量子力学1.3
- 格式:ppt
- 大小:2.72 MB
- 文档页数:19
第一章 量子力学的诞生1.1设质量为m 的粒子在一维无限深势阱中运动, îíì<<><¥=ax ax x x V 0,0,0,)(试用de Broglie 的驻波条件,求粒子能量的可能取值。
解:据驻波条件,有 ),3,2,1(2L =×=n n a ln a /2=\l (1)又据de Broglie 关系 l /h p = (2) 而能量()L h h ,3,2,12422/2/2222222222==×===n ma n a m n h m m p E p l (3)1.2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。
解:除了与箱壁碰撞外,粒子在箱内作自由运动。
假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。
动量大小不改变,仅方向反向。
选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。
利用量子化条件,对于x 方向,有()ò==×L ,3,2,1,x x xn h n dx p即 h n a p x x =×2 (a 2:一来一回为一个周期)a h n p x x 2/=\,同理可得, b h n p y y 2/=, c h n p z z 2/=,L ,3,2,1,,=z y x n n n粒子能量 ÷÷øöççèæ++=++=222222222222)(21c n b n a n mp p p m E z y x z y x n n n zy x h pL ,3,2,1,,=z y x n n n1.3设质量为m 的粒子在谐振子势2221)(x m x V w =中运动,用量子化条件求粒子能量E 的可能取值。
量子力学习题答案1.2 在0k 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解:由德布罗意波粒二象性的关系知: E h =ν; p h /=λ由于所考虑的电子是非相对论的电子(26k e E (3eV)c (0.5110)-μ⨯),故: 2eE P /(2)=μ69h /p h E c E 1.241030.7110m 0.71n m--λ====⨯=⨯=1.3氦原子的动能是E=1.5kT ,求T=1K 时,氦原子的德布罗意波长。
解:对于氦原子而言,当K 1=T 时,其能量为 J 102.07K 1K J 10381.1232323123---⨯=⨯⋅⨯⨯==kT E 于是有m一维谐振子处于22/2()xx Ae αψ-=状态中,其中α为实常数,求:1.归一化系数;2.动能平均值。
(22x e dx /∞-α-∞=α⎰)解:1.由归一化条件可知:22*2x(x)(x)d x A e d x1A/1∞∞-α-∞-∞ψψ===α=⎰⎰取相因子为零,则归一化系数1/21/4A/=απ2.2222222222222222222*2x/2x/2222x/2x/222x/22x/22222x2x/222242x2T(x)T(x)dx A e(P/2)e dxdA e()e dx2dxdA e(xe)dx2dxA{xe(xe)dx}2A x e dx A22∞∞-α-α-∞-∞∞-α-α-∞∞-α-α-∞∞∞-α-α-∞-∞∞-α-∞=ψψ=μ=-μ=--αμ=--α--αμ=α=μμ⎰⎰⎰⎰⎰⎰=()==2222224x2224x x2222222421()xd(e)21A(){xe e dx}221AA()242∞-α-∞∞∞-α-α-∞-∞α-α=α---μαππααα--μμα⎰⎰若α,则该态为谐振子的基态,T4ω=解法二:对于求力学量在某一体系能量本征态下的平均值问题,用F-H定理是非常方便的。
量子力学中的弛豫过程与耗散效应引言量子力学是描述微观世界的一套理论体系,其研究对象包括原子、分子、基本粒子等微观粒子。
在量子力学中,弛豫过程和耗散效应是非常重要的现象,它们在物质的能量传递和信息传递中起着关键作用。
本文将从理论角度介绍量子力学中的弛豫过程与耗散效应,探讨其原理和应用。
一、弛豫过程的基本原理1.1 弛豫过程的概念弛豫过程是指系统从一个激发态回到基态的过程,这个过程中系统会释放出能量。
在量子力学中,弛豫过程可以通过跃迁概率来描述,跃迁概率与能级之间的差异以及环境的影响密切相关。
1.2 跃迁概率的计算跃迁概率的计算是描述弛豫过程的关键,它可以通过量子力学中的密度矩阵来求解。
密度矩阵是描述量子态的一个矩阵,通过求解密度矩阵的时间演化方程可以得到跃迁概率的表达式。
此外,密度矩阵还可以用来描述系统的混合态和纠缠态。
1.3 弛豫过程的应用弛豫过程在实际应用中有着广泛的应用,例如激光技术、光谱学等领域。
在激光技术中,弛豫过程可以用来描述激光的自发辐射和受激辐射过程。
在光谱学中,弛豫过程可以用来解释物质的发光和吸收现象。
二、耗散效应的基本原理2.1 耗散效应的概念耗散效应是指系统在与外界环境相互作用的过程中损失能量的现象。
在量子力学中,耗散效应可以通过耗散算符来描述,耗散算符可以用来描述系统与环境之间的相互作用。
2.2 耗散算符的计算耗散算符的计算是描述耗散效应的关键,它可以通过量子力学中的Master方程来求解。
Master方程是描述开放量子系统演化的一个方程,通过求解Master方程可以得到耗散算符的表达式。
此外,Master方程还可以用来描述量子系统的退相干和退相位过程。
2.3 耗散效应的应用耗散效应在实际应用中也有着广泛的应用,例如量子计算、量子通信等领域。
在量子计算中,耗散效应可以用来描述量子比特的退相干和退相位过程,从而影响量子计算的可靠性和精度。
在量子通信中,耗散效应可以用来描述量子信道的损耗和噪声,从而影响量子信息的传输效率和保真度。
量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
找了好久才找到的,希望能给大家带来帮助量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b 〔常量〕;并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, 〔1〕以及 c v =λ, 〔2〕λρρd dv v v -=, 〔3〕有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
此题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kT hc e kT hc e hc λλλλλπρ ⇒ 0115=-⋅+--kT hce kThc λλ ⇒ kThce kT hc λλ=--)1(5 如果令x=kThcλ ,则上述方程为x e x =--)1(5第一章绪论这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体〔如遥远星体〕的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
量子力学讲义引言量子力学是描述微观世界的一种物理理论,它在20世纪初由一系列科学家发展而来,其中最著名的是德国物理学家温伯格(Max Born)。
量子力学革命性地改变了我们对自然界的认识,揭示了微观粒子行为的奇异性质。
本讲义将介绍量子力学的基本原理、数学描述和一些重要的应用。
1. 量子力学的基本原理量子力学的基本原理可以归结为以下几点:1.1 波粒二象性量子力学揭示了微观粒子既具有粒子性又具有波动性的特性。
根据德布罗意(Louis de Broglie)提出的波粒二象性理论,任何物质粒子都具有波动性,其波长与动量相关。
这意味着微观粒子不仅可以被看作是粒子,还可以被看作是波动。
1.2 玻尔原子模型玻尔(Niels Bohr)提出了一种描述原子结构的模型,即玻尔原子模型。
根据这个模型,原子由一个中心的原子核和围绕核旋转的电子组成。
电子只能在特定的能级轨道上运动,而且只能在能级之间跃迁,放出或吸收特定能量的光子。
1.3 不确定性原理海森堡(Werner Heisenberg)提出了著名的不确定性原理,它指出在测量微观粒子的位置和动量时,无法同时精确确定它们的值。
这是由于测量过程中的干扰和微观粒子的波粒二象性导致的。
不确定性原理限制了我们对微观世界的观测和测量。
2. 量子力学的数学描述量子力学使用数学语言来描述微观粒子的行为。
其中最基本的数学工具是波函数(wave function)和算符(operator)。
2.1 波函数波函数是量子力学中描述微观粒子状态的数学函数。
它是时间和空间的函数,可以用来计算粒子的概率分布。
波函数的平方模的积分表示了在特定位置找到粒子的概率。
2.2 算符算符是量子力学中表示物理量的数学对象。
它们作用于波函数上,可以得到物理量的期望值。
例如,位置算符可以得到粒子的位置期望值,动量算符可以得到粒子的动量期望值。
2.3 薛定谔方程薛定谔方程是描述量子系统演化的基本方程。
它是一个偏微分方程,描述了波函数随时间变化的规律。