖泊环境对西南季风气候响应的区域差异研究 中国科学院南京地质古生物研究所彭金兰 2001-1~2003-12 40001023 中国酸雨区生态系统的酸沉降临界负荷及其超标量 中国农业科学院农业气象研究所陶福禄 2001-1~2003-12 40031010 典型微量有机污染物的区域环境过程 北京大学陶 澍 2001-1~2003-12 40061001 喀斯特流域结构与枯水径流特征分析贵州师范大学梁 虹 2001-1~2003-12 40061002 云南西部城镇密集区城市化特征、机制与调控入示范 昆明理工大学吴启焰 2001-1~2003-12 40061003 海南砖红壤稀土元素背景值及对土壤肥力的影响 海南师范大学毕 华 2001-1~2003-12 40061004 西藏一江两河地区农田土壤肥力退化机理及培肥措施研究 西藏农牧学院蔡晓布 2001-1~2003-12 40061005 稀土尾矿百喜草植生复育后期退化主因、对策和机理的研究 江西农业大学董闻达 2001-1~2003-12 40061006 云南金沙江流域水土流失与土地利用安全格局研究 云南大学杨子生 2001-1~2003-12 40061007 大开发驱动下宁南山区生态重建的环境图谱研究 宁夏大学隋玉柱 2001-1~2003-12 40061008 滇西北碧塔海自然保护区旅游生态环境承载力的定位研究 云南大学杨桂华 2001-1~2003-12 40071001 青藏高原半混合型湖沉积过程与湖泊环境纹泥记录研究 中国科学院南京地理与湖泊研究所李世杰 2001-1~2003-12 40071002 山地效应温度空间分异及其对植被景观作用机理的研究 北京师范大学江 源 2001-1~2003-12 续表 批准号项目名称及申请单位名称申请者起止年月 40071003《竺可桢全集》的编纂及竺老科学创新轨迹研究 中国科学院科技政策与管理科学研究所樊洪业 2001-1~2003-12 40071004 干旱区生态用水的理论与实验研究 中国林业科学研究院贾宝全 2001-1~2003-12 40071005 全球变化下秦岭南北环境脆弱程度的比较研究 陕西师范大学延军平 2001-1~2003-12 40071006 渭河流域全新世短尺度气候水文事件高分辨率研究 陕西师范大学黄春长 2001-1~2003-12 40071007 高寒草甸地区陆面过程耦合模式及观测研究 中国科学院力学研究所姚德良 2001-1~2003-12 40071008 地下水对地表过程的作用及其对农业生态的影响 中国科学院地理研究所于 强 2001-1~2003-12 40071009 荒漠绿洲边缘区植被变化与主要水文过程的关系研究 中国科学院新疆生态与地理研究所赵成义 2001-1~2003-12 40071010 泥石流应力本构关系现场试验研究 中国科学院成都山地灾害与环境研究所王裕宜 2001-1~2003-12 40071011 华南热带内陆晚第四纪环境变迁南北向大断面研究 广州地理研究所黄镇国 2001-1~2003-12 40071012 沙丘背风坡交错层理与形态和不同尺度气流之间的关系 北京师范大学哈 斯 2001-1~2003-12 40071013 长江河口涨潮槽形成机理与演化过程的定量研究 华东师范大学沈焕庭 2001-1~2003-12 40071014 波浪潮汐共同作用下岸滩演变预测技术的研究 华东师范大学包四林 2001-1~2003-12 40071015 云南拱王山与台湾高山末次冰期冰川与季风演化特征研究 北京大学崔之久 2001-1~2003-12 40071016 黄河壶口瀑布-小浪底水库段河流地貌变异模型 北京大学李有利 2001-1~2003-12 40071017 喀斯特双生态环境系统相耦特性与洞穴景观稳定性研究 中国科学院地理研究所宋林华 2001-1~2003-12 40071018 荒漠起尘风洞模拟与近地层粉尘流结构观测 中国科学院寒区旱区环境与工程研究所刘连友 2001-1~2003-12 40071019 浅水湖泊水动力过程对底泥和悬浮物作用的环境效应研究 中国科学院南京地理与湖泊研究所秦伯强 2001-1~2003-12 40071020 滴灌条件下农田水分循环过程及作物需水规律的研究 中国科学院地理研究所康跃虎 2001-1~2003-12 续表 批准号项目名称及申请单位名称申请者起止年月 40071021冻土场地的地震动特性研究哈尔滨建筑大学徐学燕 2001-1~2003-12 40071022 冰雪无线电回波信号特征分析及其冰川学意义 中国极地研究所孙 波 2001-1~2003-12 40071023 西南季风区温冰川冰雪现代过程研究 中国科学院寒区旱区环境与工程研究所何元庆 2001-1~2003-12 40071024 青藏高原冰芯高分辨率甲烷记录的恢复 中国科学院寒区旱区环境与工程研究所徐柏青 2001-1~2003-12 40071025 北极地区某些区域雪冰及气溶胶中含硫化合物的研究 中国科学院寒区旱区环境与工程研究所孙俊英 2001-1~2003-12 40071026 中国地区产业竞争力研究 国家发展计划委员会产业经济与技术经济研究所费洪平 2001-1~2003-12 40071027 集中投资地区土地系统生态安全决策评价研究 中国科学院南京地理与湖泊研究所许 刚 2001-1~2003-12 40071028 微机产业的柔性生产综合体及其地方创新网络研究 北京大学王缉慈 2001-1~2003-12 40071029 全球化与地方化相互作用下中国农村工业集聚区研究 河南大学苗长虹 2001-1~2003-12 40071030 住宅区位选择与居住用地的空间分异研究 中国科学院地理研究所张文忠 2001-1~2003-12 40071031 河西走廊人类活动与环境变化及其反馈过程研究 兰州大学王乃昂 2001-1~2003-12 40071032 中国城市生活空间与社区可持续发展:西安城市群为例 西安外国语学院王兴中 2001-1~2003-12 40071033 东北区城乡一体化进程与都市区划界研究 东北师范大学修春亮 2001-1~2003-12 40071034 高密度开发城市的交通系统与土地利用研究--以广州为例 中山大学阎小培 2001-1~2003-12 40071035 城市体系空间网络的分形结构及其演化机制 信阳师范学院陈彦光 2001-1~2003-12 40071036 内蒙古东部天然樟子松林空间格局形成的驱动力分析 中国科学院生态环境研究中心王效科 2001-1~2003-12 40071037 区域发展中的双核结构模式研究 南京师范大学陆玉麒 2001-1~2003-12 40071038 辽金时期西辽河流域农业开发对环境变化的影响 北京大学韩茂莉 2001-1~2003-12 续表 批准号项目名称及申请单位名称申请者起止年月 40071039坝上农业可持续发展机理与产业结构优化研究 首都师范大学马 礼 2001-1~2003-12 40071040 2000年来长江上游森林分布变迁与水土流失综合研究 西南师范大学蓝 勇 2001-1~2003-12 40071041 城市景观生态优化的空间途径及其实践研究 深圳城市规划设计研究院李贵才 2001-1~2003-12 40071042 夕阳产业地域的形成、演变与持续发展研究--以东北为例 北京大学李国平 2001-1~2003-12 40071043 流域土壤和水资源研究模型的集成和系统化及其应用 南京师范大学曾志远 2001-1~2003-12 40071044 江西鹰潭小流域景观生态水文过程监测和模拟 中国科学院南京土壤研究所张 斌 2001-1~2003-12 40071045 煤矿区重构土壤特性的时空变化规律及其改良对策 中国矿业大学(北京校区)胡振琪 2001-1~2003-12 40071046 酸沉降下红壤中养分离子加速淋失过程的电化学法原位示踪 中国科学院南京土壤研究所蒋 新 2001-1~2003-12 40071047 利用抑氨膜降低稻田中氮素损失的作用机理研究 中国科学院南京土壤研究所尹 斌 2001-1~2003-12 40071048 几种土壤中胶膜的物质组成、性质及元素形态与转化 华中农业大学刘 凡2001-1~2003-12 40071049 两相反应:腐殖酸-金属离子反应机理的新探索 西南农业大学魏世强 2001-1~2003-12 40071050 丛枝菌根对重金属污染土壤的生物修复作用机理研究 中国农业大学李晓林 2001-1~2003-12 40071051 多养分肥料与土壤的反应机理及对养分形态的影响 中国科学院南京土壤研究所周健民 2001-1~2003-12 40071052 腐殖质对土壤固钾和释钾作用的影响研究 沈阳农业大学梁成华 2001-1~2003-12 40071053 生态平衡施肥模型特征参数稳定性和尺度转换方法研究 中国科学院生态环境研究中心侯彦林 2001-1~2003-12 40071054 坡地景观草灌细根稳定土壤结构的空间格局与减沙效应 中国科学院成都山地灾害与环境研究所李 勇 2001-1~2003-12 40071055土壤有机质变化对红壤可蚀性的影响及其规划应用 中国科学院南京土壤研究所赵其国 2001-1~2003-12 40071056 浑善达克沙地荒漠化灾害预警体系的研究 北京林业大学丁国栋 2001-1~2003-12 续表 批准号项目名称及申请单位名称申请者起止年月 40071057浑水入渗禁锢土壤空气压力减渗效应及机理研究 西北农林科技大学李援农 2001-1~2003-12 40071058 黄土坡面侵蚀-搬运过程研究 西北农林科技大学郑粉莉2001-1~2003-12 40071059 Cs和Be复合示踪研究坡耕地侵蚀产沙时空分布特征 西北农林科技大学杨明义 2001-1~2003-12 40071060星载雷达对华南土地利用变化的快速监测研究 广州地理研究所黎 夏 2001-1~2003-12 40071061 卫星数字图像自动解译中的空间分析方法研究 北京大学秦其明 2001-1~2003-12 40071062 SRTM干涉测量的植被效应与散射机理分析 中国科学院遥感应用研究所王 超 2001-1~2003-12 40071063 基于环境因素的沿岸水域叶绿素遥感探测研究 中山大学陈晓翔 2001-1~2003-12 40071064 基于GIS的现代黄土地貌演化过程动态仿真研究 北京大学邬 伦 2001-1~2003-12 40071065 数字地球空间数据模型基础研究 中国科学院遥感应用研究所杨崇俊 2001-1~2003-12 40071066 基于GIS的黄河源区生态环境遥感动态监测研究 青海师范大学曾永年 2001-1~2003-12 40071067 “数字地球”空间数学基础若干理论与关键技术研究 武汉测绘科技大学胡 鹏 2001-1~2003-12 40071068 GIS中图象数据位置不确定性理论问题研究 武汉测绘科技大学杜道生 2001-1~2003-12 40071069 地理空间图元语义关系模型与空间推理图式符号系统研究 中国测绘科学研究院鲁学军 2001-1~2003-12 40071070 海洋测深网平差的理论与方法 中国人民解放军海军大连舰艇学院刘雁春 2001-1~2003-12 40071071地球空间多维信息的表达图形学基础框架研究 武汉测绘科技大学杜清运 2001-1~2003-12 40071072 北方沼泽湿地中汞和甲基汞的环境过程中国科学院长春地理研究所王起超 2001-1~2003-12 40071073 难降解有机有毒污染物在水/沉积物/生物体系中的转移 中国科学院生态环境研究中心王子健 2001-1~2003-12 40071074 珠江三角洲水产养殖水体的物质平衡及其对水环境的影响 中山大学温琰茂 2001-1~2003-12 续表 批准号项目名称及申请单位名称申请者起止年月 40071075砷污染土地的植物修复过程与机理 中国科学院地理研究所陈同斌 2001-1~2003-12 40071076 无磷洗涤剂对太湖富营养化影响的研究 中国科学院南京地理与湖泊研究所黄文钰 2001-1~2003-12 40071077 黄土区大型露天采煤废弃地生境再造与群落重组研究 山西农业大学白中科 2001-1~2003-12 40071078 环境技术孵化与转移的空间演化效应研究 中国科学院生态环境研究中心吕永龙 2001-1~2003-12 40071079 水稻植株对稻田甲烷排放影响规律的研究 中国科学院南京土壤研究所蔡祖聪 2001-1~2003-12 40071080 切沟侵蚀的危害及其发生发展规律 北京师范大学伍永秋 2001-1~2003-12 40071081 公元1600年以来贺兰山树轮气候记录及东亚季风演变 中国科学院西安黄土与第四纪地质研究室刘 禹 2001-1~2003-12 40071082 华南过渡热带埋藏古木群与历史时期气候突变事件 北京大学崔海亭 2001-1~2003-12 40071083 长江三角洲全新世海侵和洪涝事件序列环境考古研究 南京大学朱 诚 2001-1~2003-12 40071084 东亚热带孢粉纪录与南海环境变迁相关关系的高分辨研究 中山大学郑 卓 2001-1~2003-12 40071085 热带中国陆地生态系统C贮量及其历史变化格局 中国科学院植物研究所韩兴国 2001-1~2003-127.学位论文王薛平海南岛花岗岩类砖红壤中稀土元素地球化学特征研究2007为了解海南岛花岗岩类砖红壤中稀土元素地球化学特征,利用ICP-MS(等离子体质谱)法测定了海南岛花岗岩类砖红壤80个土壤样品中稀土元素含量及10个土壤样品中有效态稀土元素含量,统计分析结果表明: (1)海南岛花岗岩类砖红壤中稀土元素的总量平均值∑REE为426.96μg/g,有效态稀土元素总量∑REE平均值为199.06μg/g,高于地壳、世界土壤中稀土元素的对应含量。
190贵州省福泉市矿床的稀土元素地球化学特征张 琛,邓耀辉(贵州省有色金属和核工业地质勘查局七总队,贵州 贵阳 550005)摘 要:经过勘探工作和资料收集对贵州省福泉市矿床进行研究,发现矿床中伴生稀土元素含量较高,综合利用前景大,并具有以下地球化学特征:①稀土总量较高,显示轻稀土富集,重稀土亏损,并以富集Y、La、Nd元素为特征;②“a”矿层相对于“b”矿层稀土元素富集,可能与前期的热水、生物作用关联;③稀土元素北美页岩标准化模式曲线向右倾,EU、Ce元素呈负异常,Y元素呈正异常。
关键词:沉积成矿;地球化学特征;稀土元素中图分类号:P736.4 文献标识码:A 文章编号:1002-5065(2021)05-0190-3Geochemical characteristics of rare earth elements in the Fuchuan deposit, Guizhou ProvinceZHANG Chen, DENG Yao-hui(No.7 general team of Guizhou Nonferrous Metals and Nuclear Industry Geological Exploration Bureau,Guiyang 550005,China)Abstract: After exploration work and data collection to study the Fuchuan deposit in Guizhou Province, it is found that the deposit has a high content of associated rare earth elements and a great prospect for comprehensive utilization, and has the following geochemical characteristics:①the total amount of rare earths is high, showing light rare earth enrichment and heavy rare earth deficit, and is characterized by enrichment of Y, La and Nd elements;②the "a The enrichment of rare earth elements in the "a" horizon compared with the "b" horizon may be related to the pre-hot water and biological effects;③the standardized model curve of North American shale for rare earth elements is rightward, with negative anomalies for EU and Ce elements and positive anomalies for Y elements.Keywords: sedimentary mineralization; Geochemical characteristics; Rare earth elements1 矿床地质特征概况贵州省福泉市矿床大地构造位于扬子准地台(Ⅰ级构造单元)黔北台隆(Ⅱ级构造单元)遵义断拱(Ⅲ级构造单元)贵阳复杂构造变形区之中偏东部之白岩—高坪背斜[1],褶皱、断裂构造总体呈北东及北北东向展布(图1)。
Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field,15°N on the Mid-AtlanticRidge:Temporal and spatial investigationKatja Schmidt a,⁎,Andrea Koschinsky a ,Dieter Garbe-Schönberg b ,Leandro M.de Carvalho c ,Richard Seifert d,⁎aJacobs University Bremen,Earth and Space Sciences,Campus Ring 1,28725Bremen,GermanybUniversity of Kiel,Institute of Geosciences,Olshausenstr.40,24118Kiel,GermanycFederal University of Santa Maria,Department of Chemistry,Caixa Postal 5051,Santa Maria,BrazildUniversity of Hamburg,Institute of Biogeochemistry and Marine Chemistry,Bundestr.55,20146Hamburg,GermanyReceived 14August 2006;received in revised form 19January 2007;accepted 27January 2007Editor:David RickardAbstractMantle-derived ultramafic rocks commonly occur on the seafloor at slow-spreading axes and are tectonically emplaced along shear zones.Since the early 1990s,a growing number of hydrothermal systems have been detected in ultramafic settings.But chemical data for fluid compositions in active systems are still limited.Besides the Logatchev field at 15°N on the Mid-Atlantic Ridge (MAR),the only other active high-temperature (N 300°C)hydrothermal field known to be strongly influenced by ultramafics is the Rainbow field at 36°N on the MAR.The field at Logatchev consists of six active vent sites at about 3000m water depth,situated along a NW –SE-trending line with distances of 50–200m between the individual sites.The vent sites were mapped in detail and re-sampled during two cruises in 2004and 2005using a ROV .The geochemical composition of the hydrothermal fluids is characterized by very high concentrations of dissolved methane and hydrogen (up to 3.5mM and 19mM,respectively)related to serpentinization processes in the reaction zone.Together with moderate Si concentrations of 9mM,a depletion in B compared to seawater and Li concentrations lower than in basaltic systems,this fluid composition has been identified as characteristic signature of high-temperature hydrothermal fluids reacting with ultramafic rocks.However,additional alteration of gabbroic intrusions is likely.The fluid composition is very similar at all vent sites,indicating a common source in the reaction zone and little variation during upflow.Spatial differences in fluid composition were observed between smoking craters and the complex chimney system IRINA II,but are restricted to elements with strong temperature-controlled solubility,as Cu and Co.These differences can be related to different exit temperatures (up to 350°C and b 300°C,respectively).Concentrations of rare earth elements,and chondrite-normalized patterns with LREE enrichment and positive Eu anomalies are comparable to those of basaltic-hosted systems,thus indicating minor influence of host-rock composition.A comparison of published fluid composition data from 1996[Douville,E.,Charlou,J.L.,Oelkers,E.H.,Bienvenu,P.,Jove Colon,C.F.,Donval,J.P.,Fouquet,Y .,Prieour,D.,Appriou,P.,2002.The Rainbow vent fluids (36°14'N,MAR):the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids.Chemical Geology,184:37–48.]with our own data indicates that the system remained stable over the past nine years.There is no clear indication of phase separation taking place at Logatchev.Mineralogical andChemical Geology 242(2007)1–21/locate/chemgeo⁎Corresponding authors.Fax:+494212003229.E-mail address:k.schmidt@iu-bremen.de (K.Schmidt).0009-2541/$-see front matter ©2007Elsevier B.V .All rights reserved.doi:10.1016/j.chemgeo.2007.01.023chemical composition of the rocks,reaction temperature,and partly sub-seafloor mixing with entraining seawater are supposed to be the main controlling parameters of fluid geochemistry in the Logatchev field.As it is known that more ultramafic-hosted hydrothermal systems exist along slow-spreading ridges,this type of hydrothermal systems might have a significant influence on the elemental budget of the oceans.Detailed information about the fluid geochemistry and its spatial and temporal variations is an important prerequisite for an estimation of elemental fluxes in ultramafic-hosted systems and their relative importance compared to basaltic-hosted systems.©2007Elsevier B.V.All rights reserved.Keywords:Ultramafic-hosted hydrothermal systems;Serpentinization;Hydrothermal fluids;Temporal variability;Logatchev field1.IntroductionSince the discovery of submarine hydrothermal systems it has been recognized that they play an important role for the oceanic cycle of many elements (Butterfield et al.,2003;Lowell et al.,1995).However, the quantification of hydrothermal contributions to the elemental budget of the ocean is restricted because of the lack of knowledge on the number of sites,heat flow, scales and changes of fluid input and chemistry with time.In particular hydrothermal systems characterized by boiling of fluids and phase separation are subject to significant changes with time(e.g.,von Damm et al., 1997).Boiling and phase separation have a first order effect on the fluid geochemistry because gases,chloride and metals forming chloride complexes will separate into the respective vapor and brine phases.To our knowledge,no time-dependent investigations have been carried out in systems at great water depth(≥3000m) where phase separation may take place at supercritical conditions(above the critical point of seawater,which is 407°C at298.5bars,Bischoff and Rosenbauer,1988). Also,not much is known about the temporal variability in hydrothermal fields in which hydrothermal circula-tion and water–rock interactions are(at least partly) driven by serpentinization reactions of mantle rocks. However,the continuous sampling of hydrothermal fluids at the Rainbow field over10years indicates a stable system(m.Jean-Luc Charlou).Such systems may play an important role for heat and material output into the ocean at slow-spreading ocean ridges (Lowell and Rona,2002).Along the Mid-Atlantic Ridge, three hydrothermal systems with temperatures above 40°C are known to be active in serpentinized ultra-mafic settings:(1)the Rainbow vent field at36°14′N (Charlou et al.,2002;Douville et al.,2002),(2)the Logatchev vent field at14°45′N on the MAR(Batuev et al.,1994;Douville et al.,2002),and(3)the low-temperature field Lost City at30°N(up to90°C;Kelley et al.,2001,2005),which is located15km west off-axis and is completely different in its mineralogy,chemistry and associated fauna compared to the other systems.Further ultramafic-hosted systems(active and inactive) were discovered along slow-and ultra-slow spreading ridges:the Saldanha field(diffuse venting,Dias and Barriga,2006),Ashadze(sulfide deposits,Beltenev et al.,2003)and the Lena Trough(fresh massive sulfides, Snow et al.,2001).Recent evidence for hydrothermal activity in ultramafic environments has also been reported for the Southwest Indian Ridge(Bach et al., 2002)and the Gakkel Ridge(Edmonds et al.,2003).This increasing number shows,that ultramafic-hosted sys-tems are common along slow-and ultra-slow spreading ridges.The Logatchev hydrothermal field was discovered in 1993–1994in about3000m water depth on the eastern rift mountain of the MAR south of the Fifteen–Twenty fracture zone at14°45′N(Batuev et al.,1994).The main characteristic of the spreading ridge segment at14°45′N is the presence of serpentinized peridotite outcropping on the eastern and western walls of the ridge axis.The Logatchev field offers a high diversity of high-and low-temperature fluid emanations(up to350°C,Douville et al.,2002), precipitates,plumes and fauna associations(Sudarikov and Roumiantsev,2000).The few fluid data from the Logatchev field published so far are,compared to other vent fields from the northern MAR,intermediate for most metals and reflect ultramafic as well as mafic rock influences(Douville et al.,2002;Charlou et al.,2002).Within the frame of the6-years Special Priority Program1144of the German Science Foundation DFG entitled“From Mantle to Ocean:Energy,Material and Life Cycles at Spreading Axes”two research cruises with R/V Meteor to the Logatchev field were carried out recently:cruise M60/3(Jan./Feb.2004;Kuhn and Shipboard Scientific Party,2004)and cruise M64/2 (April2005,Lackschewitz and Shipboard Scientific Party,2005).The principal scientific purpose of these cruises was to elucidate the inter-relationship of geolog-ical and biological processes in this active,ultramafic-hosted hydrothermal system,and its medium-term variability within a few years.In addition,the observed spatial heterogeneity in terms of structural setting, morphology,and biological community structure of the2K.Schmidt et al./Chemical Geology242(2007)1–21different vent sites was to be substantiated by fluid chemical data.In this paper,we report detailed geochem-ical investigations of hydrothermal fluid samples recov-ered at different vent sites during the two cruises and a first assessment of temporal changes and spatial differences within this field.Compared to the Rainbow vent field which is strongly influenced by phase separation(emanation of high-chlorinity fluids),the Logatchev fluids show no,or no significant,influence of phase separation(see chlorinity data in Douville et al.,2002).This allows a more straightforward interpretation of water–rock interactions in ultramafic systems at very high temperature.There-fore,the detailed fluid geochemistry study presented here can provide an estimate on the importance of this type of vent systems on elemental budgets in the ocean.2.Geological setting and description of sampling sitesIn contrast to the fast spreading East Pacific Rise (EPR),the Mid-Atlantic Ridge(MAR)with its low spreading rates(b3cm/yr,total rate)consists of ridge segments with a more discontinuous and irregular shaped structure.Tectonic processes dominate in relation to magmatic rge parts of the lithosphere in slow-spreading ridge settings are composed of a mixture of partially serpentinized peridotites and gabbroic intru-sions(Cannat,1996).South of the15°20′N fracture zone abyssal peridotites and gabbroic rocks are exposed on both flanks of the spreading axis due to tectonic faulting, associated with extension and crustal thinning.Ultramafic rocks recovered during drilling project ODP209in the 15°20′N area show complex alterations patterns due to hydrothermal alteration at temperatures up to400°C,with abundant serpentine,magnetite,relict tremolite and talc (Bach et al.,2004;Paulick et al.,2006).Rock samples obtained in the Logatchev area during research cruises M60/3and M64/2include peridotites(mainly harzbur-gites,some pyroxenites)as well as gabbroic rocks(Kuhn and Shipboard Scientific Party,2004;Lakschewitz and Shipboard Scientific Party,2005).The hydrothermally active Logatchev field is situated at14°45′N and44°58′W on a plateau right below a 350m high cliff at a water depth of3060m to2900m (Fig.1).It extends at least800m in NW–SE and400m in SW–NE direction and shows a high diversity of vent sites and associated fauna(Kuhn and Shipboard Scientific Party,2004;Lakschewitz and Shipboard Scientific Party,2005).Two main areas of high-temperature hydrothermal activity make up thecentral Fig.1.Hydrothermal fields along the northern Mid-Atlantic Ridge;location of the Logatchev hydrothermal field.3 K.Schmidt et al./Chemical Geology242(2007)1–21part of the field:an area of at least three “smoking craters ”(ANNA LOUISE,IRINA and Site B),and the large mound of IRINA II with black smoker chimneys at its top as well as the newly discovered QUEST smoking crater further to the NW (Fig.2).The smoking craters have a 2–3m deep central depression surrounded by a rim with 1–2m elevation above the surrounding seafloor and a diameter up to 10m (Lakschewitz and Shipboard Scientific Party,2005).Small chimneys (50cm up to 2m)occur on the crater rims.Black smoke is intensely venting at all three sites,either from the chimneys on the crater rim or from holes in the ground within the craters (Fig.3.3and 3.5).Unfortu-nately,these holes were inaccessible for the ROV and,hence,this type of venting fluids could not be sampled directly.The maximum measured temperature for the Logatchev field is 350°C (Douville et al.,2002),however,the authors didn't mention a vent site.Maximum temperatures measured inside chimney orifices at IRINA and ANNA LOUISE were 188°C (station 249ROV-11)and 210°C (station 249ROV-8),respectively,representing minimum temperatures (Lakschewitz and Shipboard Scientific Party,2005).Measured in-situ temperatures for Site B chimneys are 300°C (station 266ROV-10)and 350°C (station 257ROV-8),respectively.In this environment the hydro-thermal fauna is scarce.IRINA II consists of a mound with steep slopes rising about 15m above the surrounding seafloor with a basal diameter of about 60×40m.Four vertical chimneys,several meters high,mark the top of the mound (Fig.3.1).Several beehive structures have been observed,characterized by high thermal gradients due to intense mixing of hydrothermal fluid with seawater.The chimneys are densely overgrown with mussels (Bathymodiolus cf.puteoserpentis ),accompanied by crabs,snails and limpets (for detailed description of vent fauna see Kuhn and Shipboard Scientific Party,2004;Fig.2.Sketch map of vent sites in the Logatchev hydrothermal field.4K.Schmidt et al./Chemical Geology 242(2007)1–21Fig.3.Photo plate of sampling sites:1)IRINA II main complex with chimney and beehive structures,dense mussel inhabitation;2)Sampled fluid emanation at the base of IRINA II main complex (samples 277ROV-5;283ROV-5),dense shrimp mat;3)Site B smoking crater,sample 257ROV-8was taken from the smoker on the left,whereas sample 266ROV-10was taken from the smoker on the right;4)Sampling of Site A chimney tower;5)IRINA smoking crater with crater wall consisting of oxidized sulfide talus,sample 261ROV-6was taken from the emanating black smoke;6)Site QUEST,sample 281ROV-5was taken from the chimney on the right;7)Single black smoker at IRINA II,sample 224ROV;8)Fluid sampling at Logatchev with the KIPS pump system at ANNA LOUISE;copyright by MARUM,Univ.Bremen.5K.Schmidt et al./Chemical Geology 242(2007)1–21Lackschewitz and Shipboard Scientific Party,2005; Gebruk et al.,1997,2000).Active venting of grey smoke is restricted to small cracks at the basis of the sulfide structures and one chimney(Fig.3.2).Mea-sured in-situ temperature is170°C(station183ROV-5), again representing a minimum temperature due to the difficulty in getting access to the vent.The chimneys are surrounded by densely populated mussel beds and also by inactive chimneys and empty mussel shells further down the slope.A single black smoker a few meters south of the mound top emanates vigorous black smoke,with the in-situ fluid temperature up to225°C(station224ROV) (Fig.3.7),again,representing a minimum temperature.QUEST is a newly discovered high-temperature,black smoke venting site situated about130m WNW of the active chimneys of IRINA II(Kuhn and Shipboard Scien-tific Party,2004).The formation of a depression,small chimneys and smoking pipes emanating black smoke give the QUESTsite a similar appearance as the smoking craters on the main mound.However,QUEST does not show the typical circular crater rim and therefore may represent an early state of a developing smoking crater(Fig.3.6).While the faunal composition grossly corresponds to that found at the smoking craters on the main mound,QUEST addi-tionally harbored scattered clusters of mussels.The southeastern end of the field is occupied by a9m high black smoker sitting on a3m-high mound of chimney talus at Site A(Gebruk et al.,1997),which we named “Barad-Dûr”(Lakschewitz and Shipboard Scientific Party, 2005).There were no mussel beds at this site,and hydrothermal fauna was restricted to shrimps and crabs on the upper part of the smoker.Approximately200m northwest of the QUEST field a site of diffuse venting was discovered in2005(Laksche-witz and Shipboard Scientific Party,2005).It is characterized by brownish Fe-oxyhydroxide precipitates at the emanation site.Several inactive chimneys and oxidized chimney fragments have been described be-tween IRINA II and Site B,north of IRINA II and around the smoking craters(Schreiber,2006),thus indicating former hydrothermal activity at different places.A summary of sampling locations for the hydrother-mal fluids discussed in this paper is given in Table1.3.Methods3.1.Fluid samplingFor the direct sampling of hydrothermal fluids from high-temperature vents a pumped flow-through system (Kiel Pumping System,KIPS)entirely made of inert materials(perfluoralkoxy,PFA,polytetrafluorethylene, PTFE,and high-purity titanium)was specially designed for the ROV QUEST.Samples are collected via aTable1Description of the sampling sites for hydrothermal fluids(2005)discussed in this paper;temperature data are minimum valuesVent site Sample ID T(°C)Endmember fluid(%)DescriptionIRINA IIMain complex277ROV-517020Emanating grey smoke from a small fissure at the base of thesulfide complex(eastern side),dense shrimp mat 3034m55283ROV-5Single black smoker224ROV22575Free-standing black smoker chimney SE of IRINA II 3034mMussel bed232ROV-3Diffuse fluids232ROV-7Diffuse fluids266ROV-7Diffuse fluids277ROV-4Diffuse fluidsQUEST281ROV-528055Black smoker chimney approx.1m high,Marker MC3042mDiffuse fluidsMussel bed281ROV-2IRINA261ROV-670Black smoker chimney at the southeastern crater rim of thesmoking crater,Marker MD2963mSite B 2983m 266ROV-1030075Black smoker chimney1,southeastern crater rim of thesmoking crater(right)257ROV-835098Black smoker chimney2,southeastern crater rim of thesmoking crater(left),Marker MA6K.Schmidt et al./Chemical Geology242(2007)1–21titanium nozzle of50cm length,which can be directly inserted into the hot vent orifice.PFA tubing connects the sampling nozzle to5–15parallel PFA sampling flasks(675ml volume each)and a mechanical gear pump mounted downstream to the sampling flasks.In its older version used during M60/3each sampling flask had mechanical open-close valves with handles,which were operated by the ROV's manipulator.The whole system is contained within a plastic frame,which was mounted on the ROV's equipment sled.During cruise M64/2,a modified version of the system was used. Coiled PFA tubing(5m length)connects the Ti sampling nozzle to4handle-operated open-close valves allowing the distribution of the vent fluids directly to either a series of3×5PFA sampling flasks(675ml volume each,Savillex,USA)mounted in three racks,or to an in-line filter holder,or to a remotely controlled, motor-driven ultiport valve(PETP/PTFE).The valve control software is fully integrated in the ROV control system(Marum Soft,Bremen).Parallel to the nozzle is an on-line temperature probe monitoring the in-situ temperature at the point of sampling.Before filling the sampling tube and sample bottles,they were first rinsed several minutes with the hydrothermal fluid.In addition to the KIPS system for direct sampling of hot and diffuse fluids,three standard Niskin bottles mounted at the front of the ROV were used to sample the plume within the first meter above the vent outlet.Besides hydrothermal fluid samples plume particles have been obtained from different vent sites.During M60/3in-situ filtration with the KIPS was used to sample precipitates formed due to incipient seawater-fluid interaction at the vent outlet.In2005particles were sampled directly in the first meter of the rising plume,either with a slurp gun or a cloth net.4.Analytical methodsAll KIPS and Niskin samples were sub-sampled in the ship's laboratory immediately after recovery of the ROV. For dissolved gas analyses of hydrothermal fluid and seawater,sample was transferred via PVC tubing from KIPS and Niskin samplers into glass bottles and sealed headspace free by Teflon lined screw caps.The bottles were immediately connected to the purge and trap anal-ytical system or a vacuum degassing unit for on-board analysis of methane or hydrogen,respectively.After sub-sampling for dissolved gas analyses,aliquots were taken and pressure-filtrated with Argon(99.999%)at0.5bar through pre-cleaned0.2μm Nuclepore PC membrane filters by means of polycarbonate filtration units(Sarto-rius,Germany).The filtrates were further subdivided into aliquots for voltammetric and ICP analyses and acidified to pH1with100μl subboiled concentrated HNO3per50ml (ICP),and with suprapure HCl to pH2(voltammetry), respectively.Samples for speciation analyses and anion analyses were kept non-acidified.Another aliquot of the original hydrothermal fluid was acidified with subboiled HNO3until the precipitate was re-dissolved.All work was done in a class100clean bench(Slee,Germany)using only all-plastic labware(polypropylene,polycarbonate, perfluoralkoxy(PFA).Ultrapure water(N18.2MOhm) was dispensed from a Millipore Milli-Q system.4.1.On-board measurementsThe determination of pH and Eh(Mettler electrodes with Ag/AgCl reference electrode)was done in unfiltered sample aliquots immediately after sample recovery.To identify a possible influence of phase separation,all vent fluid samples and some samples from the water column profiles were analyzed for chloride by titration with AgNO3after the method of Fajans,using fluoresceine-sodium as indicator.Methane was analyzed on-board applying a purge and trap technique(Seifert et al.,1999).The water sample is stripped by helium and methane in the outflowing gas stream is concentrated in a cooled trap(activated charcoal) at−84°C.After degassing,the trapped gas is released to a gas chromatograph(CARLO ERBA GC6000)equipped with a packed(activated Al2O3)stainless steel column and a flame ionization detector(FID)to detect and quantify the component.Recording and calculation of results are performed using a PC operated integration system (BRUKER Chrom Star).Analytical procedures were calibrated daily with commercial gas standards(LINDE). Analyses were generally done within12h after sampling.For on-board measurements of dissolved hydrogen up to615ml of sample were connected to a high-grade vacuum in an ultrasonic bath and heated until boiling. Aliquots of the released gas were transferred via a septum from the degassing unit into the analytical system by a gas-tight syringe.A gas chromatograph(THERMO TRACE) equipped with a packed stainless steel column(Molecular sieve5A,carrier gas:He)and a pulsed discharge detector (PDD)is used to separate,detect and quantify hydrogen. Recording and calculation of results are performed using a PC operated integration system(THERMO CHRO M CARD A/D).The analytical procedures were calibrated daily with commercial gas standards(LINDE).For on-board speciation and trace metal concentration analyses,the electrochemical method of voltammetry was used.All the voltammetric measurements were performed using two Metrohm(Herisau,Switzerland)equipments:7K.Schmidt et al./Chemical Geology242(2007)1–21a 693V A processor in combination with a 694V A stand and a 757VA computrace run with a standard PC.For the decomposition of stable metal organic complexes,a UV Digester (Model 705,Metrohm)containing a high pressure mercury lamp (500W)was used.The voltammetric determinations of dissolved sulfide concentrations (after Metrohm Application Bulletin,199/3e )and of the redox speciation of Fe,Cr and As were carried out immediately after sample recovery.The concentrations of active Fe (non-filtered),Fe(II)and Fe (III)were determined in the undigested samples using the cathodic stripping voltammetric method with 1-nitroso-2-naphtol as complexing reagent (Aldrich and van den Berg,1998)and compared to total Fe concentrations in digested samples.Arsenic speciation was carried out in the undigested samples by cathodic stripping voltammetry (Barra and dos Santos,2001).In this method,As(III)is determined in a 1M HCl and 10mg/l Cu(II)supporting electrolyte.Total As is determined after the UV digestion using the rotating gold electrode (Au-RDE;Application Bulletin Metrohm 226/2),and As(V)is calculated by subtraction of As(III)from total arsenic.The chromium redox speciation was carried out by the catalytic cathodic stripping voltam-metric method using diethylenetriamine-pentaacetic acid (DTPA)as complexing reagent (Boussemart et al.,1992,adapted to hydrothermal fluid samples by Sander and Koschinsky,2000).For Se and Te redoxTable 2Chemical composition of selected original hydrothermal fluid samples and hydrothermal endmember concentrations (EM);seawater data are from Douville et al.,2002and Charlou et al.,2002(except for own data for Na,Cl,Si,SO 4,B,Co);BS:black smokerIRINA Site B QUEST 261ROV-6257ROV-8266ROV-10281ROV-5MeasuredEM Measured EM Measured EMMeasured EMMg mM 0000SO 4mM 10 2.14 1.39 2.516 3.3H 2S mM 1.8 2.51.7 1.92.53.60.7 1.4Cl,mM a 552551549545Br,μM a 836828846840B,μm 375344347328370360390343Si,mM 6.28.97.98.6 6.58.8 4.69.1Al,μm 8.712.211.712.89.112.3 5.812.5Na,mM a 457440456461K,mM 1825222321241725Ca,mM 2130272825302029Li,μM 193263225243194253144258Rb,μM 20.929252819.62612.723Cs,nM 251348318351263355187347Sr,μM 117130122125119130107127Fe,μM 17002420220023501830247012202400Mn,μM 244347302330255345180354Cu,μM 40.275.144.344.930.939.91430.4Zn,μM 1832.63232.52633.31838.3Cd,nM 19.426.825.828.627.436.720.437.5Co,nM 0.660.910.91 1.010.560.760.180.33Pb,nM 67.994.510411513918793.6174Ag,nM 11.215.614.616.215.621.110.319.2U,nM 6.5 3.4 3.6 2.4 6.5 3.77.6 1.8Sb,nM 5.77.4––7.39.4 5.59.2Mo,nM39.614.319.410.030.14.158.118.5IRINA II Logatchev EM (based on all data)Seawater224ROV-1283ROV-5Measured EMMeasuredEMaMedian values.bAverage of median values.Fig.4.Cu/Zn ratios in sampled fluids vs measured emanation temperatures for different vent sites;not plotted are Cu/Zn for IRINA (2.2)and IRINA II black smoker (0.8)because of unknown emanation temperatures.8K.Schmidt et al./Chemical Geology 242(2007)1–21speciation the simultaneous determination method described in Ferri et al.(1998)was used.Antimony speciation analysis was carried out in HCl medium (Quentel and Filella,2002).During cruise M64/2,Fe redox speciation was carried out with a photometric method.An orange –red ferroin complex formed by Fe(II)ions with 1,10-phenantroline in a pH range of 3–5was measured with a Biochrom Libra S12spectral photometer at 511nm.Total Fe was analyzed by reducing all Fe with ascorbic acid.Fe(III)was deter-mined as difference between total Fe and Fe(II).4.2.Major and trace element analyses in the home laboratoriesMajor (Na,K,Mg,Ca,Ba,Sr,Si,Fe,Mn,B,Cl)and trace elements (Br,Li,Al,Cs,Ba,Sr,REE-Y ,Fe,Mn,Cr,V ,Cu,Co,Ni,Pb,U,Mo,As,Sb)were determined by ICP-OES (Spectro Ciros SOP CCD)and ICP-MS using both collision-cell quadrupole (Agilent 7500cs,Perkin Elmer 500DRCe)and high-resolution sector-field basedinstrumentation (Micromass PlasmaTrace2)(Garbe-Schönberg,1993;Garbe-Schönberg et al.,1998).For the determination of REE-Y in hydrothermal fluids matrix separation with cation exchange columns was applied (Bau and Dulski,1996).All metals were measured both in filtered and unfiltered aliquots.Unsoluble precipitates in unfiltered aliquots were centrifuged and digested with HCl-HNO3-HF in a pressure digestion system.Sulfate concentrations were determined photometrically with a Technicon Auto Analyzer (ESS method 370.2).5.Results5.1.Major elements and dissolved gases in high-temperature fluidsLogatchev high-temperature hydrothermal fluids have been sampled in 2004and in 2005at small chimneys in the smoking craters ANNA LOUISE,IRINA and Site B as well as at the single black smoker chimney at IRINA II.In addition,samples from theTable 2(continued )IRINA II Logatchev EM (based on all data)Seawater224ROV-1283ROV-5Measured EM Measured EM 000538 1.514 1.7 1.329.50.5 1.02.50562550551b 560840832837b 8383543293923333354506.38.3 4.68.58.60.0368.711.5 6.511.212b 0.1452464455b 48021241825249.8232821302910.21972531522592522620.62612.92327 1.3249345195349343 2.311412211013212787177023501270234024100.00452503311923553380.001326.537.0 5.816.0440.00333447.91336.2360.0283447.020.636.6320.70.510.720.040.070.75b 0.01510014094.61701380.0132636.18.214.8170.0233.2b 08.1 3.1314.3–– 6.310.48 1.223b 050.17.141049K.Schmidt et al./Chemical Geology 242(2007)1–21。
地球化学勘查术语基本术语一、地球化学勘查(geochemical exploration)对自然界各种物质中的化学元素及其它地球化学特征的变化规律进行系统调查研究的全过程。
习称化探1、地球化学探矿(简称化探)-geochemical prospecting系统测量天然物质中化学元素的含量及其他特征,研究其分布规律,发现地球化学异常,从而进行找矿的工作。
2、地球化学填图(geochemical mapping)系统采集天然物质,进行多元素分析,并将元素含量(或其他地球化学参数)的空间分布,以某种标准方法编绘成基础图件,提供各个领域应用的工作。
3、环境地球化学调查(exploration geochemistry investigation)系统研究地球化学勘查的理论、方法与技术的学科。
二、勘查地球化学(exploration geochemistry)系统研究地球化学勘查的理论、方法与技术的学科。
1、矿产勘查地球化学(geochemistry in mineral exploration)研究找矿的地球化学勘查理论、方法与技术的学科。
2、区域勘查地球化学(regional geochemistry in exploration)系统研究大面积内天然物质(如岩石、土壤、水系沉积物、湖积物、天然水等)中化学元素在空间与时间上的分布规律及其与矿产、地质、环境、农牧业、医学等之间关系的理论、方法与技术的学科。
三、地球化学勘查原理1、地球化学场(geochemical field)由地质-地球化学作用所形成的各种地球化学指标的特征变化空间。
2、地球化学景观(geochemical landscape)据表生地球化学作用和自然景观条件所划分的区域带。
3、地球化学障(geochemical barrier)元素迁移过程中由于介质的物理环境骤然改变,促使元素(从溶液或气态)大量析出的场所或环境。
根据造成元素析出聚集的主要因素或作用,分别为沉积障、吸附障、还原障、氧化障、生物障、酸性障、碱性障等。
酒石酸对离子型稀土矿杂质浸出行为的影响方夕辉;夏艳圆;邱廷省;朱冬梅【摘要】为提高稀土浸出过程的选择性,以酒石酸为抑杂剂考察其对硫酸铵浸出稀土时浸出行为的影响.结果表明,以硫酸铵为浸出剂、酒石酸为抑杂剂浸出不同种类稀土矿时,与单独以硫酸铵作浸出剂相比,浸出液中铝、铁去除率可达90%以上,且不影响稀土浸出率.对酒石酸与Al3+、Fe3+的溶液化学计算和分析结果表明,3<pH<6时,酒石酸可解离出与金属离子稳定络合的配位离子C4H5O6-、C4H4O62-,与离子型稀土矿浸出时矿石表面解离出的Al3+、Fe3+生成难溶络合物而提高稀土浸出的选择性,浸出过程酒石酸络合铁离子与铝离子的适宜pH范围为4~5.【期刊名称】《金属矿山》【年(卷),期】2018(000)006【总页数】5页(P94-98)【关键词】离子型稀土矿;酒石酸;抑杂剂【作者】方夕辉;夏艳圆;邱廷省;朱冬梅【作者单位】江西理工大学资源与环境工程学院,江西赣州341000;江西省矿业工程重点试验室,江西赣州341000;江西理工大学资源与环境工程学院,江西赣州341000;江西理工大学资源与环境工程学院,江西赣州341000;江西理工大学资源与环境工程学院,江西赣州341000【正文语种】中文【中图分类】TF845;TF803.21离子型稀土矿的浸出过程属于离子交换反应,浸出时吸附在黏土矿物表面的离子相稀土与NH4+等化学性质活泼的阳离子进行离子交换进入浸出液中,此时吸附在黏土矿物表面的铝、铁、钙等离子相金属杂质也一起浸出[1-3],使得稀土浸出母液中铝、铁、钙等杂质含量较高。
为获得较高质量的稀土产品,用碳酸氢铵调节浸出母液溶液pH值至5~6,此时,铝、铁等杂质水解形成氢氧化物沉淀除去。
但这种除杂工艺不但增加了稀土提取的工艺步骤,而且使稀土损失2%~5%,同时工艺过程使用大量的碳酸氢铵,造成稀土矿山废水氨氮超标而污染环境[4-5]。
现代矿业MODERN MINING总第625期2021年5月第5期Serial No.625May.2021*江西上饶某稀土矿地质及稀土元素地球化学特征雷炼1余飞1王哲1吴德海2,张蕊2,刘斌4(1.江西省核工业地质局二六五大队;2.江西应用技术职业学院资源环境与珠宝学院;3.东华理工大学-核资源与环境国家重点实验室;4.会昌县自然资源局)摘要为了研究工作区稀土矿分布规律,在系统的野外地质调查基础上,根据江西某区稀土矿的形成过程将其划分为4层,分别为基岩层、半风化层、全风化层下段、全风化层上段。
借助电感耦合等离子体质谱研究手段对该区稀土矿开展了元素地球化学研究。
结果表明:该稀土矿主要富集轻稀土元素,且稀土元素主要在全风化层上段富集;对比各层位的稀土元素总量发现,从原岩到全风化层下段,以物理风化作用为主,少量为化学风化作用;从全风化层下段到全风化层上段,以化学风化作用为主,即长石和稀土矿物水解形成黏土矿物以及稀土矿物离子。
关键词地质调查稀土元素地球化学风化作用D0I:10.3969/j.issn.1674-6082.2021.05.010Geological and Rare Earth Elements Geochemical Characteristics of Rare Earth Deposit inShangrao,Jiangxi ProvinceLEI Lian1YU Fei1WANG Zhe1WU Dehai2,ZHANG Rui2,LIU Bin4(1.Nuclear Industry Geological Bureau of Jiangxi Province Brigade Two Hundred Sixty-five;2.School of Resources,Environment and Jewelry,Jiangxi College of Applied Technology;3.State Key Laboratory of Nuclear Resources and Environment,East China University of Technology;4.Natural Resources Bureau of Huichang County)Abstract In order to study the distribution law of rare earth ore in the working area,based on systematic field exploration,the rare earth deposit in this area is divided into four layers.Which are bedrock lay-er,semi-weathering layer,lower segment of completely weathering layer and superior segment of complete weathering layer.Elemental geochemistry of the rare earth deposit was studied by means of ICP-MS.The results show that the deposit is rich in LREE,and the rare earth elements are concentrated in superior segment of complete weathering.According to the comparison of the total REE content in each layer,it is found that physical weathering is the main process from the original rock to the lower segment of completely weathering layer.The chemical weathering is the main process in the other layers,means that feldspar and rare-earth mineral hydrolyzed to clay minerals and rare earth mineral ions.Keywords geological survey,rare earth elements,geochemistry,weathering鹅公山火山盆地位于赣杭构造带中段,是我国重要的铀多金属找矿远景区[1]°前人对该盆地铀矿及多金属矿开展过多方面研究工作,如鹅公山火山盆地铀成矿条件及成矿要素分析⑵、鹅公山火山盆地找矿前景及方向探讨⑶、鹅公山火山盆地铀矿控矿因*江西省地质勘查基金项目(编号:20200053),核资源与环境国家重点实验室开放基金项目(编号:2020NRE03)°雷炼(1989—),男,工程师,335000江西省鹰潭市°通信作者吴德海(1989—),男,讲师,博士,341000江西省赣州市°素[4-5]、鹅公山火山盆地多金属矿成矿条件分析0、鹅公山火山盆地多金属成矿地质背景和找矿方向"]°但对该盆地内稀土矿的研究和报道较为稀少。
收稿日期2019-03-28基金项目中国地质调查局地质调查项目(编号:12120114027001);中国地质科学院地质研究所资助项目(编号:DD20160345-06)。
作者简介方怀宾(1969—),男,教授级高级工程师。
河南省南阳市陈沟一带稀土矿地质特征及找矿潜力方怀宾1,2李开文1,2刘坤1,2王小娟1赵焕1(1.河南省地质调查院,河南郑州450001;2.河南省金属矿产成矿地质过程与资源利用重点实验室,河南郑州450001)摘要河南省南阳市陈沟一带地处于秦岭造山带东段,通过1∶50000区域地质矿产调查工作新发现了一批稀土矿化点及找矿线索。
基于该地区深入的基础地质调查研究成果,分析了区域成矿地质背景及其成矿专属性,结合区域地质地球化学、矿化特征等综合找矿信息,总结出该区稀土矿产的成矿地质条件。
针对研究区不同地形地貌景观等控矿因素,在综合研究区域地质特征的基础上,运用地质构造解析、1∶200000综合化探异常,结合开展的1∶10000土壤剖面测量等技术方法组合,实现了找矿突破,在秦岭造山带东段新发现了风化壳离子吸附型稀土矿化体。
研究表明:该区稀土矿化与奥陶纪—志留纪侵入岩关系密切,且与其内部脆性断裂发育程度、地形相对高差不大、坡降比小部位有关,发育有La、Y、U、W、Sn 等地球化学异常为成矿有利地段,指导了该地区稀土矿产的找矿类型及方向,显示出良好的找矿潜力。
关键词稀土矿风化壳离子吸附型成矿地质条件找矿潜力中图分类号P612文献标志码A文章编号1001-1250(2020)-12-143-09DOI 10.19614/ki.jsks.202012023Geological Characteristics and Prospecting Potential of Rare Earth Element Deposits inChengou Area in Nanyang City ,Henan ProvinceFANG Huaibin 1,2LI Kaiwen 1,2LIU Kun 1,2WANG Xiaojuan 1ZHAO Huan 1(1.Henan Institute of Geological Survey ,Zhengzhou 450001,China ;2.Henan Key Laboratory for Metal Mineral Ore -formingGeological Process and Utilization of Resource ,Zhengzhou 450001,China )Abstract The Chengou area in Henan Province is located in the eastern part of the Qinling orogenic belt ,and a groupof rare earth elements mineralization points and prospecting clues have been discovered through the 1∶50000regional geo⁃logical and mineral exploration survey.Based on the detailed basic geological survey results in the region ,the regional ore -forming geological background and its metallogenic specificity are bined with the regional geochemical and mineralization characteristics ,the ore -forming geological conditions of the rare earth elements minerals in this area are sum⁃marized.In view of the ore -controlling factors such as different topographical landscapes in the study area ,based on the com⁃prehensive study of regional geological features ,with geological structure analysis ,1∶200000comprehensive geochemical anomalies ,combined with topographical geomorphological conditions and the 1∶10000soil profile ,it has achieved a break⁃through in prospecting ,and a new type of weathering crust ion -adsorbing rare earth elements mineralized body has been new⁃ly discovered in North China.The study shows that the rare earth elements mineralization in this area is closely related to the Ordovician -Silurian intrusive rocks ,and favorable mineralization areas for La ,Y ,U ,W and Sn are usually developed in the place where there are internal brittle fracture development ,and the relative height difference of the topography ,and thesmaller slope ratios.This study has guiding significance for the prospecting of the rare earth elements mineralization ,andshows good prospecting potential in the area.Keywordsrare earth elements deposit ,weathered crust ,ion adsorption type ,metallogenic conditions ,prospecting poten⁃tial总第534期2020年第12期金属矿山METAL MINESeries No.534Decembe 2020·地质与测量·143金属矿山2020年第12期总第534期陈沟位于河南省南阳市卧龙区政府驻地西北约30km,属于秦岭—大别成矿省,东秦岭Au-Ag-Mo-Cu-Pb-Zn-Sb-Nb-Ta-Li-Fe-萤石-石墨-夕线石-红柱石-蓝晶石-金红石-石油-天然气-油页岩-天然碱-石膏成矿带,南阳西北部Au-Ag-Mo-Cu-Pb-Zn-Sb-Nb-Ta-Li-Fe-萤石-石墨-夕线石-红柱石-蓝晶石-金红石-白云母-独山玉成矿亚带[1]。