新人教版七年级数学上册期末测试卷
- 格式:doc
- 大小:314.50 KB
- 文档页数:4
七年级数学上册期末测试卷及答案(新人教版)七年级数学上册期末测试卷(新人教版)时间:90分钟满分:120分)一、选择题(每小题3分,共36分)1、下列说法中正确的个数是()①正数和负数统称为有理数;②一个有理数不是整数就是分数;③有最小的负数,没有最大的正数;④符号相反的两个数互为相反数;XXX一定在原点的左边。
A.1个 B.2个 C.3个 D.4个2、下列计算中正确的是()A.a+a=a B。
a2=a2 C。
(a)=a D。
(a)a=3a-23、a、b两数在数轴上位置如图3所示,将a、b、a、b用“<”连接,其中正确的是()1<a<1<b图34、我市有人口,用科学记数法表示(精确到千位)()A.30.56×10^4 B.3.056×10^5 C.3.06×10^5D.3.1×10^55、下列结论中,正确的是()A.a<XXX<b< b B.b<a<a<bC.a<b<b<a D.b<a<b< a6、在解方程x-1/2x+31时,去分母正确的是()A.3(x-1)-4x+3=1 B.3x-1-4x+3=6C.3x-1-4x+3=1 D.3(x-1)-2(2x+3)=67、某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为()A.1800元 B.1700元 C.1710元 D.1750元8、中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”。
乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”。
若设甲有x只羊,则下列方程正确的是()A.x+1=2(x-2) B.x+3=2(x-1)C.x+1=2(x-3) D.x-1=(x+1)/29、某中学学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米。
2024-2025学年人教版七年级数学上册期末测试卷1.有理数的倒数是()A.B.C.D.2.篆刻是中华传统艺术之一,雕刻印章是篆刻基本功.如图是一块雕刻印章的材料,其俯视图为()A.B.C.D.3.单项式表示球的表面积,其中表示圆周率,表示球的半径.下列说法中,正确的是()A.系数是4,次数是2B.系数是4,次数是3C.系数是,次数是3D.系数是,次数是24.光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于.下列正确的是()A.B.C.是一个12位数D.是一个13位数5.《九章算术》中有这样一道题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”译文:“相同时间内,走路快的人走100步,走路慢的人只走60步.若走路慢的人先走100步,走路快的人要走多少步才能追上?(注步为长度单位).设走路快的人要走x步才能追上,则正确的是()A.依题意B.依题意C.走路快的人要走200步才能追上D.走路快的人要走300步才能追上6.一个正两位数M,它的个位数字是a,十位数字是,把M十位上的数字与个位上的数字交换位置得到新两位数N,则的值总能()A.被3整除B.被9整除C.被10整除D.被11整除7.已知整数m同时满足下列两个条件,写出一个符合条件的m的值:________.①在数轴上位于原点左侧;②绝对值大于2且小于68.用代数式表示“x的2倍与y的差”为__.9.如图,点A在点O的北偏东方向上,点B在点O的南偏西方向上,则的度数为____.10.将长度相同的木棒按如图所示的方式摆放,图1中有5根木棒,图2中有9根木棒,图3中有13根木棒,…,按此规律摆放下去,则图9中木棒的根数是____.11.某市居民每月用水收费标准如下:用水量/立方米单价/元a超过10的部分李阿姨家11月份用水5立方米,交水费11元.若李阿姨12月份交水费元,则李阿姨12月份的用水量是____.12.科技创新小组为测试新款机器人的性能,令机器人在一个长的笔直测试道上来回运动,当机器人到达起点或终点时立即按当前运行速度折返,每次运动时间为,运动过程如下:第次从起点出发以的速度运动到记录点;第次从出发以的速度运动到记录点;第次从出发以的速度运动到记录点;第次从出发以的速度运动到记录点,到达后停止.若机器人的运动速度不超过,记录点恰好为终点,则的值为______.13.(1)计算:.(2)若单项式与是同类项,求的值.14.阅读下面解题过程并解答问题:计算:.解:原式(第一步)(第二步)(第三步).(1)上面解题过程有两处错误:第一处是第步,错误原因是;第二处是第步,错误原因是.(2)请写出正确的计算过程.15.解方程:(1);(2)16.春节快到了,小明同学准备了一份礼物送给自己的好朋友.他设计了一个正方体盒子进行包装,如图所示,由于粗心少设计了其中一个顶盖,请你把它补上,使其成为一个两面均有盖的正方体盒子.(1)共有___________种弥补方法;(2)任意画出一种成功的设计图(在图中补充),并将这些数字分别填入六个小正方形,使得折成的正方体相对面上的两个数相加得0(直接在图中填上即可).17.已知整式.(1)当,求整式的值;(2)若整式比整式大,求整式.18.某仓库5月份前6天,每天粮食相对于前一天(单位:袋)变化如图10,增加粮食记作“”,减少粮食记作“”.(1)通过计算说明前6天,仓库粮食总共的变化情况;(2)在1~7号中,如果前四天的仓库粮食变化情况是后三天变化情况的一半,求7号这天仓库粮食变化情况.19.如图,为了方便学生停放自行车,学校建了一块长边靠墙的长方形停车场,其他三面用护栏围起,其中停车场的长为米,宽比长少米.(1)用含a、b的代数式表示护栏的总长度;(2)若,,每米护栏造价80元,求建此停车场所需护栏的费用.20.追本溯源题(1)来自于课本中的定义,请你完成解答,利用定义完成题(2).(1)如图1,点M把线段分成相等的两条线段与,点M叫做线段的___,____.拓展延伸(2)如图2,线段上依次有D,B,E三点,,E是的中点,.①求线段的长;②求线段的长.21.根据表中的素材,完成下面的任务:如何设计奖品购买及兑换方案?素材1文具店销售某种钢笔与笔记本,已知钢笔每支10元,笔记本每本5元.素材2学校用1100元购买这种钢笔和笔记本,其数量之比为.素材3文具店开展“满送”优惠活动,每满130元送1张兑换券,满260元送2张兑换券,以此类推.学校花费1100元后,将兑换券全部用于商品兑换.最终,笔记本与钢笔数量相同.问题解决任务1探究购买方案分别求出兑换前购买钢笔和笔记本的数量.任务2确定兑换方式求出用于兑换钢笔的兑换券的张数.22.数轴上两点A、B,A在B左边,原点O是线段上的一点,已知,且.点A、B对应的数分别是a、b,点P为数轴上的一动点,其对应的数为x.(1)_____,_____;(2)若,求x的值;(3)若点P以每秒2个单位长度的速度从原点O向右运动,同时点A以每秒1个单位长度的速度向左运动,点B以每秒3个单位长度的速度向右运动,设运动时间为t秒.请问在运动过程中,的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.23.【实践操作】在数学实践活动课上,同学们准备研究如下问题:如图,点A,O,B在同一条直线上,将一直角三角尺如图①放置,是直角,直角顶点与点O重合,平分.【问题发现】(1)若,求的度数;(2)猜想图①中和的度数之间的关系,写出你的结论,并说明理由.【变式探究】将这一直角三角尺如图②放置,其他条件不变,试探究和的度数之间的关系,写出你的结论,并说明理由.。
2022-2023学年新人教版初中七年级数学上册期末综合素养评价测试卷一、选择题(共12小题,满分36分,每小题3分)1.(3分)(2022•大冶市模拟)a与﹣2互为倒数,则a为()A.﹣2B.2C.12D.−122.(3分)(2022秋•桂平市期中)据猫眼实时数据显示,截止2022年10月16日,电影《万里归途》的累计票房正式突破13亿元,数据13亿用科学记数法表示为()A.1.3×108B.0.13×108C.1.3×109D.1.3×10103.(3分)(2022秋•宿迁期中)下列方程中,是一元一次方程的是()A.x﹣2y+1=0B.2+1x=1C.2x﹣1=0D.xy=44.(3分)(2022秋•如东县期中)下列说法错误的是()A.32ab2c的次数是4次B.多项式2x2﹣3x﹣1是二次三项式C.多项式3x2﹣2x3y+1的次数是6次D.2πr的系数是2π5.(3分)(2022秋•宿城区期中)某商品价格为a元,根据销量的变化,该商品先降价10%,一段时间后又提价10%,提价后这种商品的价格与原价格a相比()A.降低了0.01a B.降低了0.1aC.增加了0.01a D.不变6.(3分)(2022秋•黄浦区期中)分数457介于两个相邻的整数之间,这两个整数是()A.3和4B.4和5C.5和6D.6和77.(3分)(2022秋•扬州期中)下列结论不正确的是()A.单项式﹣ab2的次数是3B.单项式abc的系数是1C.多项式x2y2﹣2x2+1是四次三项式D.−3xy2不是整式8.(3分)(2022秋•丹江口市期中)已知m =n ,则下列变形中正确的个数为( ) ①m +2=n +2;②am =an ;③m n =1;④m a 2+1=na 2+1A .1个B .2个C .3个D .4个 9.(3分)(2022秋•宿城区期中)已知等式a =b ,则下列等式中不一定成立的是( )A .a +1=b +1B .2a ﹣2b =0C .a c =b cD .ac =bc10.(3分)(2022秋•天山区校级期中)如图,点C 是线段AB 上的点,点D 是线段BC 的中点,AB =10,AC =6,则线段BD 的长是( )A .6B .2C .8D .411.(3分)(2022秋•福田区校级期中)下列正方体的展开图中,“勤”的对面是“戴”的展开图是( )A .B .C .D .12.(3分)(2022秋•天山区校级期中)如果线段AB =10cm ,MA +MB =13cm ,那么下面说法中正确的是( )A .M 点在线段AB 上B .M 点在直线AB 上C .M 点可能在直线AB 上也可能在AB 外D .M 点在直线AB 外二、填空题(共6小题,满分18分,每小题3分)13.(3分)(2022秋•黄石期中)若|m 2﹣5m ﹣2|=1,则2m 2﹣10m +2022的值为 .14.(3分)(2021秋•兴庆区校级期末)若12a +1与2a−73互为相反数,则a 的值为 .15.(3分)(2022秋•莱西市期中)下列几何体属于棱柱的是 (填序号)16.(3分)(2022春•碑林区校级月考)如图,∠AOC =∠DOE =90°,如果∠AOE =65°,那么∠COD 的度数是 .17.(3分)(2022秋•城阳区期中)如图,一块长为为acm ,宽为bcm 的矩形硬纸板,在其四个角各剪去1个边长为2cm 的正方形,然后将四周的部分折起,可制成一个无盖长方体盒子,则所得长方体盒子的侧面积为 (用含a ,b 代数式表示).18.(3分)(2022秋•城阳区期中)如图,将图沿虚线折起来,得到一个正方体,那么“我“的对面是 (填汉字).三、解答题(共7小题,满分66分)19.(9分)(2022秋•宜兴市期中)解方程(1)5x ﹣3=2(x ﹣12);(2)1−2x−16=2x+13.20.(9分)(2022秋•黔东南州期中)先化简,再求值:(1)(2a 2﹣b )﹣(a 2﹣4b )﹣(b +c ),其中:a =13,b =12,c =1;(2)3(2x 2﹣3xy ﹣5x ﹣1)+6(﹣x 2+xy ﹣1),其中x 、y 满足:x 是2的相反数,y 是−23的绝对值.21.(9分)(2022秋•陇县期中)计算:(1)﹣21+(﹣14)﹣(﹣18)﹣15;(2)−3.5÷78×|−34|−(−2)÷(−13)×(−3);(3)(−2)3+[−42×(−34)2+3]÷(−35)−|−1−2|.22.(9分)(2021秋•肥东县期末)已知:如图,∠AOB =20°,OB 平分∠AOC .(1)以射线OD 为一边,在∠AOD 的外部作∠DOE ,使∠DOE =COD ;(用直尺和圆规作图,保留作图痕迹,不要求写作法)(2)若∠AOE =105°10′,求∠AOD 的大小.23.(10分)(2022秋•郫都区校级期中)整体代换是数学的一种思想方法,在求代数式的值中,整体代换思想非常常用,例如x 2+x =1,求x 2+x +2022的值,我们将x 2+x 作为一个整体代入,则原式=1+2022=2023.仿照上面的解题方法,完成下面的问题:(1)若x 2+2x ﹣1=0,则x 2+2x ﹣2022= .(2)若a 2+2ab =﹣5,b 2+2ab =3,求2a 2﹣3b 2﹣2ab 的值.24.(10分)(2022秋•顺德区校级月考)如图1至图3是将正方体截去一部分后得到的多面体.(1)根据要求填写表格:面数(f ) 顶点数(v ) 棱数(e ) 图17 14 图28 12 图3 7 10(2)请写出f 、v 、e 三个数量间的关系式.25.(10分)(2022秋•前郭县期中)如图,点A,B是数轴上两点,点A表示的数为﹣16,A,B两点之间的距离为20,动点P、Q分别从A、B出发,点P以每秒2个单位长度的速度沿数轴向右匀速运动,点Q以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是;(2)求数轴上点P,Q表示的数(用含t的式子表示);(3)若点P,Q同时出发,t为何值时,这两点相遇?(4)若点P,Q同时出发,t为何值时,点P和点Q刚好相距5个单位长度?参考答案一、选择题(共12小题,满分36分,每小题3分)1.D ; 2.C ; 3.C ; 4.C ; 5.A ; 6.D ; 7.D ; 8.C ; 9.C ; 10.B ; 11.D ;12.C ;二、填空题(共6小题,满分18分,每小题3分)13.2024或202814.8715.①②⑥16.115°17.(4a+4b ﹣32)cm 218.大;三、解答题(共7小题,满分66分)19.解:(1)5x ﹣3=2(x ﹣12),去括号,得5x ﹣3=2x ﹣24,移项,得5x ﹣2x =3﹣24,合并同类项,得3x =﹣21,系数化为1,得x =﹣7;(2)1−2x−16=2x+13,去分母,得6﹣(2x ﹣1)=2(2x +1),去括号,得6﹣2x +1=4x +2,移项,得﹣2x ﹣4x =2﹣6﹣1,合并同类项,得﹣6x =﹣5,系数化为1,得x =56. 20.解:(1)原式=2a 2﹣b ﹣a 2+4b ﹣b ﹣c=a 2+2b ﹣c ,当a =13,b =12,c =1时,原式=19+1﹣1=19;(2)原式=3(2x 2﹣3xy ﹣5x ﹣1)+6(﹣x 2+xy ﹣1)=6x 2﹣9xy ﹣15x ﹣3﹣6x 2+6xy ﹣6=﹣3xy ﹣15x ﹣9,∵x 是2的相反数,y 是−23的绝对值,∴x =﹣2,y =23,∴原式=﹣3×(﹣2)×23−15×(﹣2)﹣9=25.21.解:(1)﹣21+(﹣14)﹣(﹣18)﹣15=﹣21﹣14+18﹣15=﹣35+18﹣15=﹣17﹣15=﹣32;(2)−3.5÷78×|−34|−(−2)÷(−13)×(−3) =−72×87×34−(﹣2)×(﹣3)×(﹣3)=﹣3+18=15;(3)(−2)3+[−42×(−34)2+3]÷(−35)−|−1−2|=﹣8+(﹣16×916+3)×(−53)﹣3=﹣8+(﹣9+3)×(−53)﹣3=﹣8+(﹣6)×(−53)﹣3=﹣8+10﹣3=2﹣3=﹣1.22.解:(1)作图如下:(2)∵∠AOB=20°,OB平分∠AOC.∴∠AOC=2∠AOB=40°,∵∠AOE=105°10′,∴∠COE=∠AOE﹣∠AOC=65°10′,∵∠DOE=∠COD,∠COE=32°35′,∴∠COD=12∴∠AOD=∠AOC+∠COD=72°35′.23.解:(1)∵x2+2x﹣1=0,∴x2+2x=1,∴原式=(x2+2x)﹣2022=1﹣2022=﹣2021,故答案为:﹣2021;(2)∵a2+2ab=﹣5,b2+2ab=3,∴a2﹣b2=﹣5﹣3=﹣8,∴原式=2a2﹣2b2﹣b2﹣2ab=2(a2﹣b2)﹣(b2+2ab)=2×(﹣8)﹣3=﹣16﹣3=﹣19.24.解:(1)图1,面数f=7,顶点数v=9,棱数e=14,图2,面数f=6,顶点数v=8,棱数e=12,图3,面数f=7,顶点数v=10,棱数e=15,故答案为:9,6,15.(2)f+v﹣e=2.25.解:(1)∵A,B两点之间的距离为20,点A表示的数为﹣16,且点B在点A的右侧,∴数轴上点B表示的数是﹣16+20=4.故答案为:4.(2)当运动时间为t(t>0)时,数轴上点P表示的数为(2t﹣16),点Q表示的数为(4﹣t).(3)根据题意得:2t﹣16=4﹣t,解得:t=20.3时,这两点相遇.答:若点P,Q同时出发,t为203(4)根据题意得:|2t﹣16﹣(4﹣t)|=5,即20﹣3t=5或3t﹣20=5,.解得:t=5或t=253时,点P和点Q刚好相距5个单位长度.答:若点P,Q同时出发,t为5或253。
2022-2023学年七年级数学上册期末测试卷(附答案)一、选择题(共48分)1.某商场要检测4颗大白菜的质量,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从质量角度看,最接近标准的是()A.B.C.D.2.2021年2月10日19时52分,中国首次火星探测任务“天问一号”探测器成功“刹车”被火星“捕获”.在制动捕获过程中,探测器距离地球的距离为192000000公里.数字192000000用科学记数法表示为()A.19.2×107B.19.2×108C.1.92×108D.1.92×1093.已知一个单项式的系数为﹣3,次数为4,这个单项式可以是()A.3xy B.3x2y2C.﹣3x2y2D.4x34.下列方程中,解为x=2的是()A.2x=6B.(x﹣3)(x+2)=0C.x2=3D.3x﹣6=05.下列各式错误的是()A.﹣4>﹣5B.﹣(﹣3)=3C.﹣|﹣4|=4D.16÷(﹣4)2=1 6.如图所示,几何体由6个大小相同的立方体组成,其俯视图是()A.B.C.D.7.下列计算正确的是()A.3a+2b=5ab B.5ab2﹣5a2b=0C.7a+a=7a2D.﹣ab+3ba=2ab8.如图,在不完整的数轴上有A,B两点,它们所表示的两个有理数互为相反数,则关于原点位置的描述正确的是()A.在点A的左侧B.与线段AB的中点重合C.在点B的右侧D.与点A或点B重合9.下列方程变形中,正确的是()A.方程=1,去分母得5(x﹣1)﹣2x=10B.方程3﹣x=2﹣5(x﹣1),去括号得3﹣x=2﹣5x﹣1C.方程t=,系数化为1得t=1D.方程3x﹣2=2x+1,移项得3x﹣2x=﹣1+210.下面是两位同学的对话,根据对话内容,可求出这位同学的年龄是()A.11岁B.12岁C.13岁D.14岁11.如图,AB=12cm,C为AB的中点,点D在线段AC上,且CD:CB=2:3,则DB的长度为()A.4cm B.6cm C.8cm D.10cm12.将边长为1的正方形纸片如图1所示的方法进行对折,记第一次对折后得到的图形面积为S1,第2次对折后得到的图形面积为S2…,第n次对折后得到的图形面积为S n,请根据图2化简S1+S2+S3…S2024=()A .1﹣202521 B .20252024C .1﹣202421 D .20242023二、填空题(共16分)13.在1,0,﹣2,﹣1这四个数中,最小的数是 . 14.如图,射线OA 的方向是北偏东26°38',那么∠α= .15.用代数式表示“a 的两倍与b 的平方的和”: .16.定义:对于任意两个有理数a ,b ,可以组成一个有理数对(a ,b ),我们规定(a ,b )=a +b ﹣1.例如(﹣2,5)=﹣2+5﹣1=2. 根据上述规定解决下列问题: (1)有理数对(2,﹣1)= ;(2)当满足等式(﹣5,3x +2m )=5的x 是正整数时,则m 的正整数值为 . 三、解答题(共86分) 17.计算:(1)﹣×(12﹣);(2)﹣24+|﹣5|﹣[﹣(﹣3)÷+2]. 18.解方程:(1)2x ﹣3=4(x ﹣1); (2)﹣=1.19.小明化简(4a 2﹣2a ﹣6)﹣2(2a 2﹣2a ﹣5)的过程如下,请指出他化简过程中的错误,写出对应的序号,并写出正确的化简过程: 解:(4a 2﹣2a ﹣6)﹣2(2a 2﹣2a ﹣5) =4a 2﹣2a ﹣6﹣4a 2+4a +5 ①=(4﹣4)a 2+(﹣2+4)a +(﹣6+5)②=2a﹣1 ③他化简过程中出错的是第步(填序号);正确的解答是:20.请用下列工具按要求画图,并标出相应的字母.已知:点P在直线a上,点Q在直线a外.(1)画线段PQ;(2)画线段PQ的中点M;(3)画直线b,使b⊥PQ于点M;(4)直线b与直线a交于点N;(5)利用半圆仪测量出∠PNM≈°(精确到1°).21.2月,市城区公交车施行全程免费乘坐政策,标志着我市公共交通建设迈进了一个新的时代.如图为某一条东西方向直线上的公交线路,东起职教园区站,西至富士康站,途中共设12个上下车站点,如图所示:某天,小王从电业局站出发,始终在该线路的公交站点做志愿者服务,到A站下车时,本次志愿者服务活动结束,如果规定向东为正,向西为负,当天的乘车站数按先后顺序依次记录如下(单位:站):+5,﹣2,+6,﹣11,+8,+1,﹣3,﹣2,﹣4,+7;(1)请通过计算说明A站是哪一站?(2)若相邻两站之间的平均距离为12千米,求这次小王志愿服务期间乘坐公交车行进的总路程是多少千米?22.如图是一个长方形游乐场,其宽是4a米,长是6a米.其中半圆形休息区和长方形游泳区以外的地方都是绿地.已知半圆形休息区的直径和长方形游泳区的宽是2a米,游泳区的长是3a米.(1)该游乐场休息区的面积为m2,游泳区的面积为m2.(用含有a的式子表示)(2)若长方形游乐场的宽为40米,绿化草地每平方米需要费用30元,求这个游乐场中绿化草地的费用.23.阅读材料并回答问题:数学课上,老师提出了如下问题:已知点O在直线AB上,∠COE=90°,在同一平面内,过点O作射线OD,满足∠AOC =2∠AOD.当∠BOC=40°时,如图1所示,求∠DOE的度数.甲同学:以下是我的解答过程(部分空缺)解:如图2,∵点O在直线AB上,∴∠AOB=180°.∵∠BOC=40°,∴∠AOC=°.∵∠AOC=2∠AOD,∴OD平分∠AOC.∴∠COD=∠AOC=°.∵∠DOE=∠COD+∠COE,∠COE=90°,∴∠DOE=°.乙同学:“我认为还有一种情况.”请完成以下问题:(1)请将甲同学解答过程中空缺的部分补充完整.(2)判断乙同学的说法是否正确,若正确,请在图1中画出另一种情况对应的图形,并求∠DOE的度数,写出解答过程;若不正确,请说明理由.(3)将题目中“∠BOC=40°”的条件改成“∠BOC=α”,其余条件不变,当α在90°到180°之间变化时,如图3所示,α为何值时,∠COD=∠BOE成立?请直接写出此时α的值.24.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民“一户一表”生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下a0.90超过17吨但不超过30吨的部分b0.90超过30吨的部分 6.000.90(说明:①每户生产的污水量等于该户自来水用量;②水费=自来水费用+污水处理费)已知小王家2018年7月用水16吨,交水费43.2元.8月份用水25吨,交水费75.5元.(1)求a、b的值;(2)如果小王家9月份上交水费156.1元,则小王家这个月用水多少吨?(3)小王家10月份忘记了去交水费,当他11月去交水费时发现两个月一共用水50吨,其中10月份用水超过30吨,一共交水费215.8元,其中包含30元滞纳金,求小王家11月份用水多少吨?(滞纳金:因未能按期缴纳水费,逾期要缴纳的“罚款金额”)参考答案一、选择题(共48分)1.解:∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴从轻重的角度看,最接近标准的是:选项C.故选:C.2.解:192000000=1.92×108,故选:C.3.解:A、3xy,单项式的系数是3,次数是2,不符合题意;B、3x2y2,单项式的系数是3,次数是4,不符合题意;C、﹣3x2y2,单项式的系数是﹣3,次数是4,符合题意;D、4x3的系数是4,次数是3,不符合题意.故选:C.4.解:A、把x=2代入,左边=4≠右边,则不是方程的解,选项错误;B、把x=2代入方程,左边=﹣4≠右边,则不是方程的解,选项错误;C、把x=2代入方程,左边=4≠右边,则不是方程的解,选项错误;D、把x=2代入方程,左边=0=右边,则是方程的解,选项正确.故选:D.5.解:A、﹣4>﹣5,本选项不符合题意;B、﹣(﹣3)=3,本选项不符合题意;C、﹣|﹣4|=﹣4≠4,本选项符合题意;D、16÷(﹣4)2=1,本选项不符合题意.故选:C.6.解:从上边看,底层是一个小正方形,上层是四个小正方形.故选:C.7.解:A、3a与2b不是同类项,所以不能合并,故本选项不合题意;B、5ab2与﹣5a2b不是同类项,所以不能合并,故本选项不合题意;C、7a+a=8a,故本选项不合题意;D、﹣ab+3ba=2ab,故本选项符合题意.故选:D.8.解:∵A,B两点所表示的两个有理数互为相反数,∴点A 表示的数为负数,点B 表示的数为正数,且它们到原点的距离相等, ∴原点为线段AB 的中点. 故选:B . 9.解:∵方程=1,去分母得5(x ﹣1)﹣2x =10,∴选项A 符合题意;∵方程3﹣x =2﹣5(x ﹣1),去括号得3﹣x =2﹣5x +5, ∴选项B 不符合题意;∵方程t =,系数化为1得t =, ∴选项C 不符合题意;∵方程3x ﹣2=2x +1,移项得3x ﹣2x =1+2, ∴选项D 不符合题意. 故选:A .10.解:设这位同学的年龄是x 岁, 依题意,得:2(x ﹣4)+8=26, 解得:x =13. 故选:C .11.解:∵AB =12cm ,C 为AB 的中点, ∴AC =BC =AB =6cm , ∵CD :CB =2:3, ∴AD :CB =1:3, ∴AD =2cm ,∴DC =AC ﹣AD =4(cm ), ∴DB =DC +BC =10(cm ), 故选:D .12.解:观察发现S 1+S 2+S 3+…+S 2024=+++…+202421=1﹣202421,故选:C .二、填空题(共16分) 13.解:∵﹣2<﹣1<0<1,∴在1,0,﹣2,﹣1这四个数中,最小的数是﹣2.故答案为:﹣2.14.解:由题意得:∠α=90°﹣26°38′=89°60′﹣26°38′=63°22′,故答案为:63°22′.15.解:a的两倍与b的平方的和用代数式可以表示为:2a+b2,故答案为:2a+b2.16.解:(1)根据题中的新定义得:原式=2+(﹣1)﹣1=1﹣1=0.故答案为:0;(2)已知等式化简得:﹣5+3x+2m﹣1=5,解得:x=,由x、m都是正整数,得到11﹣2m=9或11﹣2m=3,解得:m=1或4.故答案为:1或4.三、解答题(共86分)17.解:(1)原式=﹣×12+×=﹣9+=﹣8;(2)原式=﹣16+5﹣(18+2)=﹣16+5﹣18﹣2=﹣31.18.解:(1)2x﹣3=4(x﹣1),2x﹣3=4x﹣4,2x﹣4x=﹣4+3,﹣2x=﹣1,x=;(2)﹣=1,3x﹣5﹣2(x﹣2)=6,3x﹣5﹣2x+4=6,3x﹣2x=6+5﹣4,x=7.19.解:他化简过程中出错的是第①步.正确解答是:(4a2﹣2a﹣6)﹣2(2a2﹣2a﹣5)=4a2﹣2a﹣6﹣4a2+4a+10=(4﹣4)a2+(﹣2+4)a+(﹣6+10)=2a+4.故答案为:①.20.解:(1)如图,线段PQ即为所求;(2)如图,点M即为所求;(3)如图,直线b,点M即为所求;(4)如图,点N即为所求;(5)∠PNM≈50°.故答案为:50.21.解:(1)由题意得:+5﹣2+6﹣11+8+1﹣3﹣2﹣4+7=+5+6+8+1+7﹣2﹣11﹣3﹣2﹣4=27﹣22=5,在电业局东第5站是市政府,答:A站是市政府站;(2)由题意得:(|+5|+|﹣2|+|+6|+|﹣11|+|+8|+|+1|+|﹣3|+|﹣2|+|﹣4|+|+7|)×1.2=(5+2+6+11+8+1+3+2+4+7)×1.2=49×1.2=58.8(千米).答:小王志愿服务期间乘坐公交车行进的路程是58.8千米.22.解:(1)休息区的面积为:×π×a2=a2(m2);游泳区的面积为:3a×2a=6a2(m2).故答案为:a2,6a2;(2)∵长方形游乐场的宽为40米,∴a=10米.所以(6a×4a﹣6a2﹣a2)×30≈(24a2﹣6a2﹣1.57a2)×30=16.43a2×30=492.9a2.当a=10时,原式=49290(元).答:游乐场中绿化草地的费用为49290元.23.解:(1)如图2,∵点O在直线AB上,∴∠AOB=180°.∵∠BOC=40°,∴∠AOC=140°.∵∠AOC=2∠AOD,∴OD平分∠AOC.∴∠COD=∠AOC=70°.∵∠DOE=∠COD+∠COE,∠COE=90°,∴∠DOE=160°.故答案为:140,70,160;(2)当OD在CAOC外部时,如图2﹣1所示,∵点O在直线AB上∴∠AOB=180°,∵∠BOC=40°,∴∠AOC=140°,∵∠AOC=2∠AOD,∴∠AOD=70°,∵∠COE=90°,∴∠BOE=50°,∴∠DOE=∠AOB﹣∠AOD﹣∠BOE=60°,综上所述,∠DOE=160°或60°.(3)如图3中,当OD在AB的上方时,由题意,(180°﹣α)=α﹣90°,解得α=120°,当OD在AB的下方时,则有180°﹣α+(180°﹣α)=α﹣90°,解得α=144°.综上所述,α的值为120°或144°.24.解:(1)由题意得:解①,得a=1.8,将a=1.8代入②,解得b=2.8∴a=1.8,b=2.8.(2)1.8+0.9=2.7,2.8+0.9=3.7,6.00+0.9=6.9设小王家这个月用水x吨,由题意得:2.7×17+3.7×13+(x﹣30)×6.9=156.1解得:x=39∴小王家这个月用水39吨.(3)设小王家11月份用水y吨,当y≤17时,2.7y+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30解得y=11当17<y<30时,17×2.7+(y﹣17)×3.7+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30解得y=9.125(舍去)∴小王家11月份用水11吨.。
新人教版七年级数学上册期末试题及答案上学期期末调研考试七年级数学试卷姓名:______________ 分数:______________一、选择题(每小题3分,共30分)1.一个数的相反数是2,这个数是()。
A。
1.B。
-2.C。
2.D。
-11/22.如果四个有理数的积是负数,那么其中负因数有()个。
A。
3.B。
1.C。
2.D。
1或33.火星和地球的距离约为34,000,000千米,用科学记数法表示34,000,000的结果是()。
A。
0.34 × 10^8.B。
3.4 × 10^6.C。
34 × 10^6.D。
3.4 × 10^74.关于x的方程3x + 2m + 1 = x - 3m - 2的解为x = 0,则m的值为()。
A。
-31/12.B。
-5/12.C。
5/12.D。
31/125.某种商品每件的进价为190元,按标价的九折销售时,利润率为15.2%。
设这种商品的标价为每件x元,依题意列方程正确的是()。
A。
190 - 0.9x = 190 × 0.152.B。
0.9x = 190 × 0.152C。
0.9x - 190 = 190 × 0.152.D。
0.152x = 190 × 0.96.足球比赛计分规则是:胜一场得3分,平一场得1分,负一场得0分。
今年XXX经过26轮激战,以42分获“中超”联赛第五名,其中负6场,那么胜场数为()。
A。
9.B。
10.C。
11.D。
127.下图是一个由6个相同的小立方体组成的几何体,从上面看得到的平面图形是()。
A。
B。
C。
D。
8.下面等式成立的是()。
A。
83.5° = 83°50′。
B。
37°12′36″ = 37.48°C。
24°24′24″ = 24.44°。
D。
41.25° = 41°15′9.某校为了解360名七年级学生体重情况,从中抽取了60名学生进行检测。
七年级(上)期末目标检测数学试卷(三)一、选择题(每小题3分,共30分)1.a 、b ,在数轴上表示如图1,下列判断正确的是( )A .0>+b aB .01>+bC .01<--bD .01>+a 2.如图2,在下列说法中错误的是( )A .射线OA 的方向是正西方向B .射线OB 的方向是东北方向C .射线OC 的方向是南偏东60°D .射线OD 的方向是南偏西55°3.下列运算正确的是( )A.235=-x xB.ab b a 532=+C.ab ba ab =-2D.a b b a +=--)(4.如果有理数b a ,满足0>ab ,0<+b a ,则下列说法正确的是( )A.0,0>>b aB.0,0><b aC.0,0<<b aD.0,0<>b a 5.若0|2|)1(2=++-n m ,如n m +的值为( )A.1-B.3-C.3D.不确定 6.若0||>a ,那么( )A.0>aB.0<aC.0≠aD.a 为任意有理数 7.平面内有三个点,过任意两点画一条直线,则可以画直线的条数是( ) A.2条 B.3条 C.4条 D.1条或3条 8.将长方形的纸ABCD 沿AE 折叠,得到如图3 所示的图形,已知∠CED′=60º.则∠AED 的是( ) A.60º B.50º C.75º D.55º9.在正方体的表面上画有如图4 a 所示的粗线,图4 b 是其展开图的示意图,但只在A 面上有粗线,那么将图4 a 中剩余两个面中的粗线画入图4 b 中,画法正确的是( )10.一家三口人(父亲、母亲、女儿)准备参加旅游团外出旅游,甲旅行社告知“父母全票,女儿半价优惠”,乙旅行社告知家庭可按团体票计价,即每人均按全价54收费。
人教版七年级数学上册期末试卷及答案篇一:人教版七年级数学上册期末试卷及答案人教版七年级上册数学期末试卷【说明】本卷共23小题,总分值120分;时间90分钟.一、选择题(本大题共8小题,每题3分,共24分. 在每题给出的四个选项中,只有一个是正确的,请将所选选项的字母写在标题后面的括号内) 1.化简?(?2)的结果是() A.-2 B.?11C. D.222C.a?bD.a?b 2.实数a,b在数轴上的位置如以下图,以下各式正确的选项()A.a?0B.b?03.以下各题中合并同类项,结果正确的选项( ) A、2a?3a?5a222222B、2a?3a?6aC、4xy?3xy?1D、2m2n?2mn2?04.一元一次方程3x?1?5的解为()A.1 B.2C.3D.4 5.以下说法中正确的选项()A.两点之间的所有连线中,线段最短 B.射线确实是直线C.两条射线组成的图形叫做角 D.小于平角的角可分为锐角和钝角两类6.如图,钟表8时30分时,时针与分针所成的锐角的度数为()A.30°B.60°C.75° D.90°7.已经明白整式x?2x?6的值为9,那么2x?4x?6的值为() A.18 B.12 C.9 D.7第6题图228.元旦节期间,百货商场为了促销,每件夹克按本钱价提高50%后标价,后因季节关系按标价的8折出售,每件以60元卖出,这批夹克每件的本钱价是( ) A、150元 B、50元 C、120元D、100元更多免费资源下载绿色圃中小学上)9.假设+3吨表示运入仓库的大米吨数, 那么运出5吨大米表示为. 10.2.40准确到个. 11.计算m?n?(m?n)的结果为.12.如图,AB⊥CD于点B,BE是?ABD的平分线,那么?CBE13.方程2x?1?3和方程2x?a?0的解一样,那么a?.三、解答题 (本大题共5小题,每题7分,共35分) 14.?10?8?(?2)2?(?4)?(?3).15.画出数轴,在数轴上标出以下各数,并用“lt;”把这些数连接起来. 2, -3.5, -4, 2.5, |-5|, (?2)2.16.解方程:2x?34x0.更多免费资源下载绿色圃中小学B第13题图17.假设一个多项式与x?2x?1的和是3x?2,求这个多项式.18. 如图,已经明白∠AOB=50°,∠BOC=90°,OM、ON分别是∠AOB、∠BOC的角平分线,求∠MON的度数.四、解答题(本大题共3小题,每题8分,共24分)219.已经明白|a?3|?(b?4)?0,求多项式a?2ab?b的值.22OCNB2MA第18题图更多免费资源下载绿色圃中小学20.某班举办了一次集邮展览,展出的邮票假设平均每人3张那么多24张,假设平均每人4张那么少26张,这个班级有多少名学生?一共展出了多少张邮票?21.已经明白,如图,点C在线段AB上,且AC?6cm,BC?14cm,点M、N 分别是AC、BC的中点.(1)求线段MN的长度;(2)在(1)中,假设AC?acm,BC?bcm,其它条件不变,你能猜想出MN 的长度吗?请说出你觉察的结论,并说明理由.更多免费资源下载绿色圃中小学M第21题图N22.如图,已经明白O为AD上一点,∠AOC与∠AOB互补,OM,ON分别为∠AOC,∠AOB的平分线,假设∠MON?40?.(1)∠COD与∠AOB相等吗?请说明理由;(2)试求∠AOC与∠AOB的度数.23.如以下图是某年11月的日历表.更多免费资源下载绿色圃中小学篇二:2022新人教版七年级数学上册期末测试题及答案2022年七年级上学期期末测试卷(人教版)一、选择题(此题共12个小题,每题3分,共36分.将正确答案的字母填入方框中)1.?2等于() A.-2B.? C.2 D.12122.在墙壁上固定一根横放的木条,那么至少需要钉子的枚数是 ( ) ....A.1枚 B.2枚 C.3枚 D.任意枚 3.以下方程为一元一次方程的是( )1A.y+3= 0 B.x+2y=3 C.x2=2x D.?y?2y4.以下各组数中,互为相反数的是( ) A.?(?1)与1 B.(-1)2与1 C.?1与1D.-12与1 5.以下各组单项式中,为同类项的是( )1A.a3与a2B.a2与2a2 C.2xy与2x D.-3与a26.如图,数轴A、B上两点分别对应实数a、b,那么以下结论正确的选项1111??0??0ababA.a+b0B.ab 0 C. D.7.以下各图中,能够是一个正方体的平面展开图的是( )A B C D 第8题图8.把两块三角板按如以下图那样拼在一起,那么∠ABC等于( )A.70°B.90°C.105° D.120° 9.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为 () A.69°B.111°C.141°D.159°第8题图10.一件夹克衫先按本钱提高50%标价,再以8折(标价的80%利28元,假设设这件夹克衫的本钱是x元,按照题意,可得到的方程是( ) A.(1+50%)x×80%=x-28 B.(1+50%)x×80%=x+28 C.(1+50%x)×80%=x-28 D.(1+50%x)×80%=x+2811.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,假设船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.按照题意,可列出的方程是() A.xxxxx?2x?2x?2x?23B.??3C.??3 D.??3 282428242626262612.填在下面各正方形中的四个数之间都有一样的规律,按照这种规律,m的值应是()0 4 2 6 4 82 8 4 22 6 44A.110 B.158 C.168 D.178二、填空题(本大题共8个小题;每题3分,共24分.把答案写在题中横线上)13.-3的倒数是________.14.单项式?xy2的系数是_________.15.假设x=2是方程8-2x=ax的解,那么a=_________. 16.计算:15°37′+42°51′=_________.17.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米. 18.已经明白,a-b=2,那么2a-2b+5=_________.19.已经明白y1=x+3,y2=2-x,当x=_________时,y1比y2大5. 20.按照图中提供的信息,可知一个杯子的价格是________元.共43元共94元三、解答题(本大题共8个小题;共60分)121.(本小题总分值6分)计算:(-1)3-×[2-(-3)2] .422.(本小题总分值6分)1一个角的余角比这个角的少30°,请你计算出这个角的大小.223.(本小题总分值7分)111先化简,再求值:(-4x2+2x-8)-(x-1),其中x=.4221224.(本小题总分值7分)解方程:25.(本小题总分值7分)5x?12x?1-=1. 36一点A从数轴上表示+2的点开场挪动,第一次先向左挪动1个单位,再向右挪动2个单位;第二次先向左挪动3个单位,再向右挪动4个单位;第三次先向左挪动5个单位,再向右挪动6个单位??(1)写出第一次挪动后这个点在数轴上表示的数为;(2)写出第二次挪动结果这个点在数轴上表示的数为;(3)写出第五次挪动后这个点在数轴上表示的数为;(4)写出第n次挪动结果这个点在数轴上表示的数为;(5)假设第m次挪动后这个点在数轴上表示的数为56,求m的值.26.(本小题总分值8分)如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE求:∠COE的度数.27.(本小题总分值8分)11如图,已经明白线段AB和CD的公共部分BD=AB=CD,线段AB、CD的中点E、F之间34间隔是10cm,求AB、CD的长.AE DBFC28.(本小题总分值11分)某中学为了表彰在书法竞赛中成绩突出的学生,购置了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①仍需要购置上面的两种笔共105支(每种笔的单价不变).陈教师做完预算后,向财务处王教师说:“我这次买这两种笔需支领2447元.”王教师罢了一下,说:“假设你用这些钱只买这两种笔,那么帐确信算错了.”请你用学过的方程知识解释王教师为什么说....他用这些钱只买这两种笔的帐算错了.②陈教师忽然想起,所做的预算中还包括校长让他买的一支签字笔.假设签字笔的单价为小于10元的整数,请通过计算,直截了当写出签字笔的单价可能为元...数学参考及评分说明一、选择题(每题3分,共36分)1.C ;2.B ;3.A;4.D;5.B;6. D;7.C;8.D;9.C;10. B;11.A;12.B. 二、填空题(每题3分,共24分)1113.?;14.?;15.2;16.58°28′;17.2.5×106;18.9;19.2;20.8.32三、解答题(共60分)321.解: =422.解:这个角的度数是80°1123.解:原式 =?x2?x?2?x?1 =?x2?122115把x=代入原式:原式=?x2?1=?()2?1 =?224324.解: x?.825.解:(1)第一次挪动后这个点在数轴上表示的数是3;(2)第二次挪动后这个点在数轴上表示的数是4;(3)第五次挪动后这个点在数轴上表示的数是7;(4)第n次挪动后这个点在数轴上表示的数是n+2;5分(5)54. 7分 26.解:∵∠AOB=90°,OC平分∠AOB 1∴∠BOC=∠AOB=45°,2分2∵∠BOD=∠COD-∠BOC=90°-45°=45°, 4分∠BOD=3∠DOE∴∠DOE=15, 7分∴∠COE=∠COD-∠DOE=90°-15°=75° 8分27.解:设BD=xcm,那么AB=3xcm,CD=4xcm,AC=6xcm. 1分∵点E、点F分别为AB、CD的中点,11∴AE=AB=1.5xcm,CF=CD=2xcm. 3分22∴EF=AC-AE-CF=2.5xcm.4分∵EF=10cm,∴2.5x=10,解得:x=4. 6分∴AB=12cm,CD=16cm. 8分 28.解:(1)设钢笔的单价为x元,那么毛笔的单价为(x+4)元.1分由题意得:30x+45(x+4)=17553分解得:x=21篇三:2022-2022新人教版七年级数学上册期末测试题及答案2022~2022学年度上学期七年级期末数学试卷(总分值120分)一、选择题(此题共12个小题,每题3分,共36分.将正确答案的字母填入方框中)1.?2等于()A.-2 B.?12C.2 D.1 22.已经明白x = 0是关于x的方程5x-4m = 8的解,那么 m 的值是()A.44B.- C.2 D.-2 55B.x+2y=3 C.x2=2x D.3.以下方程为一元一次方程的是( ) A.y+3= 01y2 yD.-12与14.以下各组数中,互为相反数的是( )A.?(?1)与1 B.(-1)2与1 C.?与1 5.以下各组单项式中,为同类项的是( ) A.a与aB.32122a与2a C.2xy与2x D.-3与a 26.如图,数轴A、B上两点分别对应实数a、b,那么以下结论正确的选项1111??0??0ababA.a+b0B.ab 0 C. D.7.以下各图中,能够是一个正方体的平面展开图的是( )A B C D8.如图,钟表8时30分时,时针与分针所成的角的度数为()A.30°B.90°C.60° D.75° 9.在灯塔O处观测到轮船M位于北偏西54°的方向,同时轮船N在南偏东15°的方向,那么∠MON的大小为 ()A.69° B.111°C.141°D.159°10.一件毛衣先按本钱提高30%标价,再以6折(标价的60%)出售,结果获利20元,假设设这件毛衣的本钱是x元,按照题意,可得到的方程是( ) A.(1+30%)x×60%=x-20 B.(1+30%)x×60%=x+20 C.(1+30%x)×60%=x-20D.(1+30%x)×60%=x+20第9题图11.轮船沿江从P港顺流行驶到Q港,比从Q港返回P港少用3小时,假设船速为26千米/时,水速为2千米/时,求P港和Q港相距多少千米.设P港和Q港相距x千米.按照题意,可列出的方程是() A.xxxxx?2x?2x?2x?23B.??3C.??3 D.??3 282428242626262612.填在下面各正方形中的四个数之间都有一样的规律,按照这种规律,A的值应是()0 4 2 6 4 8……2 8 4 22 644A.110 B.158 C.168 D.178二、填空题(本大题共8个小题;每题3分,共24分.把答案写在题中横线上) 13.-3的倒数是________.14.单项式?xy2的系数是_________.15.假设x=2是方程8-2x=ax的解,那么a=_________. 16.计算:15°37′+42°51′=_________.17.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米. 18.已经明白,a-b=2,那么2a-2b+5=_________.19.已经明白y1=x+3,y2=2-x,当x=_________时,y1比y2大5. 20.按照图中提供的信息,可知一个杯子的价格是________元.共43元三、解答题(本大题共8个小题;共60分)21.(本小题总分值6分)计算:(-1)3-22.(本小题总分值6分)一个角的余角比这个角的23.(本小题总分值7分)先化简,再求值:共94元1212×[2-(-3)] . 41少30°,请你计算出这个角的大小. 2111(-4x2+2x-8)-(x-1),其中x=. 4225x?12x?1-=1. 3624.(本小题总分值7分)解方程:25.(本小题总分值8分)一点A从数轴上表示+2的点开场挪动,第一次先向左挪动1个单位,再向右挪动2个单位;第二次先向左挪动3个单位,再向右挪动4个单位;第三次先向左挪动5个单位,再向右挪动6个单位…… (1)写出第一次挪动后这个点在数轴上表示的数为;(2)写出第二次挪动结果这个点在数轴上表示的数为;(3)写出第五次挪动后这个点在数轴上表示的数为;(4)写出第n次挪动结果这个点在数轴上表示的数为;(5)假设第m次挪动后这个点在数轴上表示的数为56,求m的值.26.(本小题总分值8分)如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.求:∠COE 的度数.27.(本小题总分值8分)如图,已经明白线段AB和CD的公共部分BD=求AB、CD的长.AE DB11AB=CD,线段AB、CD10cm,34FC28.(本小题总分值10分)在学校的一次劳动中,在甲处劳动的有27人,在乙处劳动的有19人,后因劳动任务需要,需要另外调20人来支援,使在甲处的人数是在乙处人数的2倍,征询应分别调往甲、乙两处各多少人?2022~2022学年度第一学期七年级期末考试参考答案一、选择题(每题3分,共36分)1.C ;2.D ;3.A;4.D;5.B;6. D;7.C;8.D;9.C;10. B;11.A;12.B. 二、填空题(每题3分,共24分) 13.?11;14.?;15.2;16.58°28′;17.2.5×106;18.9;19.2;20.8. 32三、解答题(共60分)1×(2-9)………………………………………………………3分 47=-1+ …………………………………………………………………………5分43= ……………………………………………………………………………6分421.解:原式= -1-22.解:设这个角的度数为x. ……………………………………………………………1分由题意得:1x?(90??x)?30 ………………………………………………3分 2解得:x=80 …………………………………………………………………5分答:这个角的度数是80°……………………………………………………………6分 23.解:原式=?x?2211x?2?x?1………………………………………………3分 22=?x?1 ………………………………………………………………4分把x=1代入原式: 21222原式=?x?1=?()?1……………………………………………………………5分=?5……………………………………………………………………………7分 4 24.解:2(5x?1)?(2x?1)?6. ……………………………………………2分10x?2?2x?1?6.………………………………………………………4分8x=3. …………………………………………………………6分x?25.解:(1)第一次挪动后这个点在数轴上表示的数是3;……………………………1分(2)第二次挪动后这个点在数轴上表示的数是4; (2)分(3)第五次挪动后这个点在数轴上表示的数是7;……………………………4分(4)第n次挪动后这个点在数轴上表示的数是n+2;…………………………6分(5)54. ………………………………………………………………………8分3.…………………………………………………………7分 826.解:∵∠AOB=90°,OC平分∠AOB ∴∠BOC=1∠AOB=45°,………………………………………………………2分 2∵∠BOD=∠COD-∠BOC=90°-45°=45°,………………………………4分∠BOD=3∠DOE∴∠DOE=15, (7)分∴∠COE=∠COD-∠DOE=90°-15°=75° (8)分 27.解:设BD=xcm,那么AB=3xcm,CD=4xcm,AC=6xcm.…………………………1分∵点E、点F分别为AB、CD的中点,∴AE=11AB=1.5xcm,CF=CD=2xcm.……………………………………………3分 22 ∴EF=AC-AE-CF=2.5xcm.………………………………………………………4分∵EF=10cm,∴2.5x=10,解得:x=4.………………………………………………………………6分∴AB=12cm,CD=16cm.……………………………………………………………8分28.(10分)在学校的一次劳动中,在甲处劳动的有27人,在乙处劳动的有19人,后因劳动任务需要,需要另外调20人来支援,使在甲处的人数是在乙处人数的2倍,征询应分别调往甲、乙两处各多少人?解:设应调往甲处x 人,依题意得:27?x?2(19?20?x)…………………………………………………………………4分27?x=38+40-2x ……………………………………………………………………………5分x+2x=38+40-27 ...........................................................................6分3x=51 (7分) x=17 (8)分∴20-x=3 ……………………………………………………………………………9分答:应调往甲处17人,调往乙处3人.………………………………………………………10分。
人教版七年级数学上册期末测试卷含答案七年级(上)期末数学试卷1(总分:100分时间:90分钟)一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.如果水库水位上升2m记作+2m,那么水库水位下降2m记作( ) A.-2 B.-4 C.-2m D.-4m2.下列式子计算正确的个数有( )①a2+a2=a4;②3xy2-2xy2=1;③3ab-2ab=ab;④(-2)3-(-3)2=-17.A.1个 B.2个 C.3个 D.0个3.一个几何体的表面展开图如图所示,则这个几何体是( )A.四棱锥 B.四棱柱C.三棱锥 D.三棱柱4.已知2016x n+7y与-2017x2m+3y是同类项,则(2m-n)2的值是( ) A.16 B.4048 C.-4048 D.55.某商店换季促销,将一件标价为240元的T恤8折售出,仍获利20%,则这件T恤的成本为( )A.144元 B.160元 C.192元 D.200元6.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式是CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,……,设C(碳原子)的数目为n(n为正整数),则它们的化学式都可以用下列哪个式子来表示( )A.C n H2n+2 B.C n H2nC.C n H2n-2D.C n H n+3二、填空题(本大题共6小题,每小题3分,共18分)7.-12的倒数是________.8.如图,已知∠AOB =90°,若∠1=35°,则∠2的度数是________.9.若多项式2(x 2-xy -3y 2)-(3x 2-axy +y 2)中不含xy 项,则a =2,化简结果为_________.10.若方程6x +3=0与关于y 的方程3y +m =15的解互为相反数,则m =________. 11.机械加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个.已知2个大齿轮与3个小齿轮配成一套,则安排25名工人加工大齿轮,才能使每天加工的大、小齿轮刚好配套.12.在三角形ABC 中,AB =8,AC =9,BC =10.P 0为BC 边上的一点,在边AC 上取点P 1,使得CP 1=CP 0,在边AB 上取点P 2,使得AP 2=AP 1,在边BC 上取点P 3,使得BP 3=BP 2.若P 0P 3=1,则CP 0的长度为________.三、(本大题共5小题,每小题6分,共30分) 13.(1)计算:13.1+1.6-(-1.9)+(-6.6);(2)化简:5xy -x 2-xy +3x 2-2x 2.14.计算:(1)(-1)2×5+(-2)3÷4;(2)⎝ ⎛⎭⎪⎫58-23×24+14÷⎝ ⎛⎭⎪⎫-123+|-22|.15.化简求值:5a+3b-2(3a2-3a2b)+3(a2-2a2b-2),其中a=-1,b=2. 16.解方程:(1)x-12(3x-2)=2(5-x);(2)x+24-1=2x-36.17.如图,BD平分∠ABC,BE把∠ABC分成2∶5的两部分,∠DBE=21°,求∠ABC的度数.四、(本大题共3小题,每小题8分,共24分)18.我区期末考试一次数学阅卷中,阅B卷第22题(简称B22)的教师人数是阅A 卷第18题(简称A18)教师人数的3倍.在阅卷过程中,由于情况变化,需要从阅B22的教师中调12人阅A18,调动后阅B22剩下的人数比原先阅A18人数的一半还多3人,求阅B22和阅A18原有教师人数各是多少.19.化简关于x 的代数式(2x 2+x )-[kx 2-(3x 2-x +1)],当k 为何值时,代数式的值是常数?20.用“⊕”定义一种新运算:对于任意有理数a 和b ,规定a ⊕b =ab 2+2ab +a .如:1⊕3=1×32+2×1×3+1=16. (1)求(-2) ⊕3的值;(2)若312a +⎛⎫⊕ ⎪⎝⎭⊕⎝ ⎛⎭⎪⎫-12=8,求a 的值.五、(本大题共2小题,每小题9分,共18分) 21.如图,点A 、B 都在数轴上,O 为原点.(1)点B 表示的数是________;(2)若点B 以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B 表示的数是________;(3)若点A 、B 都以每秒2个单位长度的速度沿数轴向右运动,而点O 不动,t 秒后有一个点是一条线段的中点,求t 的值.22.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物x元(x>300).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用;(2)李明准备购买500元的商品,你认为他应该去哪家超市?请说明理由;(3)计算一下,李明购买多少元的商品时,到两家超市购物所付的费用一样?六、(本大题共12分)23.已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图①,若∠AOC=30°,求∠DOE的度数;(2)在图①中,若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示);(3)将图①中的∠COD绕顶点O顺时针旋转至图②的位置.①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;②在∠AOC的内部有一条射线OF,且∠AOC-4∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,说明理由.期末数学试卷1 答案一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.C 2.B 3.A4.A 【解答】由题意得2m+3=n+7,移项得2m-n=4,所以(2m-n)2=16.故选A.5.B 6.A二、填空题(本大题共6小题,每小题3分,共18分)7.-2 8.55°9.2 -x2-7y210.27211.2512.5或6 【解答】设CP0的长度为x,则CP1=CP0=x,AP2=AP1=9-x,BP3=BP2=8-(9-x)=x-1,BP0=10-x.∵P0P3=1,∴|10-x-(x-1)|=1,11-2x=±1,解得x=5或6.三、(本大题共5小题,每小题6分,共30分)13.【解答】(1)原式=13.1+1.9+1.6-6.6=10.(3分)(2)原式=5xy-xy=4xy.(6分)14.【解答】(1)原式=3.(3分)(2)原式=19.(6分)15.【解答】原式=5a+3b-6a2+6a2b+3a2-6a2b-6=5a+3b-3a2-6.(3分)当a=-1,b=2 时,原式=5×(-1)+3×2-3×(-1)2-6=-5+6-3-6=-8.(6分)16.【解答】(1)x=6.(3分)(2)x=0.(6分)17.【解答】设∠ABE=2x°,则∠CBE=5x°,∠ABC=7x°.(1分)又因为BD为∠ABC的平分线,所以∠ABD=12∠ABC=72x°,(2分)∠DBE=∠ABD-∠ABE=72x°-2x°=32x°=21°.(3分)所以x=14,所以∠ABC=7x°=98°.(6分)四、(本大题共3小题,每小题8分,共24分)18.【解答】设阅A18原有教师x人,则阅B22原有教师3x人,(2分)依题意得3x-12=12x+3,解得x=6.所以3x=18.(7分)答:阅A18原有教师6人,阅B22原有教师18人.(8分)19.【解答】(2x2+x)-[kx2-(3x2-x+1)]=2x2+x-kx2+(3x2-x+1)=2x2+x-kx 2+3x 2-x +1=(5-k )x 2+1.(5分)若代数式的值是常数,则5-k =0,解得k =5.(7分)则当k =5时,代数式的值是常数.(8分)20.【解答】(1)根据题中定义的新运算得(-2)⊕3=-2×32+2×(-2)×3+(-2)=-18-12-2=-32.(3分)(2)根据题中定义的新运算得a +12⊕3=a +12×32+2×a +12×3+a +12=8(a+1),(5分)8(a +1)⊕⎝ ⎛⎭⎪⎫-12=8(a +1)×⎝ ⎛⎭⎪⎫-122+2×8(a +1)×⎝ ⎛⎭⎪⎫-12+8(a +1)=2(a +1),(7分)所以2(a +1)=8,解得a =3.(8分) 五、(本大题共2小题,每小题9分,共18分) 21.【解答】(1)-4(2分)(2)0(4分)(3)由题意可知有两种情况:①O 为BA 的中点时,(-4+2t )+(2+2t )=0,解得t =12;(6分)②B 为OA 的中点时,2+2t =2(-4+2t ),解得t =5.(8分)综上所述,t =12或5.(9分)22.【解答】(1)顾客在甲超市购物所付的费用为300+0.8(x -300)=(0.8x +60)元;在乙超市购物所付的费用为200+0.85(x -200)=(0.85x +30)元.(3分)(2)他应该去乙超市,(4分)理由如下:当x =500时,0.8x +60=0.8×500+60=460(元),0.85x +30=0.85×500+30=455(元).∵460>455,∴他去乙超市划算.(6分)(3)根据题意得0.8x +60=0.85x +30,解得x =600.(8分)答:李明购买600元的商品时,到两家超市购物所付的费用一样.(9分) 六、(本大题共12分)23.【解答】(1)由题意得∠BOC =180°-∠AOC =150°,又∵∠COD 是直角,OE 平分∠BOC ,∴∠DOE =∠COD -∠COE =∠COD -12 ∠BOC =90°-12×150°=15°.(3分)(2)∠DOE=12α.(6分) 解析:由(1)知∠DOE=∠COD-12∠BOC=∠COD-12(180°-∠AOC)=90°-12(180°-α)=12α.(3)①∠AOC=2∠DOE.(7分)理由如下:∵∠COD是直角,OE平分∠BOC,∴∠COE=∠BOE=90°-∠DOE,∴∠AOC=180°-∠BOC=180°-2∠COE=180°-2(90°-∠DOE)=2∠DOE.(9分)②4∠DOE-5∠AOF=180°.(10分)理由如下:设∠DOE=x,∠AOF=y,由①知∠AOC=2∠DOE,∴∠AOC-4∠AOF=2∠DOE-4∠AOF=2x-4y,2∠BOE+∠AOF =2(∠COD-∠DOE)+∠AOF=2(90°-x)+y=180°-2x+y,∴2x-4y=180°-2x+y,即4x-5y=180°,∴4∠DOE-5∠AOF=180°.(12分)七年级(上)期末数学试卷2(总分:120分时间:90分钟)一、选择题(本题包括12小题,每小题3分,共36分。
姓名: 班级: 得分: 一、选择题(每小题3分,共36分)1、下列说,其中正确的个数为( )①正数和负数统称为有理数;②一个有理数不是整数就是分数;③有最小的负数,没有最大的正数;④符号相反的两个数互为相反数;⑤a -一定在原点的左边。
A .1个B .2个C .3个D .4个 2、下列计算中正确的是( )A .532a a a =+ B .22a a -=- C .33)(a a =- D .22)(a a --3、b a 、两数在数轴上位置如图3所示,将b a b a --、、、用“<”连接,其中正确的是( ) A .a <a -<b <b - B .b -<a <a -<b C .a -<b <b -<a D .b -<a <b <a -4、我市有305600人口,用科学记数法表示(精确到千位) ( )A .430.5610⨯元 B .53.05610⨯元 C .53.0610⨯元 D .53.110⨯元 5、下列结论中,正确的是( )A .单项式732xy 的系数是3,次数是2 B .单项式m 的次数是1,没有系数C .单项式z xy 2-的系数是1-,次数是4 D .多项式322++xy x 是三次三项式6、在解方程133221=+--x x 时,去分母正确的是( ) A .134)1(3=+--x x B .63413=+--x x C .13413=+--x x D .6)32(2)1(3=+--x x7、某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为( )A .1800元B .1700元C .1710元D .1750元8、中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”。
乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”。
若设甲有x 只羊,则下列方程正确的是( )A .)2(21-=+x xB .)1(23-=+x xC .)3(21-=+x xD .1211++=-x x 9、某中学学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米。
一列火车以每小时120千米的速度迎开来,测得火车头与队首学生相遇,到车尾与队末学生相遇,共经过60秒。
如果队伍长500米,那么火车长( )A .1500米B .1575米C .2000米D .2075米10、下列图形中,不是正方体的展开图的是( ) 11、下列4个角中,最有可能与70°角互补的角是( )12、已知点A 、B 、P 在一条直线上,则下列等式中,能判断点P 是线段AB 的中点的个数有( ) ①AP=BP ; ②BP=21AB ; ③AB=2AP ; ④AP+PB=AB 。
A .1个 B .2个 C .3个 D .4个二、填空题(每小题3分,共18分)13、当1=x 时,代数式13++bx ax 的值为2012.则当1-=x 时,代数式13++bx ax 的值为 。
14、='-'64325452° ′;125.13= ° ′ ″。
15、如果关于x 的方程0322=-+m x x ,的解是1-=x ,则=m 。
16、若∠AOB=8175',∠AOC=3527',则∠BOC= 。
17、如果把6.48712保留两位小数可近似为 。
18、某商店将某种超级VCD 按进价提高35%,然后打出“九折酬宾,外送50元出租费的广告”,结果每台VCD 仍获利208元,那么每台VCD 的进价是 元。
三、计算题(每小题6分,共18分)19、)278()3(412232-⨯-+⨯- 20、82279)227()5(227⨯-⨯-+-⨯-1 a 01 b图3ACBDA B C D21、解方程:423163xx --=+四、化简求值(每小题6分,共12分)22、已知3=+y x ,1=xy ,求代数式)53()25(y xy x --+的值。
23、求代数式]6)(23[2122222+----y x y x 的值,其中2,1-=-=y x 。
五、解答题(24题8分,25~26每题9分,27题10分,共36分)24、某商场正在热销2008年北京奥运会吉祥物“福娃”玩具盒徽章两种奥运商品,根据下图提供的信息,求一盒“福娃”玩具和一枚徽章的价格各是多少元?25.如图,已知∠AOB=90°,∠EOF=60°,OE 平分∠AOB ,OF 平分∠BOC ,求∠AOC 和∠COB的度数。
26、盛夏,某校组织珠江夜游,在流速为2.5千米/时的航段,从A 地上船,沿江而下至B 地,然后逆江而上到C 地下船,共乘船4小时。
已知A ,C 两地相距10千米,船在静水中的速度为7.5千米/时,求A ,B 两地间的距离。
27、,某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球乒乓球拍。
乒乓球拍每副定价30元,乒乓球每盒定价5元,经洽谈后,甲店每买一副球拍赠送一盒乒乓球,乙店全部按定价的九折优惠。
该班需球拍5副,乒乓球若干盒(不小于5盒)。
问:⑴当购买乒乓球多少盒时,两种优惠办法付款一样?⑵当购买15盒、30盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?OAEBFC共计145元共计280元(答案部分)1、 A2、 D3、 B4、 D5、 C6、 B7、 C (点拨:设原价为x 元,则有%14120012008.0=-x ,解得1710=x )8、 D (点拨:甲有x 只羊,则乙有)2(-x 只羊,由甲的回答可列出方程为)12(21--=+x x 。
) 9、 B (点拨:设火车长x 米,则有x +=⨯+5006036001200004500,解得:1575=x )10、D 11、D12、A (点拨:只有①正确)13、2010-(点拨:1=x 时,代数式为10121=++b a ,即2011=+b a ,当1-=x 时,代数式为2010120111)(1-=+-=++-=+--b a b a )14、19°59′;13°7′30″15、1-(点拨:将1-=x 代入方程得:032=--m ,解得:1-=m )16、103°11′或47°25′(点拨:当OC 在∠AOB 外时,∠BOC=∠AOB +∠AOC=103°11′;当OC在∠AOB 内时,∠BOC=∠AOB -∠AOC=47°25′) 17、6.5018、1200(点拨:设进价为x 元,则有方程208509.035.1=--⨯x x ,解得1200=x ) 19、解:)278()3(412232-⨯-+⨯- )278()27(494-⨯-+⨯-=89+-= 1-=21、解:去分母得:)23(624)3(4x x --=+, 去括号得:x x 121824124+-=+, 移项得:121824124--=-x x , 合并同类项得:68-=-x ,系数化为1得:43=x23、解:]6)(23[2122222+----y x y x 6)(2322222--+--=y x y x62322222--+--=y x y x32522---=y x当2,1-=-=y x 时 原式143)2(25)1(22-=--⨯---= 25、解:∵OE 平分∠AOB ,∠AOB=90°∴∠BOE=21∠AOB =45°。
又∵∠EOF=60°,∴∠BOF=∠EOF -∠BOE= 15°, 又∵OF 平分∠BOC∴∠BOC=2∠BOF=30°∴∠AOC=∠AOB +∠BOC=120° 26、解:设A 、B 两地间的距离为x 千米,⑴当C 在A 、B 两地之间时,依题意得,45.25.7105.25.7=--++x x解得:20=x (千米)⑵当C 地在A 地上游时,依题意得,45.25.7105.25.7=-+++x x解得:320=x (千米)20、解:82279)227()5(227⨯-⨯-+-⨯ )895(227---⨯= )22(227-⨯= 7-=22、解:)53()25(y xy x --+y xy x 5325+-+= 2355+-+=xy y x 24、解:设一盒“福娃”玩具为x 元,一枚徽章为2145x- 元,根据题意得 280221453=+-⨯x x ,解得102145,125=-=xx , 即一枚徽章10元,一盒“福娃”125元27、解:⑴设购买x 盒乒乓球时,两种优惠办法付款一样。
依题意得,9.0)5530(5)5(530⨯+⨯=⨯-+⨯x x解得:20=x 。
所以,购买20盒乒乓球时,两种优惠办法付款一样。
⑵当购买15盒时:甲店需付款:2005)515(530=⨯-+⨯(元) 乙店需付款:5.2029.0)515530(=⨯⨯+⨯(元) 因为200<202.5,所以购买15盒乒乓球时,去甲店较合算。
20答:A、B两地间的距离20千米或千米。
3。