两个工程队共同参与一项筑路工程
- 格式:docx
- 大小:16.70 KB
- 文档页数:1
2021-2022学年华师大版八年级数学下册《16-3可化为一元一次方程的分式方程》同步练习题(附答案)1.下列关于x的方程,是分式方程的是()A.﹣3=B.x﹣y=5C.=+D.=1﹣2.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的,这时增加了乙队,两队共同工作了半个月,总工程全部完成.设乙队单独施工1个月完成总工程的,则可以表示“两队共同工作了半个月完成的工程量”的代数式是()A.B.C.D.3.若关于x的分式方程无解,则m的值为.4.已知:商品利润率=.某商人经营甲乙两种商品,每件甲种商品的利润率为40%,每件乙种商品的利润率为60%,当售出的乙种商品比售出的甲种商品的件数多50%时,这个商人得到的总利润率为50%,那么当售出的甲,乙两种商品的件数相等时,这个商人的总利润率是.5.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,请人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?若设这批椽的数量为x株,则可列分式方程为.6.为深入践行“绿水青山就是金山银山”的发展理念,我国生态文明建设不断迈出坚实步伐,绿色发展成就举世瞩目.在今年的植树造林活动期间,某苗圃园第一天卖出一批雪松收款11000元;第二天又卖出一批雪松收款23000元,所卖数量是第一天的2倍,售价比第一天每棵多了5元.第二天每棵雪松售价元.7.解方程.8.解方程:1+=.9.阅读下面材料,解答后面的问题解方程:.解:设,则原方程化为:,方程两边同时乘y得:y2﹣4=0,解得:y=±2,经检验:y=±2都是方程的解,∴当y=2时,,解得:x=﹣1,当y=﹣2时,,解得:x=,经检验:x=﹣1或x=都是原分式方程的解,∴原分式方程的解为x=﹣1或x=.上述这种解分式方程的方法称为换元法.问题:(1)若在方程中,设,则原方程可化为:;(2)若在方程中,设,则原方程可化为:;(3)模仿上述换元法解方程:.10.整体思想就是通过研究问题的整体形式从而对问题进行整体处理的解题方法.如此题设“=a,=b”得方程解得∴利用整体思想解决问题:采采家准备装修一厨房,若甲,乙两个装修公司,合做需6周完成,甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,求甲、乙公司单独完成装修任务各需多少周?11.已知方程有增根x=1,求k的值.12.关于x的分式方程:.(1)当m=3时,求此时方程的根;(2)若这个关于x的分式方程会产生增根,试求m的值.13.若关于x的分式方程=5有增根,求m的值.14.自带保温杯已成为人们良好的健康生活习惯,某学校为教师员工购买甲、乙两种型号的保温杯,购买A型号保温杯共花费6000元,购买B型号保温杯共花费3200元,且购买A型号保温杯数量是购买B型号保温杯数量的3倍,已知购买一个B型号保温杯比购买一个A型号保温杯多花30元,求购买一个A型号保温杯,一个B型号保温杯各需多少钱?15.某一工程,在工程招标时,接到甲、乙两个工程队的投标书,工程领导小组根据甲、乙两队的投标书测算,有如下方案:Ⅰ、甲队单独完成这项工程刚好如期完成;Ⅱ、乙队单独完成这项工程要比规定日期多6天;Ⅲ、若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.(1)设甲队单独完成这项工程需要x天.工程总量所用时间(天)工程效率甲队乙队(2)根据题意及表中所得到的信息列出方程.16.王涵想复习分式方程,由于印刷问题,有一个数“?”看不清楚:=2﹣.(1)她把这个数“?”猜成﹣2,请你帮王涵解这个分式方程;(2)王涵的妈妈说:“我看到标准答案是:x=3是方程的增根,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?17.(1)解下列方程:①根为;②根为;③根为;(2)根据这类方程特征,写出第n个方程为,其根为.(3)请利用(2)的结论,求关于x的方程(n为正整数)的根.18.对于两个不相等的实数a、b,我们规定符号M ax{a,b}表示a、b中的较大值,例如:M ax{2,4}=4,按照这个规定,求方程M ax{x,﹣x}=的解.19.已知关于x的分式方程﹣2=的解是正数,求m的取值范围.20.某工厂采用A、B两种机器人来搬运化工原料,其中A型机器人每天搬运的重量是B型机器人的2倍,如果用两种机器人各搬运300t原料,A型机器人比B型机器人少用3天完成.(1)求A、B两种型号的机器人每天各搬运多少吨化工原料;(2)现有536t化工原料需要搬运,若A型机器入每天维护所需费用为150元,B型机器人每天维护所需费用为65元,那么在总费用不超过740元的情况下,至少安排B型机器人工作多少天?(注:天数为整数)21.骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场,顺风车行经营的A型车去年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.A,B两种型号车的进货和销售价格表:A型车B型车进货价格(元/辆)11001400销售价格(元/辆)今年的销售价格2400(1)求今年6月份A型车每辆销售价多少元;(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?22.某工厂承接了一批纸箱加工任务,用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图所示的竖式与横式两种无盖的长方形纸箱.(加工时接缝材料不计)(1)该工厂原计划用若干天加工纸箱200个,后来由于对方急需要货,实际加工时每天加工速度是原计划的1.5倍,这样提前2天超额完成了任务,且总共比原计划多加工40个,问原计划每天加工纸箱多少个;(2)若该厂购进正方形纸板1000张,长方形纸板2000张.问竖式纸盒,横式纸盒各加工多少个,恰好能将购进的纸板全部用完;(3)该工厂某一天使用的材料清单上显示,这天一共使用正方形纸板50张,长方形纸板a张,全部加工成上述两种纸盒,且120<a<136,试求在这一天加工两种纸盒时,a 的所有可能值.23.某糕点加工点受资金和原料保质期等因素影响,在购买主要原料面包粉和蛋糕粉时需分次购买.下表是该店最近三次购进原料的数量与总金额,其中前两次是按原价购买,第三次享受了优惠.第一次第二次第三次面包粉(袋)235蛋糕粉(袋)458总金额(元)520700912(1)第三次购买的总金额比按原价购买节省了多少钱?(2)该店第四次购买原料时,按照第三次购买的经验,预算912元,仍需购买5袋面包粉和8袋蛋糕粉.在接洽的过程中,发现优惠方式又发生了变化,相较于原价,每袋蛋糕粉降低的价格是每袋面包粉降低的价格的两倍,这时用576元能够买到面包粉的袋数是蛋糕粉袋数的.预算够吗?24.生活垃圾处理是关系民生的基础性公益事业,加强生活垃圾分类处理,维护公共环境和节约资源是全社会共同的责任,某小区准备购进A型和B型两种垃圾桶,已知购买一个B型垃圾桶比购买一个A型垃圾桶多花20元,用250元购进A型垃圾桶的数量与用350元购进B型垃圾桶的数量相等.(1)求购买一个A型垃圾桶、一个B型垃圾桶各需多少元?(2)小区决定用不超过600元购进A、B两种型号的垃圾桶共10台,且A型垃圾桶的个数不多于B型垃圾桶的个数的2倍,问小区有几种购买方案?参考答案1.解:A.方程分母中不含未知数,故不是分式方程;B.方程分母中不含未知数,故不是分式方程;C.方程分母中不含表示未知数的字母,π是常数,故不是分式方程;D.方程分母中含未知数x,故是分式方程.故选:D.2.解:∵甲队单独施工1个月完成总工程的,乙队单独施工1个月完成总工程的,∴两队共同工作了半个月完成的工程量=(+)=+,故选:D.3.解:∵关于x的分式方程无解,∴x﹣1=0,∴x=1,∵,∴x+2(x﹣1)=﹣m,把x=1代入x+2(x﹣1)=﹣m中可得:1=﹣m,∴m=﹣1,故答案为:﹣1.4.解:设甲进价为a元,则售出价为1.4a元;乙的进价为b元,则售出价为1.6b元;若售出甲x件,则售出乙1.5x件.=0.5,解得a=1.5b,∴售出的甲,乙两种商品的件数相等,均为y时,这个商人的总利润率为===48%,故答案为48%.5.解:设这批椽的数量为x株,由题意可得:,故答案为:.6.解:设第一天每棵雪松售价x元,则第二天每棵雪松售价(x+5)元,由题意得:=2×,解得:x=110,经检验,x=110是原方程的解,则x+5=115,即第二天每棵雪松售价115元,故答案为:115.7.解:,两边都乘以3(3x﹣1)得:1﹣3x=2(3x﹣1),解得:,检验:当时,3(3x﹣1)=0,∴是原方程的增根∴原分式方程无解.8.解:1+=,1﹣x2+1=x(1﹣x),解得:x=2,检验:当x=2时,1﹣x2≠0,∴x=2是原方程的根.9.解:(1)将代入原方程,则原方程化为;(2)将代入方程,则原方程可化为;(3)原方程化为:,设,则原方程化为:,方程两边同时乘y得:y2﹣1=0解得:y=±1,经检验:y=±1都是方程的解.当y=1时,,该方程无解;当y=﹣1时,,解得:;经检验:是原分式方程的解,∴原分式方程的解为.10.解:设甲公司单独完成需x周,乙公司单独完成需y周,依题意得:设=a,=b,原方程化为:②×3﹣①×2得:27b﹣12b=1∴b=③将③代入②得:4a+9×=1∴a=∴经检验,x=10,y=15是原方程的解.∴甲公司单独完成需10周,乙公司单独完成需15周.11.解:方程两边都乘(x+1)(x﹣1),得2(x﹣1)+k(x+1)=6∵原方程有增根x=1,∴当x=1时,k=3,故k的值是3.12.解:(1)把m=3代入方程得:+=,去分母得:3x+2x+4=3x﹣6,解得:x=﹣5,检验:当x=﹣5时,(x+2)(x﹣2)≠0,∴分式方程的解为x=﹣5;(2)去分母得:mx+2x+4=3x﹣6,∵这个关于x的分式方程会产生增根,∴x=2或x=﹣2,把x=2代入整式方程得:2m+4+4=0,解得:m=﹣4;把x=﹣2代入整式方程得:﹣2m=﹣12,解得:m=6.13.解:去分母得:2m﹣1﹣7x=5x﹣5,由分式方程有增根,得到x﹣1=0,即x=1,把x=1代入整式方程得:m=4.14.解:设购买一个A型号保温杯需要x元,则购买一个B型号保温杯需要(x+30)元,根据题意,得=3×.解得x=50.经检验x=50是原方程的解,且符合题意.所以x+30=80.答:购买一个A型号保温杯需要50元,则购买一个B型号保温杯需要80元.15.解:(1)由题意可得,把工作总量看作单位1,设甲队单独完成这项工程需要x天,则乙队单独完成这项工程需要(x+6)天,则甲的工作效率为,乙队的工作效率为,故答案为:1,x,;1,x+6,;(2)根据题意及表中所得到的信息列出方程是:()×3+(x﹣3)×=1,故答案为:()×3+(x﹣3)×=1.16.解:(1)由题意,得,去分母,得x=2(x﹣3)+2,去括号,得x=2x﹣6+2,移项、合并同类项,得x=4,经检验,当x=4时x﹣3≠0,∴x=4是原分式方程的解;(2)设原分式方程中“?”代表的数为m,方程两边同时乘(x﹣3)得x=2(x﹣3)﹣m,由于x=3是原分式方程的增根,把x=3代入上面的等式解得m=﹣3,∴原分式程中“?”代表的数是﹣3.17.解:(1)①去分母,得:x2+2=3x,即x2﹣3x+2=0,(x﹣1)(x﹣2)=0,则x﹣1=0,x﹣2=0,解得:x1=1,x2=2,经检验:x1=1,x2=2都是方程的解;②去分母,得:x2+6=5x,即x2﹣5x+6=0,(x﹣2)(x﹣3)=0,则x﹣2=0,x﹣3=0,解得:x1=2,x2=3,经检验:x1=2,x2=3是方程的解;③去分母,得:x2+12=7x,即x2﹣7x+12=0,(x﹣3)(x﹣4)=0,则x1=3,x2=4,经检验x1=3,x2=4是方程的解;(2)出第n个方程为x+=2n+1,解是x1=n,x2=n+1;(3),即x﹣3+=2n+1,则x﹣3=n或x﹣3=n+1,解得:x1=n+3,x2=n+4.18.解:当x>﹣x,即x>0时,所求方程变形得:x=,即x2﹣2x﹣1=0,解得:x1=1+,x2=1﹣(舍去);当x<﹣x,即x<0时,所求方程变形得:﹣x=,即x2+2x+1=0,解得:x3=x4=﹣1,经检验:x1=1+,x3=x4=﹣1都为分式方程的解.19.解:去分母可得:3x﹣2(x﹣6)=m∴3x﹣2x+12=m∴x=m﹣12将x=m﹣12代入最简公分母可知:m﹣12﹣6≠0,∴m≠18∵分式方程的解是正数,∴m﹣12>0,∴m>12∴m的取值范围为m>12且m≠1820.解:(1)设B种型号的机器人每天搬运x吨化工原料,则A种型号的机器人每天搬运2x吨化工原料,根据题意得:,解得:x=50,经检验x=50是原方程的根,此时2x=100,答:A种型号的机器人每天搬运100吨化工原料,B种型号的机器人每天搬运50吨化工原料;(2)设B型机器人工作b天,则A型机器人需要工作()天,由题意得:150×+65b≤740,整理得:3(536﹣50b)+130b≤1480,解得:b≥6.4,∵b为整数,∴b最小为7,如果B机器人工作7天的,A机器人需工作(536﹣50×7)÷100约2天,总费用为65×7+150×2=755>740,B机器人工作8天的话,A机器人工作天数为整数,还是需要2天,B机器人工作9天的话,A机器人只需要工作1天,总费用为65×9+150=735,符合要求答:至少安排B型机器人工作9天.21.解:(1)设去年6月份A型车每辆销售价x元,那么今年6月份A型车每辆销售(x+400)元,根据题意得=,解得:x=1600,经检验,x=1600是方程的解.x=1600时,x+400=2000.答:今年6月份A型车每辆销售价2000元.(2)设今年7月份进A型车m辆,则B型车(50﹣m)辆,获得的总利润为y元,根据题意得50﹣m≤2m,解得:m≥16,∵y=(2000﹣1100)m+(2400﹣1400)(50﹣m)=﹣100m+50000,∴y随m的增大而减小,∴当m=17时,可以获得最大利润.答:进货方案是A型车17辆,B型车33辆.22.解:(1)设原计划每天加工纸箱x个,则现在每天加工1.5x个,由题意得﹣2=解得x=20经检验x=20是原分式方程的解,答:原计划每天加工纸箱20个.(2)设加工竖式纸盒x个,加工横式纸盒y个,依题意,得解得:答:加工竖式纸盒200个,加工横式纸盒400个;(3)设加工竖式纸盒x个,加工横式纸盒y个,依题意得:∴y=40﹣,∵y、a为正整数,∴a为5的倍数,∵120<a<136∴满足条件的a为:125,130,135.当a=125时,x=20,y=15;当a=130时,x=22,y=14;当a=135时,x=24,y=13据符合题意,∴a所有可能的值是125,130,13523.解:(1)设每袋面包粉x元,每袋蛋糕粉y元.依题意得:,解得.100×5+80×8﹣912=500+640﹣912=228(元).答:第三次购买时,该店比按原价购买节省的总金额为228元;(2)设每袋面包粉降价m元,则每袋蛋糕粉降价2m元,依题意,得.解得m=4.经检验,m=4符合题意.故第四次购买时,面包粉每袋96元,蛋糕粉每袋72元.∵96×5+72×8=1056>912,∴预算不足.24.解:(1)设购买一个A型垃圾桶需要x元,则购买一个B型垃圾桶需要(x+20)元,根据题意得:,解得:x=50,经检验,x=50是原方程的根,且符合题意,∴x+20=70.答:购买一个A型垃圾桶需要50元,购买一个B型垃圾桶需要70元.(2)设B型垃圾桶购进y个,则A型垃圾桶(10﹣y)个.由题意得,解得:,∵y是正整数,∴y可取4,5,即小区共有两种购买方案.。
初二数学二元一次方程组试题答案及解析1.解方程组.【答案】.【解析】①+②得到方程3x=6,求出x的值,把x的值代入②得出一个关于y的方程,求出方程的解即可.试题解析:,①+②得:3x=6,解得x=2,将x=2代入②得:2﹣y=1,解得:y=1.∴原方程组的解为.【考点】解二元一次方程组.2.某工厂去年的利润(总收入-总支出)为100万元,今年总收入比去年增加了10%,总支出比去年减少了9%,今年的利润为300万元,去年的总收入、总支出各是多少万元?【答案】1100,1000.【解析】设去年的总产值为x万元,总支出为y万元,表示出今年总产值和总支出,根据两个关系列方程组求解.试题解析:设去年的总产值为x万元,总支出为y万元,根据题意得:解得:答:这个工厂去年的总收入和总支出分别为1100万元和1000万元。
考点: 二元一次方程组的应用.3.解下列二元一次方程组(1)(2)【答案】①;②.【解析】本题考查了解二元一次方程组的一般方法.解二元一次方程组的关键是消元,主要两种消元方法-代入消元法和加减消元法.(1)方程中未知数y的系数分别为5和-5,可直接用加减消元法解答;(2)先将方程①×2得到③,然后由③-②可消去未知数a,进而求解.试题解析:解:(1)①+②得:5x=10X=2把x=2代入方程①中得:6+5y=21解得:y=3∴方程组的解是.①×2-②得:15b=3解得:把代入①得:2a+1=2解得:a=1∴方程组的解是.【考点】解二元一次方程.4.小华早晨6点多钟去学校,去时看了一下手表,发现时针与分针的夹角为度(0<<180,为整数),到了学校,他又看了一下手表,发现此时还不到7点钟,且时针与分针的夹角为也为度,若小华去学校途中所用的时间是10的整数倍,那么,小华去学校途中所用的时间是多少?【答案】20分钟或40分钟【解析】设去时是6点x分,到校是6点y分,途中所用的时间为y-x.根据题意得,=(360+x)×0.5-6x=180-5.5x;=6y-(360+y)×0.5=5.5y-180.两式相加得:2=5.5(y-x),.设=10k(k为正整数),即可得到2=55k,因0<<180,所以0<55k<360,0<k<6.6,从而求得结果.设去时是6点x分,到校是6点y分,途中所用的时间为y-x.根据题意得,=(360+x)×0.5-6x=180-5.5x;=6y-(360+y)×0.5=5.5y-180.两式相加得:2=5.5(y-x),.设=10k(k为正整数) 所以2=55k,因0<<180,所以0<55k<360, 0<k<6.6.由2=55k知,k为偶数数,所以k=2或4. =55或110.=20或40.答:小华去学校途中所用的时间是20分钟或40分钟.【考点】二元一次方程的应用点评:方程的应用是初中数学的重点,是中考常见题,一般难度不大,需熟练掌握.5.已知│y-2x│+(x+y-3)2="0" 计算y-x【答案】【解析】先根据非负数的性质得到关于x、y的方程组,解出x、y的值,即可求得结果.由题意得,解得,∴【考点】本题考查的是非负数的性质点评:解答本题的关键是熟练掌握非负数的性质:几个非负数的和为0,这几个数均为0.6.解方程【答案】【解析】由①得,再代入②即可消去解得,再代入即可解得,从而得到方程组的解。
1、两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成。
哪个队的施工速度快?2、从2004年5月起某列车平均提速v千米/时,用相同的时间,列车提速前行驶s千米,提速后比提速前多行驶50千米,提速前列车的平均速度为多少?3、某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,现在平均每天生产多少台机器?4、一台收割机的工作效率相当于一个农民工作效率的150倍,用这台机器收割10公顷小麦比100个农民人工收割这些小麦少用1小时,这台收割机每小时收割多少公顷小麦?5、一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后加速为原来速度的1.5倍,并比原计划提前40分钟到达目的地。
求前一小时的平均行驶速度。
6、市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室。
(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500 m2,施工队施工时应该向下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m时,碰上了坚硬的岩石。
为了节约建设资金,公司临时改变计划,把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)?7、有一个水池,水面是一个边长为10尺的正方形,在水池中央有一根芦苇,它高出水面1尺。
如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面。
这个水的深度与这根芦苇的长度分别是多少?8、如图所示,一个梯子AB长5米,顶端A靠在墙AC上,这时梯子下端B与墙角C间的距离为3米,梯子滑动后停在DE的位置上,测得DB的长为1米,则梯子顶端A下落了多少米?AEC9、已知圆柱的底面半径为6厘米,高为10厘米,蚂蚁从A点爬到B点的最短路程是多少?10、一根70cm的木棒,要放在长、宽、高分别是50cm,40cm,30cm的长方体木箱中,能放进去吗?11、一根竹子高1丈,折断后竹子顶端落在离竹子底端3尺处,折断处离地面的高度是多少?12、码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间(1)轮船到达目的地后开始卸货,卸货速度v(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5日内卸载完毕,那么平均每天至少要卸多少吨货物?13、(1)□ABCD中,有两个内角的度数比为1:2,则□ABCD中较小的内角是_____. B(2)菱形的周长为8cm,高为1cm。
中考分式方程组易错题50题含答案解析一、单选题1.在某核酸检测任务中,甲医疗队比乙医疗队每小时多检测15人,甲队检测600人所用的时间比乙队检测500人所用的时间少10%.设甲队每小时检测x 人,根据题意,可列方程为( ) A .()600500110%15x x =⨯-- B .()600500110%15x x ⨯-=- C .()600500110%1515x x =⨯--- D .()600500110%15x x⨯-=- 2.如果分式方程555x mx x =--无解,那么m 的值为( ) A .0B .-1C .5D .13.若3x =是分式方程2522x m x x-=--的解,则m 的值为( )A.B .C .2 D .04.已知方程3233x x x=---有增根,则这个增根一定是( ) A .2B .3C .4D .55.若关于x 的方程2-3-x x m x+=2的解为x=4,则m= ( ) A .3 B .4 C .5D .66.某企业车间生产一种零件,3位工人同时生产,1位工人恰好能完成组装,若车间共有工人60人,如何分配工人才能使生产的零件及时组装好.设分配x 名工人生产,由题意列方程,下列选项错误的是( ) A .x +3x =60B .1603x x -=C .6013x x -= D .x =3(60-x )7.学校用24000元和15000元分别购买了相同本数的科普类图书和文学类图书.已知科普类图书平均每本价格比文学类图书的平均每本价格多9元.设文学类图书的平均每本价格为x 元,则下列列出的方程中正确的是() A .24000150009x x =- B .24000150009x x =- C .24000150009x x=+ D .24000150009x x=+ 8.已知关于x 的分式方程433x kx x-=--的解为非负数,则k 的取值范围是( )A .12k ≤-且3k ≠-B .12k ≥-且3k ≠-C .12k >-且3k ≠-D .12k <-9.若关于x 的分式方程3233x a a x x+=--无解,则a 的值为( ) A .1a =B .12a = C .1或12D .1-或12-10.关于x 的分式方程4111ax x x =+--有增根,则a 的值是( ) A .1B .2C .4D .1或411.对于非零实数a 、b ,规定a *b =11b -﹣11a +,若(2x ﹣1)*2=2( ) A .﹣2B .12C .﹣12D .不存在12.把分式方程211xxx -=+化为整式方程正确的是( ) A .22(1)1+-=x x B .22(1)1++=x x C .22(1)(1)+-=+x x x xD .22(1)(1)-+=+x x x x13.炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( ) A .B .C .D .14.两个工程队共同参与一项筑路工程,甲队单独施工3个月,这时增加了乙队,两队又共同工作了2个月,总工程全部完成,已知甲队单独完成全部工程比乙队单独完成全部工程多用2个月,设甲队单独完成全部需x 个月,则根据题意可列方程中错误的是( )A .311212x x x ⎛⎫++= ⎪-⎝⎭B .32212x x x ++=- C .32212x x ++=- D .3212x x +=- 15.已知关于x 的分式方程311x xm +--=1的解是非负数,则m 的取值范围是( ) A .m <4B .m <4,且m ≠3C .m ≤4D .m ≤4,且m ≠316.若关于x 的方程x a cb x d-=-有解,则必须满足条件( ) A .c≠d B .c≠-dC .bc≠-ad C .a≠b17.方程130x 2x-=-的解为A .x=2B .x=-2C .x=3D .x=-318.若关于x 的分式方程11222k x x-+=--的解为非负整数,且关于y 的不等式组13(42)122523y y k y y -≤+-<+⎧⎪⎨⎪⎩至少有五个整数解,则所有满足条件的整数k 的个数为( ) A .2个 B .3个 C .4个 D .5个19.分式方程﹣2=的解是( ) A .x=±1B .x=﹣1+C .x=2D .x=﹣120.已知关于x 的方程22x mx +-=3的解是正数,则m 的取值范围为( ) A .m >-6 B .m <-6且m≠-4 C .m <-6D .m >-6且m≠-4二、填空题21.一个不透明的袋子中装有6个白球和若干个红球,这些球除颜色外都相同.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出白球的频率稳定在0.33附近,则估计袋子中的红球有________个. 22.关于x 的方程244x ax x -=++有增根,则a 的值为______. 23.分式方程:31122x x x +=++的解为_______. 24.分式方程5302x x-=-的根为_____ 25.若关于x 的分式方程1x x --1m x-=3有增根,则这个增根是_____. 26.方程1544xx x --=--的解是________. 27.已知分式方程2213712x x x x -+=-,设21x y x-=,那么原方程可以变形为__________28.若关于x 的分式方程322133x nxx x--+=---无解. 则常数n 的值是______. 29.方程2111xx x+=-+的解是______. 30.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x 千米/时,根据题意,可列方程为______________.31.若分式方程1x x a++=2的一个解是x =1,则a =____. 32.有两块面积相同的蔬菜试验田,第一块使用原品种,第二块使用新品种,分别收获蔬菜1500千克和2100千克.已知第二块试验田每亩的产量比第一块多200千克.若设第一块试验田每亩的产量为x 千克,则根据题意列出的方程是______________________33.端午将至,吃粽子是中华民族的传统.粽子馅料有很多品种,比如素馅,肉馅,甜味馅.去年某商人抓住商机,购进素馅,肉馅,甜味馅三种粽子.已知销售每袋素馅粽子的利润率为10%,每袋肉馅粽子的利润率为20%,每袋甜味馅粽子的利润率为30%,当售出的三种馅料粽子的袋数之比为1:3:1时,商人得到的总利润率为22%;当售出的三种馅料粽子的袋数之比为3:2:1时,商人得到的总利润率为20%,那么当售出的三种馅料粽子的袋数之比为2:3:4时,这个商人得到的总利润率为__.34.有四张正面分别标有数学﹣3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数学记为a ,则使关于x 的分式方程11222ax x x-+=--有正整数解得概率为___________ 35.若121x -与1(4)3x +互为倒数,则x=_______. 36.若关于x 的分式方程222x m x x=---的解为正数,则满足条件的正整数m 的值为____________.37.已知12322kx x x x --=--为分式方程,有增根,则k =_____. 38.若关于x 的分式方程22x -2ax +=1的解为负数,则a 的取值范围是____________. 39.要使关于x 的方程121(2)(1)x x ax x x x +-=+-+-的解是正数,a 的取值范围是___.. 40.若关于x 的分式方程21x mx -+=3的解是负数,则字母m 的取值范围是 ___________ .三、解答题41.某超市为了促销,将本来售完后可得1800元的奶糖和900元的水果糖混合后配成杂拌糖出售.这种糖每千克比奶糖便宜4元,比水果糖贵6元.已知这两种糖混合前后质量相同,不混合卖出的总钱数与混合后卖出的总钱数也相同,求杂拌糖的单价.42.某超市计划购进甲、乙两种商品,两种商品的进价、售价如下表:若用1800元购进甲种商品的件数与用900元购进乙种商品的件数相同.(1)求甲、乙两种商品的进价是多少元?(2)若超市销售甲、乙两种商品共100件,其中销售甲种商品为a件(a≥40),设销售完100件甲、乙两种商品的总利润为w元,求w与a之间的函数关系式,并求出w 的最小值.43.在疫情期间,某药店用4000元购进若干包医用口罩,很快售完,该店又用7500元钱购进第二批这种口罩,购进的包数是第一批的1.5倍,但每包的进价比第一批进价多1元,请解答下列问题:(1)求购进第一批医用口罩有多少包?(2)若两批医用口罩按相同的价格售出,且售完后总利润不高于3500元,那么每包口罩的最高售价是多少元?44.某市在道路改造过程中,需要甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.问甲、乙两个工程队每天各能铺设多少米?45.计算:(1)解不等式组:()3125212132x xx x⎧-<-+⎪⎨-+->⎪⎩①②(2)化简:22 11112aa a a-⎛⎫-⋅⎪-+⎝⎭(3)分解因式:3224129a ab ab-+(4)解分式方程:311 44xx x-+= --46.某化工厂用A,B两种型号的机器人搬运化工原料,已知每个A型机器人比每个B型机器人每小时多搬运30kg,每个A型机器人搬运900kg所用的时间与每个B型机器人搬运600kg所用的时间相等.(1)求A,B两种机器人每个每小时分别搬运多少化工原料?(2)某化工厂有4500kg化工原料需要搬运,要求搬运所有化工原料的时间不超过5小时,现计划先由8个A 型机器人搬运2小时,再增加若干个B 型机器人一起搬运,问至少增加多少个B 型机器人才能按要求完成任务? 47.解下列分式方程: (1)2236 111x x x +=+-- (2)12222x x x+=--. 48.解分式方程: (1)5x =72x - (2)13x -=2+3xx- 49.解分式方程 (1)21233x x x -=--- (2)26124x x x -=-- 50.为支援灾区,某校爱心活动小组准备用筹集的资金购买A 、B 两种型号的学习用品共1000件.已知B 型学习用品的单价比A 型学习用品的单价多10元,用180元购买B 型学习用品的件数与用120元购买A 型学习用品的件数相同. (1)求A 、B 两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B 型学习用品多少件?参考答案:1.A【分析】设甲队每小时检测x 人,则乙队每小时检测()15x -人,甲队检测600人的时间为600x 小时,乙队检测500人的时间为50015x -小时,再根据甲队检测600人所用的时间比乙队检测500人所用的时间少10%列出方程即可.【详解】解:设甲队每小时检测x 人,则乙队每小时检测()15x -人, 由题意得()600500110%15x x =⨯--, 故选A .【点睛】本题主要考查了分式方程的实际应用,正确理解题意找到等量关系是解题的关键. 2.D【分析】先解出分式方程的解,然后根据分式方程无解得出5x = ,代入分式方程的解中即可求出m 的值.【详解】解分式方程为5x m = ∵分式方程555x mx x =--无解 ∵5x = ∵55m = 解得1m = 故选:D .【点睛】本题主要考查分式方程无解问题,掌握分式方程无解问题的解法是解题的关键. 3.A【分析】去分母,得到整式方程,再把x=3代入即可求解. 【详解】去分母得,25x m =-, ∵分式方程的解为3x =,∵235m =-,解得m = 故选A.【点睛】此题主要考查分式方程的解,解题的关键是熟知分式方程去分母的方法. 4.B【分析】根据增根是使最简公分母为0的x的值,找到最简公分母即可求出相应的增根.【详解】分式方程的最简公分母为3x-,∵分式方程有增根,30x∴-=,解得3x=,故选:B.【点睛】本题主要考查分式方程的增根,掌握分式方程的增根是如何产生的是解题的关键.5.A【分析】把x=4代入原方程,再解出m即可.【详解】把x=4代入原方程得,4+24m-=2,解得m=3,故选A.【点睛】此题主要考查分式方程的解.6.A【分析】设分配x名工人生产,由题意可知,完成组装的工人有(60-x)人,根据生产工人数和组装工人数的倍数关系,可列方程.【详解】解:设分配x名工人生产,由题意可知,完成组装的工人有(60-x)人,由3位工人生产,1位工人恰好能完成组装,可得:x=3(60-x)∵故D正确;将∵两边同时除以3得:60-x=13x,则B正确;将∵两边同时除以3x得:60xx-=13,则C正确;A选项中,x为生产工人数,而生产工人数是组装工人数的3倍,而不是相反,故A错误.综上,只有A不正确.故选:A.【点睛】本题考查了由实际问题抽象出一元一次方程,明确题中的数量关系,是解题的关键.7.D【分析】根据购买了相同本数的科普类图书和文学类图书列分式方程即可解答. 【详解】解:由科普类图书平均每本价格比文学类图书的平均每本价格多9元,可知科普类图书平均每本(x+9)元,依题意得, 24000150009x x=+ 故选:D .【点睛】本题考查由实际问题抽象出分式方程,是重要考点,找准等量关系,列出方程是解题关键. 8.B【分析】先把分式方程化为整式方程,然后得出分式方程的解,进而问题可求解. 【详解】解:由分式方程433x k x x -=--可得:123kx +=, ∵该分式方程的解为非负数, ∵1203k +≥,且1233k+≠, 解得:12k ≥-且3k ≠-; 故选B .【点睛】本题主要考查分式方程及一元一次不等式的解法,熟练掌握分式方程及一元一次不等式的解法是解题的关键. 9.C【分析】根据分式方程“无解”,考虑两种情况:第一种是分式方程化为整式方程时,整式方程有解,但是整式方程的解会使最简公分母为0,产生了增根.第二种情况是化为整式方程时,整式方程无解,则原分式方程也无解.综合两种情况求解即可. 【详解】解:3233x aa x x+=-- 分式方程两边同乘以(3-x )得:32(3)x a a x -+=-(21)3a x a -=要使原分式方程无解,则有以下两种情况: 当210a -=时,即12a =,整式方程无解,原分式方程无解.当210a -≠时,则321ax a =-,即3321a a =-,原分式方程无解产生增根. 解得1a =综上所述可得:1a =或12时,原分式方程无解. 故选:C .【点睛】本题主要考查了分式方程无解求参数的值,熟知分式方程无解的两种情况:第一种是分式方程化为整式方程时,整式方程有解,但是整式方程的解会使最简公分母为0,产生了增根.第二种情况是化为整式方程时,整式方程无解,则原分式方程也无解是解决本题的关键. 10.C【分析】增根是指代入分式方程后分母的值为0的根,因此可将原方程去分母,然后将增根代入求a 的值.【详解】解:去分母,得 ax =4+x -1∵, ∵方程有增根, 所以x -1=0, ∵x =1是方程的增根, 将x =1代入∵得, a =4+1-1, ∵a =4, 故选C .【点睛】本题考查了分式方程的增根,正确理解分式方程增根的含义是解题的关键. 11.C【分析】根据新定义将所求式子化为普通方程,求出方程的解即可得到x 的值. 【详解】解:∵a *b =11b -﹣11a +, ∵(2x ﹣1)*2=2, ∵1﹣12x=2, 去分母得:2x ﹣1=4x , 解得:x =﹣12,经检验x =﹣12是分式方程的解.故选:C.【点睛】此题考查了解分式方程,弄清题中的新定义是解本题的关键.12.C【详解】方程两边同乘最简公分母x(x+1),得:2(x+1)-x2=x(x+1),故选C.13.D【详解】试题分析:关键描述语为:“两队同时开工且恰好同时完工”,那么等量关系为:甲队所用时间=乙队所用时间.解:乙队用的天数为:,甲队用的天数为:.则所列方程为:.故选D.考点:由实际问题抽象出分式方程.14.D【分析】设甲队单独完成全部工程需x个月,则乙队单独完成全部工程需要(x-2)个月,根据甲队施工5个月的工程量+乙队施工2个月的工程量=总工程量1列出方程,然后依次对各方程的左边进行变形即可判断.【详解】解:设甲队单独完成全部工程需x个月,则乙队单独完成全部工程需要(x-2)个月,根据题意,得:5212x x+=-;A.3112()12x x x++=-的左边化简得5212x x+=-,所以本选项不符合题意;B.32212x x x++=-可变形为5212x x+=-,所以本选项不符合题意;C.3+2212x x+=-可变形为5212x x+=-,所以本选项不符合题意;D.3212x x+=-,与上述方程不符,所以本选项符合题意.故选:D.【点睛】本题考查了分式方程的应用,正确理解题意,找准相等关系“工作效率⨯工作时间=工作量”列方程,是解题的关键.15.D【分析】首先去分母,计算出x=4﹣m,再根据解是非负数可得4﹣m≥0,x﹣1≠0,进而可得4﹣m≠1,再解即可.【详解】解:311x xm+--=1,31 x-﹣1mx-=1,3﹣m=x﹣1,x=4﹣m,∵解是非负数,∵x≥0,∵4﹣m≥0,∵m≤4,∵x﹣1≠0,∵x≠1,∵4﹣m≠1,∵m≠3,∵m≤4,且m≠3,故选:D.【点睛】此题主要考查了分式方程的解,关键是注意分式方程有解时,最简公分母不为零.16.A【详解】方程变形为(c+d)x=ad+bc,所以当c+d≠0,即c≠d时,原方程有解,故选A. 17.C【详解】分析:首先去掉分母,观察可得最简公分母是x(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解:去分母,得:x-3(x-2)=0,即x-3x+6=0,解得:x=3,经检验x=3是原方程的解.故选C.18.A【分析】求出方程的解,由方程的解为非负整数,得到k的取值范围;解不等式组,由不等式组至少有五个整数解,得到不等式,求出k的取值范围,由此得到答案.【详解】解:方程11222kx x-+=--两边都乘以x-2,得1+2(x-2)=k-1,解得22kx+ =,∵方程11222kx x-+=--的解为非负整数,∵202k +≥,且222k +≠, 解得2k ≥-,且2k ≠; 解不等式13(42)122y y -≤+,得4y ≤, 解不等式523k y y -<+,得37k y ->, ∵不等式组13(42)122523y y k y y -≤+-<+⎧⎪⎨⎪⎩至少有五个整数解, ∵347k y -<≤,且最少的五个整数解分别为0、1、2、3、4、, ∵307k -<, 解得k <3,∵23k -≤<,且2k ≠,∵方程11222k x x-+=--的解22k x +=为非负整数, ∵所有满足条件的整数k 为-2,0,共2个,故选:A .【点睛】此题考查了由分式方程的解求参数,由不等式组解集的情况求参数,正确掌握解分式方程及解不等式组的法则是解题的关键.19.D【详解】试题分析:﹣2=,(2)2(1)(2)3,x x x x +--+=21x =,1,x =± 当x=1是,分母为0,所以是增根,所以x=-1,故选D .考点:分式方程的解.20.D【详解】解关于x 的方程232x m x +=-得:6x m =+, ∵原方程的解为正数, ∵62060m m +-≠⎧⎨+>⎩,解得:6m >-且4m ≠-. 故选D.点睛:关于x 的方程232x m x +=-的解为正数,则字母“m”的取值需同时满足两个条件:(1)60x m =+>;(2)6x m =+不能是增根,即620m +-≠.21.12【分析】根据口袋中有6个白球和若干个红球,利用白球在总数中所占比例得出与试验比例应该相等求出即可.【详解】解:∵通过多次重复试验发现摸出白球的频率稳定在0.33附近,∵从袋子中任意摸出1个球,是白球的概率约为0.33,设袋子中红球有x 个, 根据题意,得:61=+63x , 解得x =12,经检验:x =12是分式方程的解,∵估计袋子中的红球有12个,故答案为:12.【点睛】此题主要考查了利用频率估计随机事件的概率,根据已知得出小球在总数中所占比例得出与试验比例应该相等是解决问题的关键.22.6-【分析】先根据方程有增根求出x 的值,再将原分式方程去分母,最后将4x =-代入求值即可.【详解】解:关于x 的方程244x a x x -=++有增根,则4x =-是增根, 将原分式方程去分母得, 2x a -=,而4x =-是方程2x a -=的解,所以6a =-,故答案为:6-.【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:∵让最简公分母为0确定增根;∵化分式方程为整式方程;∵把增根代入整式方程即可求得相关字母的值.分式方程去分母转化为整式方程,根据分式方程有增根得到x =-4,将x =-4代入整式方程计算即可求出a 的值.23.14x =##0.25x = 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:2223x x ++=, 解得:14x =, 检验:把14x =代入得:2(1)0x +≠, ∴分式方程的解为14x =. 【点睛】此题考查了解分式方程,利用了转化的思想,解题的关键是掌握解分式方程注意要检验.24.x =-3 【详解】解:5302x x-=-, 去分母得:5x -3(x -2)=0,解得:x =-3,检验:当x =-3时,x (x -3)≠0,所以,原分式方程的解为x =-3,故答案是:x =-3.25.x =1.【分析】增根是化为整式方程后产生的不适合分式方程的根所以应先让最简公分母x-1=0,得到x=1【详解】∵原方程有增根∵最简公分母x-1=0解得x=1故答案为:x=1.【点睛】此题考查分式方程的增根,难度不大26.6x =【分析】观察可得最简公分母是(x −4),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,注意不要忘记检验.44x x---1=5-x解得x=6.检验:把x=6代入(x−4)≠0.∵x=6是原方程的根,故答案为:x=6.【点睛】本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.27.372 yy+=【分析】把原分式方程中的21xx-整体换成y即可得到答案.【详解】解:设21xyx-=,则分式方程21xx-+231xx-=72,可以变形为3yy+=72故答案为:372yy+=.【点睛】本题主要考查了分式方程,利用整体代入的方法求解是解题的关键.28.1或5 3【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解,使原方程的分母等于0.【详解】解:两边都乘(x−3),得3−2x+nx−2=−x+3,解得x=21n-,n=1时,整式方程无解,分式方程无解;∵当x=3时分母为0,方程无解,即21n-=3,∵n=53时,方程无解;故答案为:1或53.【点睛】本题考查了分式方程无解的条件,掌握知识点是解题关键.29.3x=-【分析】先去分母,去括号,然后移项合并,再进行检验,即可求出方程的解.11x x-+去分母,得2(1)(1)(1)(1)x x x x x ++-+=-,去括号,得22221x x x x ++-=-,移项合并,得3x =-;检验:把3x =-代入(1)(1)x x -+,则(1)(1)0x x -+≠;∵3x =-是原方程的解;故答案为:3x =-.【点睛】本题考查了解分式方程,解题的关键是熟练掌握解分式方程的步骤和方法. 30.14801480370x x =++ 【详解】试题解析:设原来的平均速度为x 千米/时,列车大提速后平均速度为x+70千米/时,根据走过相同的距离时间缩短了3小时,列方程:1480x =148070x ++3, 故答案为1480x =148070x ++3. 31.0【详解】把1x =代入方程12,x x a +=+ 得112,1a +=+ 解得:0.a =经检验,a=0是方程的解,故答案为:0.32.150********x x =+. 【分析】设第一块试验田每亩的产量为x 千克,则第二块试验田每亩的产量为(x+200)千克,根据两块地的面积相同,列出分式方程.【详解】设第一块试验田每亩的产量为x 千克,则第二块试验田每亩的产量为(x+200)千克, 由题意得,150********x x =+. 33.25%【分析】设每袋素馅粽子的成本是a 元,售价是A 元;每袋肉馅粽子的成本是b 元,售价是B 元;每袋甜味馅粽子的成本是c 元,售价是C 元;根据题意得:A =1.1a ,B =1.2b ,C=1.3c,设最后一种情况的利润率是x,根据条件建立方程组,解方程组即可.【详解】解:设每袋素馅粽子的成本是a元,售价是A元;每袋肉馅粽子的成本是b元,售价是B元;每袋甜味馅粽子的成本是c元,售价是C元;根据题意得:A=1.1a,B=1.2b,C=1.3c,∵设最后一种情况的利润率是x,得到()()()()33 1.223232 1.2 2342341A B C a b cA B C a b cA B C a b c x⎧++=++⨯⎪++=++⨯⎨⎪++=++⨯+⎩∵,将条件∵代入方程组∵可以解得23b ac a=⎧⎨=⎩,∵2341 1.25234A B Cxa b c+++==++,解得:x=0.25=25%;故答案为:25%.【点睛】本题主要考查分式方程的应用及三元一次方程组的应用,熟练掌握分式方程的应用及三元一次方程组的应用是解题的关键.34.【详解】解分式方程得:x=,能使该分式方程有正整数解的只有0(a=1时得到的方程的根为增根),∵使关于x的分式方程有正整数解的概率为.故答案为.35.7 5【分析】根据互为倒数的两数之积为1可列出方程,然后求解即可.【详解】根据题意得:121x-×()143x+=1去分母、去括号得:x+4=6x−3移项合并同类项得:5x=7系数化为1得:x=75.故答案为75【点睛】此题考查了分式方程的应用与倒数的定义,解题的关键在于根据题意列出等式,有一定的难度,要注意读准题意.36.1或3【分析】先根据分式方程的解法求出x 的表达式,然后根据题意求出m 的范围即可求出答案.【详解】解:x=2(x-2)+m ,x=2x-4+m ,x=4-m ,将x=4-m 代入x-2≠0,∵m≠2,∵x >0,∵m <4,∵m 是正整数,∵0<m <4且m≠2,∵m=1或3.故答案为1或3.【点睛】本题考查分式方程的解法,解题的关键是求出m 的范围.37.1【分析】去分母得(2)2k x -=-,根据有增根即可求出k 的值.【详解】去分母得,123kx x -=-(2)2k x -=-,当20k -≠时,22x k =--为增根, 222k ∴-=- 21k -=-1k =故答案为:1.【点睛】本题考查了分式方程的问题,掌握解分式方程的方法是解题的关键.38.a >0且a ≠2【详解】试题分析:首先左右两边同乘以(x+2),求出x 的值.然后根据解为负数且x≠-2求出a 的取值范围.解分式方程得:x=-a ,根据题意得:-a <0且-a≠-2 解得:a >0且a≠2.考点:解分式方程.39.1a <-且a≠-3.【详解】分析:解分式方程,用含a 的式子表示x ,由x >0,求出a 的范围,排除使分母为0的a 的值. 详解:()()12121x x a x x x x ---+=++, 去分母得,(x +1)(x -1)-x (x +2)=a ,去括号得,x 2-1-x 2-2x =a ,移项合并同类项得,-2x =a +1,系数化为1得,x =12a --. 根据题意得,12a -->0,解得a <-1. 当x =1时,-2×1=a +1,解得a =-3;当x =-2时,-2×(-2)=a +1,解得a =3.所以a 的取值范围是a <-1且a ≠-3.故答案为a <-1且a ≠-3.点睛:本题考查了由分式方程的解的情况求字母系数的取值范围,这种问题的一般解法是:∵根据未知数的范围求出字母的范围;∵把使分母为0的未知数的值代入到去分母后的整式方程中,求出对应的字母系数的值;∵综合∵∵,求出字母系数的范围.40.m>-3且m≠-2【分析】先解关于x 的分式方程,求得x 的值,然后再依据“解是负数”建立不等式求m 的取值范围.【详解】原方程整理得:2x-m=3(m+1),解得:x=-(m+3),∵x<0,∵-(m+3)<0,即m>-3,∵原方程是分式方程,∵x≠-1,即-(m+3)≠-1,解得:m≠-2,综上所述:m 的取值范围是m>-3,且m≠-2,故答案为m>-3,且m≠-2【点睛】此题考查了分式方程的解,解答本题时,易漏掉分母不等于0这个隐含的条件,熟练掌握解分式方程的方法及分式有意义的条件是解题关键.41.36元【分析】设杂拌糖的单价为x 元, 则奶糖的单价为(x+4) 元, 水果糖的单价为(x-6) 元,根据这两种糖混合前后质量相同列出方程,解方程即可.【详解】解:设杂拌糖的单价为x 元, 则奶糖的单价为(x+4)元,水果糖的单价为(x-6)元,根据题意得:180********+=x+4x-6x, 解得:x=36.经检验,x=36是原方程的解.答:杂拌糖的单价为36元.【点睛】本题主要考查分式方程的应用,根据已知条件列出方程是解题的关键. 42.(1)甲120元,乙60元;(2)W =404000(40)a a +≥;W 最小值=5600元【分析】(1)根据题意列出分式方程,求解并检验即可;(2)利用总利润=甲的利润 +乙的利润即可得出答案,然后利用一次函数的性质求最小值即可.【详解】(1)根据题意有180090060x x=+, 解得60x =,经检验,60x =是原分式方程的解,∵60120x +=,∵甲商品的进价是120元,乙商品的进价是60元;(2)根据题意有,(200120)(10060)(100)404000w a a a =-+--=+, 400>∵w 随着a 的增大而增大,40a ≥ ,∵当40a =时,w 最小,此时404040005600w =⨯+=(元) .【点睛】本题主要考查分式方程和一次函数的应用,掌握分式方程的解法和一次函数的性质是解题的关键.43.(1)第一批医用口罩有1000包(2)每包医用口罩的售价为6元【分析】(1)设第一批口罩有x 包,则第二批有1.5x 包,根据题意列出分式方程,解方程即可求解;(2)设每包口罩的售价为a 元,根据题意列出一元一次不等式,解不等式即可求解. (1)设第一批口罩有x 包,则第二批有1.5x 包, 根据题意有:400075001 1.5x x+=, 解得x =1000,经检验,x =1000是原方程的解,即第一批口罩有1000包,答:第一批医用口罩有1000包;(2)设每包口罩的售价为a 元,在(1)中已求得第一批医用口罩有1000包,则第二包口罩有:1.5x =1500(包),根据题意,有:()()15001000750040003500x +-+≤,解得:6x ≤,即每包口罩的最高售价为6元,答:每包医用口罩的售价为6元.【点睛】本题主要考查了分式方程以及一元一次不等式的应用,明确题意,找准等量关系列出分式方程是解答本题的关键.44.甲工程队每天能铺设70米,乙工程队每天能铺设50米.【详解】试题分析:设乙工程队每天能铺设x 米.根据甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同,列方程求解.解:设乙工程队每天能铺设x 米;则甲工程队每天能铺设(x+20)米,依题意,得=,解得x=50, 经检验,x=50是原方程的解,且符合题意.答:甲工程队每天能铺设70米,乙工程队每天能铺设50米.考点:分式方程的应用.45.(1)227x -<<(2)1a a+- (3)()223a a b -(4)3x =【分析】(1)根据一元一次不等式组的解法可进行求解;(2)先算括号内,然后再利用分式的乘法法则进行求解即可;(3)先提公因式,然后再用完全平方公式因式分解即可;(4)先去分母,然后再进行求解整式方程即可.(1)解:()3125212132x x x x ⎧-<-+⎪⎨-+->⎪⎩①② 由∵可得:2x >-,由∵可得:27x <, ∵原不等式组的解集为227x -<<; (2)解:原式=()()()21111a a a a a +--⋅- =1a a+-; (3)解:原式=()224129a a ab b -+ =()223a a b -;。
课题16.3分式方程的应用课型新授单位中丁中学主备人李爱伟学习过程学生学习感悟(教师个性修订)学习目标:通过探索实际问题,掌握用分式方程解应用题学习重点、难点:寻找问题中的相等关系,列方程解决实际问题学习过程:一、旧知回顾:(1) 解方程 (1/3)+(1/6)+1/2x=1(2)分式方程如何检验____________________________(3)利用整式方程解应用题的一般步骤为:_____________________二、创设情景:两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成。
哪个队的施工速度快?分析:(1)甲队1个月完成总工程的_____,半个月完成总工程的____________(2)如果设乙队单独施工1个月能完成总工程的1/x,半个月完成总工程的______________________(3)两个队半个月完成总工程的______________(4)问题中有何相等关系______________________(5)根据相等关系可列怎样的方程______________(6)如何进行检验_____________________________三、小组交流:列分式方程解应用题时,解决问题的关键是:准确找出题中已知数量与未知数量之间的____________________列出方程。
一般步骤为:___________________________________________________ ___________________________________________________ _________________________________四、解决问题:从2004年5月起某列车平均提速x千米/时,用相同的时间,列车提速前行驶s千米,提速后比提速前多行驶50千米,提速前列车的平均速度为多少?分析:(1)提速前列车行驶s千米所用的时间为_________________(2)提速后列车的平均速度为__________________(3)提速后列车运行(s+50)千米所用的时间为______________(4)此题的相等关系为_________________________(5)根据相等关系可列方程为________________________五、归纳小结:六、达标训练:课本第31页练习、第33页8、9、10、七、学习反思:。
分式应用题一、工程问题1、甲、乙二人做某种机械零件。
已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等。
求甲、乙每小时各做零件多少个?【变式1】某化肥厂计划在规定日期内生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨与原计划生产120吨的时间相等,求计划每天生产多少吨化肥?【变式2】A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件。
求A、B每小时各做多少个零件?【变式3】A、B两种机器人都被用来搬运化工原料,B型机器人比A型机器人每小时少搬运30kg,A型机器人搬运900kg所用时间与B型机器人搬运600kg所用时间相等,两种机器人每小时分别搬运多少化工原料?2、两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成。
哪个队的施工速度快?【变式1】张明3h清点完一批图书的一半,李强加入清点另一半图书的工作,两人合作1.2h清点完另一半图书。
如果李强单独清点这批图书需要几小时?【变式2】在某路段工程招标时,工程指挥部接到甲、乙两个工程队的投标书。
根据甲、乙两队的标书测算,若甲队单独完成这项工程需要40天;若由乙队先做10天,剩下的工作再由甲、乙两队合作20天可完成。
(1)若安排乙队单独完成这项工程需要多少天?(2)为了缩短工期,方便行人,若安排两队共同完成这项工程,需要多少天?【变式3】甲、乙两个工程队共同完成一项工程,乙队先单独做1天后,再由两队合作2天就完成了全部工程,已知甲队单独完成工程所需的天数是乙队单独完成所需天数的13,求甲、乙两队单独完成各需多少天?【变式4】甲、乙两个工程队共同完成一项工程,乙队先单独做1天,再由两队合作2天就完成全部工程,已知甲队与乙队完成此工作时间比是2:3,求甲、乙两队单独完成此项工程各需多少天?【变式5】一项工程要在限期内完成。
人教版八年级数学上册《分式方程应用题》期末专题训练-附带有答案学校:班级:姓名:考号:1.为了美化市区,市园林处对中山公园再次进行了绿化.施工队在种植花草800平方米后,采用机械化施工,这样每天绿化的面积是原来的2倍,最后共用了5天完成3200平方米的绿化面积,请问该施工队原来每天绿化的面积是多少?2.某商店购进了一批甲、乙两种不同品牌的雪糕,其中甲种雪糕花费了200元,乙种雪糕花费了240元,已知甲种雪糕比乙种雪糕多了20个,乙种雪糕的单价是甲种雪糕单价的1.5倍.(1)求购进的甲、乙两种雪糕的单价;(2)若甲雪糕每个售价是3.5元,该商店保证卖出这批雪糕的利润不低于230元,那么乙种雪糕每个售价至少是多少元?3.奥达玩具商店根据市场调查,用5000元购进一批悠悠球,很受中小学生欢迎,悠悠球很快脱销,接着又用9000元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了10元.(1)求第一批悠悠球每套的进价是多少元?(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球售价至少是多少元?4.为加快公共领域充电基础设施建设,某停车场计划购买A、B两种型号的充电桩.已知A型充电桩比B 型充电桩的单价少0.2万元,且用18万元购买A型充电桩与用24万元购买B型充电桩的数量相等,求A、B两种型号充电桩的单价各是多少万元?5.某市把学位建设和消除义务教育阶段“大班额”工作作为全市民生工程.某校现有学生1200人,化解“大班额”后,每班平均学生人数是50人,班级数量比原来多了9个,求化解“大班额”前平均每班有多少学生?6.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的13,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.(1)设乙队单独施工1个月能完成总工程的1x,两队半个月完成总工程的____________(用含x的式子表示).(2)哪个队的施工速度快?7.某中学为落实《教育部办公厅关于进一步加强中小学生体质健康管理工作的通知》文件要求,决定增设篮球,足球两门选修课程,需要购进一批篮球和足球.若购买篮球的数量是足球的2倍,购买篮球用了6000元,购买足球用了2000元,篮球单价比足球单价贵30元.(1)求篮球和足球的单价分别是多少元:(2)学校计划采购篮球、足球共60个,并要求篮球多于40个,且总费用低于4900元.那么有哪几种购买方案8.2023年5月30日上午9点31分,神州十六号载人飞船在酒泉发射中心发射升空.某中学组织毕业班的同学观看现场直播,学校准备为同学们购进A、B两款文化衫,每件A款文化衫比每件B款文化衫多10元,用500元购进A款文化衫和用400元购进B款文化衫的数量相同.(1)求A款文化衫和B款文化衫每件各多少元?(2)已知毕业班的同学一共有300人,学校计划用不多于14800元购进两种文化衫,应至少购进B款文化衫多少件.9.某公司计划共花费2800元为所有员工网购工作服,恰逢双11购物狂欢节,商家将服装原价上涨40%后再打五折,该公司实际比原计划可多买3件.(1)求每件服装的原价;(2)若该公司按原计划数量购买服装,将剩余的钱用来购买围巾和袜子.一条围巾的售价比一双袜子的售价的12倍还多2元.该公司给每位员工购买了2条围巾和5双袜子,恰好用完剩余的钱,求一条围巾和一双袜子的售价.10.为支援贫困山区,某学校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品与用120元购买A型学习用品的件数相同.求A,B两种学习用品的单价各是多少元?11.岳阳市第十九中八年级举行数学思维导图比赛,学校购买A,B两种学习用品作奖品,A发给一等奖,B发给二等奖,已知A种学习用品的单价比B贵10元,且用180元购买A种学习用品的数量与用120元购买B种学习用品的数量相同.(1)求A,B两种学习用品的单价各是多少元?(2)学校准备购买A,B两种学习用品共28件,且两种学习用品的购买经费不少于680元,问A学习用品最少要购买多少件?12.某公司积极响应节能减排号召,决定采购新能源A 型和B 型两款汽车,已知每辆A 型汽车的进价是每辆B 型汽车的进价的1.5倍,若用3000万元购进A 型汽车的数量比2400万元购进B 型汽车的数量少20辆.(1)A 型和B 型汽车的进价分别为每辆多少万元?(2)该公司决定用不多于3600万元购进A 型和B 型汽车共150辆,最多可以购买多少辆A 型汽车?13.某市计划采购A ,B 两种花卉对某广场进行美化.(1)该市第一批花费2000元采购A ,B 两种花卉共1500盆,此时A ,B 两种花卉的价格分别为1元/盆,2元/盆,求采购A ,B 两种花卉各多少盆?(2)由于花卉价格有所调整,该市第二批分别花费450元,900元购买A ,B 两种花卉,已知购买的B 种花卉每盆比A 种花卉多1元,且B 种花卉比A 种花卉的盆数多20%,求购买A 种花卉多少盆?14.2023年8月开始,溆浦县城开始创建全国文明县城活动,在警予路的绿化工程中,甲、乙两个施工队承担了这路段的绿化工程任务,甲队单独做要40天完成.若乙队先做30天后,甲、乙两队合作再做20天恰好完成任务(1)乙队单独做需要多少天能完成任务?(2)因工期需要,将此项工程分成两部分,甲做x 天,乙做y 天完成,其中x y ,均为正整数,且19x <和60y <问甲、乙两队各做了多少天?15.小南从北关中学返回天津前,用300元购入青莲紫笔记本和铁艺胸针两种纪念品若干,其中青莲紫笔记本总费用比铁艺胸针总费用的2倍少60元.(1)求购买青莲紫笔记本和铁艺胸针的总费用各为多少元?(2)小南发现,两种纪念品的单价和为10元,青莲紫笔记本和铁艺胸针的数量相同,请帮助他算出纪念品的总个数.16.三~四月的哈尔滨,冰雪消融,大地回春,正是植树好季节,市政有甲、乙两个植树工程队,甲工程队每天比乙工程队多植树20棵,甲工程队植树480棵和乙工程队植树360棵所用的时间相等.(1)求甲、乙两工程队每天各植树多少棵?(2)甲、乙两个工程队工作热情高涨,甲工程队每天比原来多植树10%,乙工程队每天比原来多植树20%,现有植树任务不少于1160棵,且乙工程队植树天数是甲工程队植树天数的2倍,则甲工程队至少植树多少天可以完成任务?17.甜酒是长乐美食一张名片,某超市推出两款经典甜酒,一款是色香味俱全的“富硒甜酒”,另一款是清香四溢的“糯米甜酒”.已知2坛“富硒甜酒”和1坛“糯米甜酒”需68元;1坛“富硒甜酒”和2坛“糯米甜酒”需61元.(1)求“富硒甜酒”和“糯米甜酒”的单价;(2)糯米是两款美食必不可少的材料,该超市老板发现本月的每千克糯米价格比上个月涨了25%,同样花24元买到的糯米数量比上个月少了1千克,求本月糯米的价格.18.某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了840元,购买围棋用了1176元,已知每副围棋比每副象棋贵8元.(1)求每副象棋和围棋的价格各多少元?(2)若该校决定再次购买同种象棋和围棋共40副,但费用不能超过1000元,则最多可再次购买多少副围棋?19.某商厦进货员预测有一种衬衫能畅销市场,就用4万元购进这种衬衫,投放市场后供不应求,商厦又用8.8万元购进了第二批同样的衬衫,所购数量是第一次的2倍,但单价每件贵了4元.(1)商厦第二次购进的衬衫每件多少元?(2)商厦对两次购进的衬衫都按60元的售价进行销售,最后剩下的500件按五折全部售空.在这笔生意中,商场盈利多少元?20.在国庆节期间,学校举行了诗歌朗诵等系列活动,嘉嘉和淇淇负责为班级参赛学生购置纪念品.他们发现,一个笔记本比一支钢笔贵3元,用225元购买的笔记本数量与用180元购买的钢笔数量相同.(1)笔记本和钢笔的单价各多少元?(2)若给参赛的30名学生每人发放一个笔记本或一支钢笔作为活动纪念品,要使购买纪念品的总费用不超过380元,最多可以购买多少个笔记本?参考答案:1.该施工队原来每天绿化的面积为400平方米.2.(1)甲的单价为2元,乙的单价为3元(2)乙种雪糕的售价至少是4元3.(1)50元(2)70元4.A型充电桩的单价为0.6万元,B型充电桩的单价为0.8万元.5.80个学生6.(1)11 62x(2)乙队的施工速度快7.(1)篮球的单价为90元,足球的单价为60元(2)共有三种购买方案,方案一:采购篮球41个,采购足球19个;方案二:采购篮球42个,采购足球18个;方案三:采购篮球43个,采购足球17个.8.(1)每件B款文化衫为40元,每件A款文化衫为50元(2)20件9.(1)每件服装原价为400元;(2)一条围巾售价为50元,一双袜子售价为4元.10.A、B两种学习用品的单价分别为20元和30元11.(1)一个A种学习用品需要30元,购买一个B种学习用品需要20元;(2)A学习用品最少要购买12件.12.(1)A型汽车的进价为每辆30万元,B型汽车的进价为每辆20万元(2)最多可以购买60辆A型汽车13.(1)采购A种花卉1000盆,B种花卉500盆(2)购买A种花卉300盆14.(1)乙队单独做需要100天能完成任务(2)甲队做了18天,乙两队做了55天15.(1)购买青莲紫笔记本的总费用是180元,购买铁艺胸针的总费用是120元(2)纪念品的总个数为60个16.(1)甲工程队每天植树80棵,乙工程队每天植树60棵(2)甲工程队至少植树5天可以完成任务17.(1)“富硒甜酒”的单价为25元,“糯米甜酒”的单价为18元(2)本月糯米的价格为6元/千克18.(1)象棋每副20元,围棋每副28元(2)围棋最多可买25副19.(1)第二次购进的衬衫每件44元(2)在这笔生意中商场盈利37000元20.(1)笔记本和钢笔的单价各15元,12元(2)最多可以购买6个笔记本。
1. 一台甲型拖拉机4天耕完一块地的一半,加一台乙型拖拉机,两台拖拉机合耕,一天耕完这块地的另一半。
乙型拖拉机单独耕完这块地需要多少天?2. 甲、乙同学帮助学校图书馆清点一批图书,已知甲同学清点200本图书与乙同学清点300本图书所用的时间相同,且甲同学平均每分钟比乙同学少清点10本,求甲同学平均每分钟清点图书的数量3.某服装厂准备加工300套演出服.在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务.求该厂原来每天加工多少套演出服.4.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队共同工作了半个月,总工程全部完成。
哪个队的施工速度快?5. 为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程.如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成.现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则刚好如期完成.问原来规定修好这条公路需多长时间?6.学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天?7.甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度.8.某校组织学生去离校10千米的展览馆去参观.初中学生步行出发1小时后,高中学生骑车出发,反而比初中学生早到半小时.若骑车比步行每小时多行6千米,求初中学生步行的速度.9.从2004年5月起某列车平均提速V千米/时,用相同的时间,列车提速前行驶S千米,提速后比提速前多行驶50千米,提速前列车的平均速度为多少?10.老师在超市用24元钱买了若干袋牛奶.过了一段时间再去超市,发现这种牛奶八折销售,结果比上次少花了4元钱却多买了1袋牛奶.你能算出这种牛奶的原价吗?。
1.某运输公司需要装运一批货物,由于机械设备没有到位,
只好先用人工装运,6小时后完成一半,后来机械装运和人工同时进行,2小时完成了后一半,求机械的速度?
2.一台甲型拖拉机4天耕完一块地的一半,加一天乙型拖
拉机,两台合耕,1天耕完这块地的另一半。
乙型拖拉机单独耕这块地需要几天?
3.某中学到离学校15千米的某地旅游,先遣队和大队同时
出发,行进速度是大队的1.2倍,以便提前半小时到达目的地做准备工作。
求先遣队和大队的速度各是多少?
4.我军某部由驻地到距离30千米的地方去执行任务,由于
情况发生了变化,急行军速度必需是原计划的 1.5倍,才能按要求提前2小时到达,求急行军的速度。
5.甲乙两地相距360千米,新修的高速公路开通后,在甲
乙两地间行驶的长途客运车平均车速提高了50%,而从甲到乙的时间缩短了2小时,求原来的平均速度
6.我部队到某桥头阻击敌人,出发时敌人离桥头24千米,
我部队离桥头30千米,我部队急行军速度是敌人的1.5倍,结果比敌人提前48分钟到达,求我部队的速度
7.A,B两地相距135千米,两辆汽车从A地开往B地,大
汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟.已知小汽车与大汽车的速度之比是5:2,求两辆汽车各自的速度.
8.轮船顺水航行80千米所需要的时间和逆水航行60千米
所用的时间相同。
已知水流的速度是3千米/时,求轮船在静水中的速度。
9.甲、乙两人做某种机器零件,已知甲每小时比乙多做6
个,甲做90个零件所用的时间和乙做60个零件所用时间相等,求甲、乙每小时各做多少个零件?
10.A做90个零件所需要的时间和B做120个零件所用的时
间相同,又知每小时A、B两人共做35个机器零件。
求
A、B每小时各做多少个零件。
11.某市为治理污水,需要铺设一段全长3000米的污水输
送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成了任务,实际每天铺设多长管道?
12.某车间加工1200个零件后,采用新工艺,工效是原来的
1.5倍,这样加工同样多的零件就少用10小时,采用新
工艺前后每时分别加工多少个零件?
13.块面积相同的小麦试验田,第一块使用原品种,第二块
使用新品种,分别收获小麦9000Kg和15000Kg,已知第一块试验田的每公顷的产量比第二块少3000Kg,分别求这块试验田每公顷的产量。
14.某商厦进货员预测一种应季衬衫能畅销市场,就用8万
元购进这种衬衫,面市后果然供不应求,商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商厦销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商厦共赢利多少元。
1.某运输公司需要装运一批货物,由于机械设备没有到位,只好先用人工装运,6小时后完成一半,后来机械装运和人工同时进行,2小时完成了后一半,求机械的速度?
2.一台甲型拖拉机4天耕完一块地的一半,加一天乙型拖拉机,两台合耕,1天耕完这块地的另一半。
乙型拖拉机单独耕这块地需要几天?
3.某中学到离学校15千米的某地旅游,先遣队和大队同时出发,行进速度是大队的1.2倍,以便提前半小时到达目的地做准备工作。
求先遣队和大队的速度各是多少?
4.我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。
5.甲乙两地相距360千米,新修的高速公路开通后,在甲乙两地间行驶的长途客运车平均车速提高了50%,而从甲到乙的时间缩短了2小时,求原来的平均速度
6.我部队到某桥头阻击敌人,出发时敌人离桥头24千米,我部队离桥头30千米,我部队急行军速度是敌人的1.5倍,结果比敌人提前48分钟到达,求我部队的速度
7.A,B两地相距135千米,两辆汽车从A地开往B地,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟.已知小汽车与大汽车的速度之比是5:2,求两辆汽车各自的速度.
8.轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。
已知水流的速度是3千米/时,求轮船在静水中的速度。
9.甲、乙两人做某种机器零件,已知甲每小时比乙多做6个,甲做90个零件所用的时间和乙做60个零件所用时间相等,求甲、乙每小时各做多少个零件?
10.A做90个零件所需要的时间和B做120个零件所用的时间相同,又知每小时A、B两人共做35个机器零件。
求A、B 每小时各做多少个零件。
11.某市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成了任务,实际每天铺设多长管道?
12.某车间加工1200个零件后,采用新工艺,工效是原来的1.5倍,这样加工同样多的零件就少用10小时,采用新工艺前后每时分别加工多少个零件?
13.块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000Kg和15000Kg,已知第一块试验田的每公顷的产量比第二块少3000Kg,分别求这块试验田每公顷的产量。
14..某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求,商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商厦销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商厦共赢利多少元。