2020-2021学年江苏省苏州市中考数学二模试卷及答案解析
- 格式:doc
- 大小:632.50 KB
- 文档页数:38
江苏省中考数学二模试卷一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中只有一项是符合题目要求的.)1.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>02.若关于x、y的二元一次方程组的解满足,则满足条件的m 的所有正整数值是()A.1,2,3,4 B.1,2,3 C.1,2 D.13.如图,AB是半圆O的直径,∠DBA=20°,则∠C的大小是()A.70°B.100°C.110°D.140°4.已知a,b是实数,设A=,B=,C=,则下列各式中,错误的是()A.A≤C B.B≥C C.A+B=2C D.A2+B2=C25.国际数学家大会的会标如图1所示,把这个图案沿图中线段剪开后,能拼成如图2所示的四个图形,则其中是轴对称图形的有()A.1个 B.2个 C.3个6.如图,在直角坐标系中放置一个边长为的正方形ABCD,将正方形ABCD沿x 轴的正方向无滑动的在x轴上滚动,当点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为()A.π+πB.2π+2 C.3π+3πD.6π+6二、填空题(本大题共10小题,每小题3分,共30分,请把答案直接写在答题纸相应位置)7.﹣5的绝对值是.8.根据有关方面统计,2015年全国普通高考报考人数大约9420000人,数据9420000用科学记数法表示为.9.如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°.则圆锥的母线是.10.有一组数据:1,3,3,4,4,这组数据的方差为.11.不等式组的解集为.12.“微信发红包”是刚刚兴起的一种娱乐方式,为了解所在单位员工春节期间使用微信发红包的情况,小红随机调查了15名同事,结果如表:平均每个红25102050包的钱数(元)人数74211则此次调查中平均每个红包的钱数的众数为元,中位数为元.13.如图,点A在双曲线上,点B在双曲线上,且AB∥x轴,C、D在x轴上,若四边形ABCD为平行四边形,则它的面积为.14.在同一直角坐标系中,点A、B分别是函数y=x﹣1与y=﹣3x+5的图象上的点,且点A、B关于原点对称,则点A的横坐标为.15.如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为.16.在△ABC中,已知AC=6,BC=8,当∠B最大时,AB= .三、解答题(本大题共有10小题,共102分)17.(1)计算:(﹣)﹣1﹣tan45°+(π﹣2016)0﹣(2)化简:.18.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1.(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,如果∠AO A1=∠BOB1=α;OA=OA1=a;OB=OB1=b.则线段AB扫过的面积是.19.某校为了解“理化生实验操作”考试的备考情况,随机抽取了一部分九年级学生进行测试,测试结果分为“优秀”、“良好”、“合格”、“不合格”四个等级,分别记为A、B、C、D.根据测试结果绘制了如下尚不完整的统计图.(1)本次测试共随机抽取了名学生.请根据数据信息补全条形统计图;(2)若该校九年级的600名学生全部参加本次测试,请估计测试成绩等级在合格以上(包括合格)的学生约有多少人?20.妈妈买回6个粽子,其中1个花生馅,2个肉馅,3个枣馅.从外表看,6个粽子完全一样,女儿有事先吃.(1)若女儿只吃一个粽子,则她吃到肉馅的概率是;(2)若女儿只吃两个粽子,求她吃到一个枣馅、一个肉馅的概率.21.某市在道路改造过程中,需要铺设一条为2000米的管道,决定由甲、乙两个工程队来完成这一工程,已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设600米所用的天数与乙工程队铺设500米所用的天数相同,甲、乙工程队每天各能铺设多少米?22.如图,正方形ABCD中,E为对角线AC上一点,连结EB、ED,延长BE交AD于点F.(1)求证:∠BEC=∠DEC;(2)当CE=CD时,求证:DF2=FE•FB.23.如图,在坡角为30°的山坡上有一铁塔AB,其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD的长为6米,落在广告牌上的影子CD的长为4米,求铁塔AB的高(AB,CD均与水平面垂直,结果保留根号).24.在平面直角坐标系xOy中,抛物线y=ax2+bx+4经过A(﹣3,0)、B(4,0)两点,且与y轴交于点C,点D在x轴的负半轴上,且BD=BC,点Q是CA边上一个动点.(1)求该抛物线的解析式;(2)若点M为抛物线的对称轴上一个动点,求点M的坐标使MQ+MA的值最小.25.【发现】如图1∠ACB=∠ADB=90°,那么点D在经过A,B,C三点的圆上(如图1①)【思考】如图1②,如果∠ACB=∠ADB=a(a≠90°)(点C,D在AB的同侧),那么点D还在经过A,B,C三点的圆上吗?图中卡通人证明了D不在⊙O外,请你画图证明点D也不在⊙O内.【应用】:利用【发现】和【思考】中的结论解决以下问题:如图2,在Rt△ACB中,∠ACB=90°,CA=6,,若将△ACB绕点A顺时针旋转得Rt△AC′B′,旋转角为α(0°≤α≤180°)连结CC′交BB′于点F,交AB边于点O.(1)请证明:∠BFO=∠CAO.(2)若CA=CO=6,求则OF的长.(3)在运动过程中,请证明F永远是BB′的中点,并直接写出点F的运动路线长.26.在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N 上,称线段PQ长度的最小值为图形M,N的密距,记为d(M,N).特别地,若图形M,N有公共点,规定d(M,N)=0.(1)如图1,⊙O的半径为2,①点A(0,1),B(4,3),则d(A,⊙O)= ,d(B,⊙O)= .②已知直线l:y=与⊙O的密距d(l,⊙O)=,求b的值.(2)如图2,C为x轴正半轴上一点,⊙C的半径为1,直线y=﹣与x轴交于点D,与y轴交于点E,线段DE与⊙C的密距d(DE,⊙C)<.请直接写出圆心C的横坐标m的取值范围.参考答案与试题解析一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中只有一项是符合题目要求的.)1.如图,数轴上A,B两点分别对应实数a,b,则下列结论正确的是()A.a+b>0 B.ab>0 C.a﹣b>0 D.|a|﹣|b|>0【考点】实数与数轴.【分析】本题要先观察a,b在数轴上的位置,得b<﹣1<0<a<1,然后对四个选项逐一分析.【解答】解:A、∵b<﹣1<0<a<1,∴|b|>|a|,∴a+b<0,故选项A错误;B、∵b<﹣1<0<a<1,∴ab<0,故选项B错误;C、∵b<﹣1<0<a<1,∴a﹣b>0,故选项C正确;D、∵b<﹣1<0<a<1,∴|a|﹣|b|<0,故选项D错误.故选:C.2.若关于x、y的二元一次方程组的解满足,则满足条件的m 的所有正整数值是()A.1,2,3,4 B.1,2,3 C.1,2 D.1【考点】二元一次方程组的解.【分析】方程组两方程相加表示出x+y,代入所求不等式计算确定出m的范围,即可确定出m的正整数值.【解答】解:,①+②得:3(x+y)=﹣3m+6,解得:x+y=﹣m+2,代入得:﹣m+2>,解得:m<,则满足条件的m的所有正整数值是1,故选D3.如图,AB是半圆O的直径,∠DBA=20°,则∠C的大小是()A.70°B.100°C.110°D.140°【考点】圆周角定理.【分析】先根据圆周角定理求出∠ADB的度数,再由直角三角形的性质求出∠A的度数,根据圆内接四边形的性质即可得出结论.【解答】解:∵AB是半圆O的直径,∴∠ADB=90°.∵∠DBA=20°,∴∠DAB=90°﹣20°=70°.∵四边形ABCD是圆内接四边形,∴∠C=180°﹣∠DAB=180°﹣70°=110°.故选C.4.已知a,b是实数,设A=,B=,C=,则下列各式中,错误的是()A.A≤C B.B≥C C.A+B=2C D.A2+B2=C2【考点】实数大小比较.【分析】分两种情况:a≤b,a>b,进行讨论即可求解.【解答】解:当a≤b时,A=a,B=b,C=,则A≤C,B≥C,A+B=2C,无法确定A2+B2=C2;当a>b时,A=b,B=a,C=,则A<C,B>C,A+B=2C,无法确定A2+B2=C2;故选:D.5.国际数学家大会的会标如图1所示,把这个图案沿图中线段剪开后,能拼成如图2所示的四个图形,则其中是轴对称图形的有()A.1个 B.2个 C.3个【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可【解答】解:图2所示的四个图形中是轴对称图形有①③④,共3个,故选:C.6.如图,在直角坐标系中放置一个边长为的正方形ABCD,将正方形ABCD沿x 轴的正方向无滑动的在x轴上滚动,当点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为()A.π+πB.2π+2 C.3π+3πD.6π+6【考点】旋转的性质;坐标与图形性质;扇形面积的计算.【分析】画出点A第一次回到x轴上时的图形,根据图形得到点A的路径分三部分,以B点为圆心,BA为半径,圆心角为90°的弧;再以C1为圆心,C1C为半径,圆心角为90°的弧;然后以D2点为圆心,D2A2为半径,圆心角为90°的弧,所以点A运动的路线与x轴围成的图形的面积就由三个扇形和两个直角三角形组长,于是可根据扇形面积和三角形面积公式计算,然后把计算结果乘以3即可得到答案.【解答】解:点A第一次回到x轴上时,点A的路径为:开始以B点为圆心,BA为半径,圆心角为90°的弧;再以C1为圆心,C1C为半径,圆心角为90°的弧;然后以D2点为圆心,D2A2为半径,圆心角为90°的弧,所以点A第一次回到x轴上时,点A运动的路线与x轴围成的图形的面积和=×2++2×××=2π+2,所以点A第三次回到x轴上时,点A运动的路线与x轴围成的图形的面积和为3(2π+2)=6π+6.故选D.二、填空题(本大题共10小题,每小题3分,共30分,请把答案直接写在答题纸相应位置)7.﹣5的绝对值是 5 .【考点】绝对值.【分析】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:根据负数的绝对值是它的相反数,得|﹣5|=5.8.根据有关方面统计,2015年全国普通高考报考人数大约9420000人,数据9420000用科学记数法表示为9.42×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:9420000=9.42×106,故答案为:9.42×1069.如果圆锥的底面周长是20π,侧面展开后所得的扇形的圆心角为120°.则圆锥的母线是30 .【考点】圆锥的计算.【分析】圆锥的底面周长即为侧面展开后扇形的弧长,已知扇形的圆心角,所求圆锥的母线即为扇形的半径,利用扇形的弧长公式求解.【解答】解:将l=20π,n=120代入扇形弧长公式l=中,得20π=,解得r=30.故答案为:30.10.有一组数据:1,3,3,4,4,这组数据的方差为 1.2 .【考点】方差.【分析】根据平均数的计算公式先算出这组数据的平均数,再根据方差公式进行计算即可.【解答】解:这组数据的平均数是:(1+3+3+4+4)÷5=3,则这组数据的方差为:[(1﹣3)2+(3﹣3)2+(3﹣3)2+2(4﹣3)2]=1.2.故答案为:1.2.11.不等式组的解集为﹣1<x≤4 .【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:,解不等式4x+6>1﹣x,得x>﹣1,解不等式3(x﹣1)≤x+5,得:x≤4,故不等式组的解集为:﹣1<x≤4,故答案为:﹣1<x≤4.12.“微信发红包”是刚刚兴起的一种娱乐方式,为了解所在单位员工春节期间使用微信发红包的情况,小红随机调查了15名同事,结果如表:平均每个红25102050包的钱数(元)人数74211则此次调查中平均每个红包的钱数的众数为 2 元,中位数为 5 元.【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:观察发现平均每个红包的钱数为2元的人数为7人,最多,故众数为2元;共15人,排序后位于第8位的红包钱数为中位数,即中位数为5元,故答案为:2,5.13.如图,点A在双曲线上,点B在双曲线上,且AB∥x轴,C、D在x轴上,若四边形ABCD为平行四边形,则它的面积为 2 .【考点】反比例函数综合题.【分析】由AB∥x轴可知,A、B两点纵坐标相等,设A(,b),B(,b),则AB=﹣,▱ABCD的CD边上高为b,根据平行四边形的面积公式求解.【解答】解:∵点A在双曲线上,点B在双曲线上,且AB∥x轴,∴设A(,b),B(,b),则AB=﹣,S▱ABCD=(﹣)×b=5﹣3=2.故答案为:2.14.在同一直角坐标系中,点A、B分别是函数y=x﹣1与y=﹣3x+5的图象上的点,且点A、B关于原点对称,则点A的横坐标为﹣1 .【考点】关于原点对称的点的坐标;一次函数图象上点的坐标特征.【分析】设点A的坐标为(a,a﹣1),根据关于原点对称的点的横坐标与纵坐标都互为相反数表示出点B的坐标,然后代入y=﹣3x+5计算即可得解.【解答】解:∵点A在y=x﹣1的图象上,∴设点A的坐标为(a,a﹣1),∵点A、B关于原点对称,∴点B(﹣a,1﹣a),∴﹣3×(﹣a)+5=1﹣a,解得a=﹣1,∴点A的横坐标为﹣1,故答案为:﹣1.15.如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为.【考点】全等三角形的判定与性质;平行线之间的距离;等腰直角三角形;相似三角形的判定与性质.【分析】分别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,先根据全等三角形的判定定理得出△BCE≌△ACF,故可得出CF及CE的长,在Rt△ACF中根据勾股定理求出AC 的长,再由相似三角形的判定得出△CDG∽△CAF,故可得出CD的长,在Rt△BCD 中根据勾股定理即可求出BD的长.【解答】解:别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,∵△ABC是等腰直角三角形,∴AC=BC,∵∠EBC+∠BCE=90°,∠BCE+∠ACF=90°,∠ACF+∠CAF=90°,∴∠EBC=∠ACF,∠BCE=∠CAF,在△BCE与△ACF中,∴△BCE≌△ACF(ASA)∴CF=BE,CE=AF,∵l1与l2的距离为1,l2与l3的距离为3,∴CF=BE=3,CE=AF=3+1=4,在Rt△ACF中,∵AF=4,CF=3,∴AC=5,∵AF⊥l3,DG⊥l3,∴△CDG∽△CAF,∴,∴∴在Rt△BCD中,∵CD=,BC=5,所以BD==.故答案为:.16.在△ABC中,已知AC=6,BC=8,当∠B最大时,AB= 2.【考点】切线的性质.【分析】以AC为直径作⊙O,当AB为⊙O的切线时,即AB⊥AC时,∠B最大,根据勾股定理即可求出答案.【解答】解:以AC为直径作⊙O,当AB为⊙O的切线时,即AB⊥AC时,∠B最大,此时AB===2.故答案为:2.三、解答题(本大题共有10小题,共102分)17.(1)计算:(﹣)﹣1﹣tan45°+(π﹣2016)0﹣(2)化简:.【考点】分式的混合运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】(1)直接根据负整数指数幂、零指数幂以及二次根式和特殊角的三角函数值进行化简求值即可;(2)括号里的式子先通分,然后把除法转化为乘法,再进行约分即可.【解答】解:(1)(﹣)﹣1﹣tan45°+(π﹣2016)0﹣=﹣2﹣1+1﹣4=﹣2﹣4(2)(+)÷+1=(+)÷+1=×+1=+1=18.如图,线段AB绕点O顺时针旋转一定的角度得到线段A1B1.(1)请用直尺和圆规作出旋转中心O(不写作法,保留作图痕迹);(2)连接OA、OA1、OB、OB1,如果∠AO A1=∠BOB1=α;OA=OA1=a;OB=OB1=b.则线段AB扫过的面积是.【考点】作图﹣旋转变换;扇形面积的计算.【分析】(1)先连结AA1和BB1,然后分别作它们的垂直平分线,则两垂直平分线的交点即为点O;(2)根据扇形面积公式,利用线段AB扫过的面积=S扇形BOB1﹣S扇形AOA1进行计算即可.【解答】解:(1)如图,点O为所作;(2)线段AB扫过的面积=S扇形BOB1﹣S扇形AOA1=﹣=.故答案为.19.某校为了解“理化生实验操作”考试的备考情况,随机抽取了一部分九年级学生进行测试,测试结果分为“优秀”、“良好”、“合格”、“不合格”四个等级,分别记为A、B、C、D.根据测试结果绘制了如下尚不完整的统计图.(1)本次测试共随机抽取了60 名学生.请根据数据信息补全条形统计图;(2)若该校九年级的600名学生全部参加本次测试,请估计测试成绩等级在合格以上(包括合格)的学生约有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据各等级频数=总数×各等级所占百分比即可算出总数;再利用总数减去各等级人数可得A等级人数,再补图即可;(2)利用样本估计总体的方法,用总人数600乘以样本中测试成绩等级在合格以上(包括合格)的学生所占百分比即可.【解答】解:(1)本次测试随机抽取的学生总数:24÷40%=60,A等级人数:60﹣24﹣4﹣2=30,如图所示;(2)600××100%=580(人),答:测试成绩等级在合格以上(包括合格)的学生约有580人.20.妈妈买回6个粽子,其中1个花生馅,2个肉馅,3个枣馅.从外表看,6个粽子完全一样,女儿有事先吃.(1)若女儿只吃一个粽子,则她吃到肉馅的概率是;(2)若女儿只吃两个粽子,求她吃到一个枣馅、一个肉馅的概率.【考点】列表法与树状图法.【分析】(1)运用古典概率,有六种相等可能的结果,出现鲜肉馅粽子有两种结果,根据概率公式,即可求解;(2)此题可以认为有两步完成,所以可以采用树状图法或者采用列表法;注意题目属于不放回实验,利用列表法即可求解.【解答】解:(1)她吃到肉馅的概率是=;故答案为:;(2)如图所示:根据树状图可得,一共有15种等可能的情况,吃两个粽子,一个枣馅、一个肉馅只有5种情况,所以她吃到一个枣馅、一个肉馅的概率==.21.某市在道路改造过程中,需要铺设一条为2000米的管道,决定由甲、乙两个工程队来完成这一工程,已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设600米所用的天数与乙工程队铺设500米所用的天数相同,甲、乙工程队每天各能铺设多少米?【考点】分式方程的应用.【分析】设乙工程队每天铺设x米,则甲工程队每天铺设(x+20)米,根据甲工程队铺设600米所用的天数与乙工程队铺设500米所用的天数相同建立方程求出其解即可【解答】解:设乙工程队每天铺设x米,则甲工程队每天铺设(x+20)米,由题意,得,解得:x=100.经检验,x=100是原方程的解.则甲工程队每天铺设100+20=120米.答:乙工程队每天铺设100米,则甲工程队每天铺设120米.22.如图,正方形ABCD中,E为对角线AC上一点,连结EB、ED,延长BE交AD于点F.(1)求证:∠BEC=∠DEC;(2)当CE=CD时,求证:DF2=FE•FB.【考点】相似三角形的判定与性质;正方形的性质.【分析】(1)利用正方形的性质,根据SAS即可证得:△BEC≌△DEC,得出对应角相等即可;(2)首先证明△FDE∽△FBD,根据相似三角形的对应边的比相等,即可得出结论.【解答】(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠BCE=∠DCE,在△BEC和△DEC中,,∴△BEC≌△DEC(SAS),∴∠BEC=∠DEC.(2)证明:连接BD,如图所示.∵CE=CD,∴∠DEC=∠EDC.∵∠BEC=∠DEC,∠BEC=∠AEF,∴∠EDC=∠AEF.∵∠AEF+∠FED=∠EDC+∠ECD,∴∠FED=∠ECD.∵四边形ABCD是正方形,∴∠ECD=∠BCD=45°,∠ADB=∠ADC=45°,∴∠ECD=∠ADB.∴∠FED=∠ADB.又∵∠BFD是公共角,∴△FDE∽△FBD,∴,∴DF2=FE•BF.23.如图,在坡角为30°的山坡上有一铁塔AB,其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD的长为6米,落在广告牌上的影子CD的长为4米,求铁塔AB的高(AB,CD均与水平面垂直,结果保留根号).【考点】解直角三角形的应用﹣坡度坡角问题.【分析】过点C作CE⊥AB于E,过点B作BF⊥CD于F,在Rt△BFD中,分别求出DF、BF的长度,在Rt△ACE中,求出AE、CE的长度,继而可求得AB的长度.【解答】解:过点C作CE⊥AB于E,过点B作BF⊥CD于F,在Rt△BFD中,∵∠DBF=30°,sin∠DBF==,cos∠DBF==,∵BD=6,∴DF=3,BF=3,∵AB∥CD,CE⊥AB,BF⊥CD,∴四边形BFCE为矩形,∴BF=CE=3,CF=BE=CD﹣DF=1,在Rt△ACE中,∠ACE=45°,∴AE=CE=3,∴AB=3+1.答:铁塔AB的高为(3+1)m.24.在平面直角坐标系xOy中,抛物线y=ax2+bx+4经过A(﹣3,0)、B(4,0)两点,且与y轴交于点C,点D在x轴的负半轴上,且BD=BC,点Q是CA边上一个动点.(1)求该抛物线的解析式;(2)若点M为抛物线的对称轴上一个动点,求点M的坐标使MQ+MA的值最小.【考点】轴对称﹣最短路线问题;待定系数法求二次函数解析式.【分析】(1)由点A、B的坐标利用待定系数法即可求出抛物线的解析式;(2)设抛物线对称轴于x轴交点为N,过点B作BQ⊥AC于点Q,交抛物线对称轴于点M,此时MQ+MA的值最小.根据角的计算找出∠MBN=∠ACO,∠COA=∠BNM=90°,从而得出△COA∽△BNM,再根据相似三角形的性质结合点A、B、C的坐标即可得出点M的坐标.【解答】解:(1)将点A(﹣3,0)、B(4,0)代入y=ax2+bx+4中,得,解得:,∴该抛物线的解析式为y=﹣x2+x+4.(2)设抛物线对称轴于x轴交点为N,过点B作BQ⊥AC于点Q,交抛物线对称轴于点M,此时MQ+MA的值最小,如图所示.令y=﹣x2+x+4中x=0,则y=4,∴点C(0,4),∵A(﹣3,0),B(4,0),∴AC=5,AO=3,CO=4,BN=AB=,ON=OB﹣BN=.∵∠CAO=∠BAC,∠ACO+∠CAO=90°,∠MBN+∠BAC=90°,∴∠MBN=∠ACO,∵∠COA=∠BNM=90°,∴△COA∽△BNM,∴,∴MN=,∴点M(,).故当点M的坐标为(,)时,MQ+MA的值最小.25.【发现】如图1∠ACB=∠ADB=90°,那么点D在经过A,B,C三点的圆上(如图1①)【思考】如图1②,如果∠ACB=∠ADB=a(a≠90°)(点C,D在AB的同侧),那么点D还在经过A,B,C三点的圆上吗?图中卡通人证明了D不在⊙O外,请你画图证明点D也不在⊙O内.【应用】:利用【发现】和【思考】中的结论解决以下问题:如图2,在Rt△ACB中,∠ACB=90°,CA=6,,若将△ACB绕点A顺时针旋转得Rt△AC′B′,旋转角为α(0°≤α≤180°)连结CC′交BB′于点F,交AB边于点O.(1)请证明:∠BFO=∠CAO.(2)若CA=CO=6,求则OF的长.(3)在运动过程中,请证明F永远是BB′的中点,并直接写出点F的运动路线长.【考点】圆的综合题.【分析】【思考】假设点D在⊙O内,利用圆周角定理及三角形外角的性质,可证得与条件相矛盾的结论,从而证得点D不在⊙O内;【应用】:(1)过C作CD⊥AB于点D,BH⊥CF于H,由已知条件得到AD=DO,解直角三角形得到AD=AC=2,得到BO=AB﹣AO=18﹣4=14,根据旋转的性质得到AC=AC′,AB=AB′,∠CAC′=∠BAB′,推出A,F,B,C四点共圆,于是得到结论;(2)由等腰三角形的性质得到∠COA=∠CAO,根据三角形的内角和得到∠BOF=∠BFO,根据等腰三角形的性质得到BF=BO=14,于是得到结论;(3)连接AF,根据圆周角定理得到∠ABC=∠AFC根据等腰三角形的性质得到F永远是BB′的中点;根据圆周角定理得到在运动过程中,点F的运动路线是以AB为直径的半圆,即可得到结论.【解答】解:【思考】如图1,假设点D在⊙O内,延长AD交⊙O于点E,连接BE,则∠AEB=∠ACB,∵∠ADB是△BDE的外角,∴∠ADB>∠AEB,∴∠ADB>∠ACB,因此,∠ADB>∠ACB这与条件∠ACB=∠ADB矛盾,∴点D也不在⊙O内,∴点D即不在⊙O内,也不在⊙O外,点D在⊙O上;【应用】:(1)如图2,过C作CD⊥AB于点D,BH⊥CF于H,∵CA=CO,∴AD=DO,在Rt△ACB中,cos∠CAB===,∴AB=3AC=18,在Rt△ADC中:cos∠CAB==,∴AD=AC=2,∴AO=2AD=4,∴BO=AB﹣AO=18﹣4=14,∵△AC′B′是由△ACB旋转得到,∴AC=AC′,AB=AB′,∠CAC′=∠BAB′,∵∠ACC′=,∠ABB′=,∴∠ABB′=∠ACC′,∴A,F,B,C四点共圆,∴∠BFO=∠CAO;(2)∵CA=CO,∴∠COA=∠CAO,又∵∠COA=∠BOF(对顶角相等),∴∠BOF=∠BFO,∴BF=BO=14,∵,∴HF=,∴OF=2HF=;(3)如图2,连接AF,∵A,F,B,C四点共圆,∴∠ABC=∠AFC,∵∠ABC+∠CAB=90°,∴∠BFO+∠AFC=90°,∴AF⊥BB′,∵AB=AB′,∴BF=B′F;∴F永远是BB′的中点;∵∠AFB=90°,∴在运动过程中,点F的运动路线是以AB为直径的半圆,∵CA=6,,∴AB=18,∴点F的运动路线长=×18π=9π.26.在平面直角坐标系xOy中,给出如下定义:若点P在图形M上,点Q在图形N 上,称线段PQ长度的最小值为图形M,N的密距,记为d(M,N).特别地,若图形M,N有公共点,规定d(M,N)=0.(1)如图1,⊙O的半径为2,①点A(0,1),B(4,3),则d(A,⊙O)= 1 ,d(B,⊙O)= 3 .②已知直线l:y=与⊙O的密距d(l,⊙O)=,求b的值.(2)如图2,C为x轴正半轴上一点,⊙C的半径为1,直线y=﹣与x轴交于点D,与y轴交于点E,线段DE与⊙C的密距d(DE,⊙C)<.请直接写出圆心C的横坐标m的取值范围.【考点】圆的综合题.【分析】(1)①连接OB,如图1①,只需求出OA、OB就可解决问题;②设直线l:y=与x轴、y轴分别交于点P、Q,过点O作OH⊥PQ于H,设OH 与⊙O交于点G,如图1②,可用面积法求出OH,然后根据条件建立关于b的方程,然后解这个方程就可解决问题;(2)过点C作CN⊥DE于N,如图2.易求出点D、E的坐标,从而可得到OD、OE,然后运用三角函数可求出∠ODE,然后分三种情况(①点C在点D的左边,②点C 与点D重合,③点C在点D的右边)讨论,就可解决问题.【解答】解:(1)①连接OB,过点B作BT⊥x轴于T,如图1①,∵⊙O的半径为2,点A(0,1),∴d(A,⊙O)=2﹣1=1.∵B(4,3),∴OB==5,∴d(B,⊙O)=5﹣2=3.故答案为1,3;②设直线l:y=与x轴、y轴分别交于点P、Q,过点O作OH⊥PQ于H,设OH 与⊙O交于点G,如图1②,∴P(﹣b,0),Q(0,b),∴OP=|b|,OQ=|b|,∴PQ=|b|.∵S△OPQ=OP•OQ=PQ•OH,∴OH==|b|.∵直线l:y=与⊙O的密距d(l,⊙O)=,∴|b|=2+=,∴b=±4;(2)过点C作CN⊥DE于N,如图2.∵点D、E分别是直线y=﹣与x轴、y轴的交点,∴D(4,0),E(0,),∴OD=4,OE=,∴tan∠ODE==,∴∠ODE=30°.①当点C在点D左边时,m<4.∵xC=m,∴CD=4﹣m,∴CN=CD•sin∠CDN=(4﹣m)=2﹣m.∵线段DE与⊙C的密距d(DE,⊙C)<,∴0<2﹣m<+1,∴1<m<4;②当点C与点D重合时,m=4.此时d(DE,⊙C)=0.③当点C在点D的右边时,m>4.∵线段DE与⊙C的密距d(DE,⊙C)<,∴CD<,∴m﹣4<+1,∴m<∴4<m<.综上所述:1<m<.。
中考数学二模试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.的相反数是( )A. B. -2 C. D. 22.下列运算正确的是( )A. a2+a3=a5B. a2•a3=a6C. (-2a2)3=-8a6D. a8÷a4=a23.随着高铁的发展,预计2020年济南西客站客流量将达到2150万人,数字2150用科学记数法表示为( )A. 0.215×104B. 2.15×103C. 2.15×104D. 21.5×1024.下列说法中正确的是( )A. 掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为B. “对角线相等且相互垂直平分的四边形是正方形”这一事件是必然事件C. “同位角相等”这一事件是不可能事件D. “钝角三角形三条高所在直线的交点在三角形外部”这一事件是随机事件5.设点A(x1,y1)和点B(x2,y2)是反比例函数y=图象上的两点,当x1<x2<0时,y1>y2,则一次函数y=-2x+k的图象不经过的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限6.如图是某几何体的三视图及相关数据,则该几何体的侧面积是( )A. B. C. abπ D. acπ7.如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为( )A. 40°B. 35°C. 30°D. 45°8.如图,轮船从B 处以每小时60海里的速度沿南偏东20°方向匀速航行,在B 处观测灯塔A 位于南偏东50°方向上,轮船航行40分钟到达C 处,在C 处观测灯塔A 位于北偏东10°方向上,则C 处与灯塔A 的距离是( )A. 20海里B. 40海里C.海里 D. 海里9.如图,在矩形ABCD 中,AB =8,BC =12,点E 是BC的中点,连接AE ,将△ABE 沿AE 折叠,点B 落在点F 处,连接FC ,则tan ∠ECF =( )A. B. C. D.10.在数轴上截取从0到3的对应线段AB ,实数m 对应AB 上的点M ,如图1;将AB折成正三角形,使点A 、B 重合于点P ,如图2;建立平面直角坐标系,平移此三角形,使它关于y 轴对称,且点P 的坐标为(0,2),PM 的延长线与x 轴交于点N (n ,0),如图3,当m =时,n 的值为( )A.4-2 B. 2-4 C. - D.二、填空题(本大题共8小题,共24.0分)11.函数中,自变量x 的取值范围是______.12.分解因式:a 3-2a 2+a =______.13.已知x 、y 是二元一次方程组的解,则代数式x 2-4y 2的值为______.14.若函数y =mx 2+2x +1的图象与x 轴只有一个公共点,则常数m 的值是______.15.如图,在△ABC 中,BC =6,以点A 为圆心,2为半径的⊙A 与BC 相切于点D ,交AB 于点E ,交AC 于点F ,点P是优弧EF 上的一点,且∠EPF =50°,则图中阴影部分的面积是______.16.把二次函数y=x2+bx+c的图象向下平移1个单位长度,再向左平移2个单位长度后,得到的抛物线的顶点坐标为(-1,0),则b+c的值为______.17.如图,已知点A、B在双曲线y=(x>0)上,AC⊥x轴于点C,BD⊥y轴于点D,AC与BD交于点P,P是AC的中点,若△ABP的面积为3,则k=______.18.如图,AB是半⊙O的直径,点C在半⊙O上,AB=5cm,AC=4cm.D是上的一个动点,连接AD,过点C作CE⊥AD于E,连接BE.在点D移动的过程中,BE的最小值为______.三、计算题(本大题共2小题,共11.0分)19.计算:(-3)2-+|-2|20.先化简,再求值:,其中,a=+1.四、解答题(本大题共8小题,共65.0分)21.解不等式组子共用了2560元,求两种型号粽子各多少千克.23.已知锐角△ABC,∠ABC=45°,AD⊥BC于D,BE⊥AC于E,交AD于F.(1)求证:△BDF≌△ADC;(2)若BD=4,DC=3,求线段BE的长度.24.某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级2班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:八年级2班参加球类活动人数统计表项目篮球足球乒乓球排球羽毛球人数a6576根据图中提供的信息,解答下列问题:(1)a=______,b=______;(2)该校八年级学生共有600人,则该年级参加足球活动的人数约______人;(3)该班参加乒乓球活动的5位同学中,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.25.如图,点A、B分别在y轴和x轴上,BC⊥AB(点C和点O在直线AB的两侧),点C的坐标为(4,n)过点C的反比例函数y=(x>0)的图象交边AC于点D(n+,3).(1)求反比例函数的表达式;(2)求点B的坐标.26.如图,钝角△ABC中,AB=AC,BC=2,O是边AB上一点,以O为圆心,OB为半径作⊙O,交边AB于点D,交边BC于点E,过E作⊙O的切线交边AC于点F .(1)求证:EF⊥AC.(2)连结DF,若∠ABC=30°,且DF∥BC,求⊙O的半径长.27.如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M.(1)若∠AOB=45,OM=4,OQ=,求证:CN⊥OB;(2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形.理由;②设菱形OMPQ的面积为S1,△NOC的面积为S2,求的取值范围.28.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB 于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.答案和解析1.【答案】C【解析】解:由相反数的定义可知,-的相反数是-(-)=.故选:C.根据相反数的定义进行解答即可.本题考查的是相反数的定义,即只有符号不同的两个数叫互为相反数.2.【答案】C【解析】解:A、a2与a3不是同类项不能合并,故本选项错误;B、应为a2•a3=a5,故本选项错误;C、(-2a2)3=-8a6,正确;D、应为a8÷a4=a4,故本选项错误.故选:C.根据合并同类项法则,同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.主要考查同底数幂的除法,合并同类项,同底数幂的乘法,积的乘方,熟练掌握运算性质是解题的关键.3.【答案】B【解析】解:2150=2.15×103,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】B【解析】解:A、掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为,故A错误;B、“对角线相等且相互垂直平分的四边形是正方形”这一事件是必然事件,故B正确;C、同位角相等是随机事件,故C错误;D、“钝角三角形三条高所在直线的交点在三角形外部”这一事件是必然事件,故D错误;故选:B.根据概率的意义,可判断A;根据必然事件,可判断B、D;根据随机事件,可判断C.本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.【解析】解:∵当x1<x2<0时,y1>y2,∴反比例函数y=图象上,y随x的增大而减小,∴图象在一、三象限,如图1,∴k>0,∴一次函数y=-2x+k的图象经过二、四象限,且与y轴交于正半轴,∴一次函数y=-2x+k的图象经过一、二、四象限,如图2,故选C.如图1,根据当x1<x2<0时,y1>y2可知:反比例函数y=图象上,y随x的增大而减小,得k>0;如图2,再根据一次函数性质:-2<0,所以图象在二、四象限,由k>0得,与y轴交于正半轴,得出结论.本题考查了一次函数与反比例函数的图象和性质,知道:①当k>0,双曲线的两支分别位于第一、三象限,在每一象限内y随x的增大而减小;②当k<0,双曲线的两支分别位于第二、四象限,在每一象限内y随x的增大而增大;反之也成立;③一次函数y=kx+b中,当k>0,图象在一、三象限;k<0,图象在二、四象限;b>0时,与y轴交于正半轴,当b<0时,与y轴交于负半轴.6.【答案】B【解析】解:由题意得底面直径为a,母线长为c,∴几何体的侧面积为acπ,故选:B.易得此几何体为圆锥,侧面积=.本题需先确定几何体的形状,关键是找到等量关系里相应的量.7.【答案】C【解析】解:连接BD,∵∠DAB=180°-∠C=60°,∵AB是直径,∴∠ADB=90°,∴∠ABD=90°-∠DAB=30°,∵PD是切线,∴∠ADP=∠ABD=30°,故选:C.连接DB,即∠ADB=90°,又∠BCD=120°,故∠DAB=60°,所以∠DBA=30°;又因为PD为切线,利用切线与圆的关系即可得出结果.本题考查了圆内接四边形的性质,直径对圆周角等于直角,弦切角定理,弦切角等于它所夹的弧对的圆周角求解.【解析】解:如图,作AM⊥BC于M.由题意得,∠DBC=20°,∠DBA=50°,BC=60×=40海里,∠NCA=10°,则∠ABC=∠ABD-∠CBD=50°-20°=30°.∵BD∥CN,∴∠BCN=∠DBC=20°,∴∠ACB=∠ACN+∠BCN=10°+20°=30°,∴∠ACB=∠ABC=30°,∴AB=AC,∵AM⊥BC于M,∴CM=BC=20海里.在直角△ACM中,∵∠AMC=90°,∠ACM=30°,∴AC===(海里).故选:D.作AM⊥BC于M.由题意得,∠DBC=20°,∠DBA=50°,BC=60×=40海里,∠NCA=10°,则∠ABC=∠ABD-∠CBD=30°.由BD∥CN,得出∠BCN=∠DBC=20°,那么∠ACB=∠ACN+∠BCN=30°=∠ABC,根据等角对等边得出AB=AC,由等腰三角形三线合一的性质得到CM=BC=20海里.然后在直角△ACM中,利用余弦函数的定义得出AC=,代入数据计算即可.本题考查了解直角三角形的应用-方向角问题,平行线的性质,等腰三角形的判定与性质,余弦函数的定义,难度适中.求出CM=BC=20海里是解题的关键.9.【答案】B【解析】解:∵BC=12,点E是BC的中点,∴EC=BE=6,由翻折变换的性质可知,BE=FE,∠BEA=∠FEA,∴EF=EC,∴∠EFC=∠ECF,∵∠BEA+∠FEA=∠EFC+∠ECF,∴∠BEA=∠ECF,∵tan∠BEA==,∴tan∠ECF=,故选:B.根据翻折变换的性质得到BE=FE,∠BEA=∠FEA,根据三角形外角的性质得到∠BEA+∠FEA=∠EFC+∠ECF,得到∠BEA=∠ECF,根据正切的概念解答即可.本题考查的是翻折变换的性质和锐角三角函数的定义,翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.【解析】解:设平移后的等边三角形为△PDE,DE交y轴于F.∵AB=3,△PDE是等边三角形,∴PD=PE=DE=1,∵△PDE关于y轴对称,∴PF⊥DE,DF=EF,DE∥x轴,∴PF=,∴△PFM∽△PON,∵m=,∴FM=-,∴=,即=,解得:ON=4-2.故选:A.设平移后的等边三角形为△PDE,DE交y轴于F.由m=求出MF的长,再根据相似三角形的判定定理判断出△PFM∽△PON,利用相似三角形的性质即可得出结论.本题考查的是相似三角形的判定与性质及等边三角形的性质,能根据题意得出FM的长是解答此题的关键.11.【答案】x≥3【解析】解:根据题意得:x-3≥0;解得x≥3;故答案为x≥3.根据二次根式有意义,分析原函数式可得关系式x-3≥0,解可得答案.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.12.【答案】a(a-1)2【解析】解:a3-2a2+a=a(a2-2a+1)=a(a-1)2.故答案为:a(a-1)2.此多项式有公因式,应先提取公因式a,再对余下的多项式进行观察,有3项,可利用完全平方公式继续分解.本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.13.【答案】【解析】【分析】本题考查了二元一次方程组的解,先求出二元一次方程组的解,再求代数式的值.根据解二元一次方程组的方法,可得二元一次方程组的解,根据代数式求值的方法,可得答案.解:,①×2-②得-8y=1,解得y=-,把y=-代入②得2x-=5,解得x=,x2-4y2=()=,故答案为.14.【答案】0或1【解析】【分析】本题考查了一次函数的性质与抛物线与x轴的交点,抛物线与x轴的交点个数由根的判别式的值来确定.本题中函数可能是二次函数,也可能是一次函数,需要分类讨论,这是本题的容易失分之处.需要分类讨论:①若m=0,则函数为一次函数;②若m≠0,则函数为二次函数.由抛物线与x轴只有一个交点,得到根的判别式的值等于0,且m不为0,即可求出m的值.【解答】解:①若m=0,则函数y=2x+1,是一次函数,与x轴只有一个交点;②若m≠0,则函数y=mx2+2x+1,是二次函数.根据题意得:△=4-4m=0,解得:m=1.故答案为:0或1.15.【答案】6-π【解析】解:连接AD,∵BC是切线,点D是切点,∴AD⊥BC,∴∠EAF=2∠EPF=100°,∴S扇形AEF==π,S△ABC=AD•BC=×2×6=6,∴S阴影部分=S△ABC-S扇形AEF=6-π.故答案为:6-π.由于BC切⊙A于D,连接AD可知AD⊥BC,从而可求出△ABC的面积;根据圆周角定理,易求得∠EAF=2∠EPF=100°,圆的半径为2,可求出扇形AEF的面积;图中阴影部分的面积=△ABC的面积-扇形AEF的面积.本题考查了切线的性质,圆周角和圆心角的关系,扇形的面积等,求得∠EAF=100°是关键.16.【答案】0【解析】解:根据题意y=x2+bx+c=(x+)2+c-下平移1个单位,再向左平移2个单位,得y=(x++2)2+c--1.∵抛物线的顶点坐标为(-1,0),∴--2=-1,c--1=0,解得:b=-2,c=2,∴b+c=0,故答案为:0.抛物线y=x2+bx+c化为顶点坐标式再按照“左加右减,上加下减”的规律平移则可.主要考查了函数图象的平移,熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式是解题的关键.17.【答案】12【解析】解:∵△ABP的面积为•BP•AP=3,∴BP•AP=6,∵P是AC的中点,∴A点的纵坐标是B点纵坐标的2倍,又点A、B都在双曲线y=(x>0)上,∴B点的横坐标是A点横坐标的2倍,∴OC=DP=BP,∴k=OC•AC=BP•2AP=12.故答案为:12.由△ABP的面积为3,知BP•AP=6.根据反比例函数中k的几何意义,知本题k=OC•AC,由反比例函数的性质,结合已知条件P是AC的中点,得出OC=BP,AC=2AP ,进而求出k的值.主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.18.【答案】-2【解析】解:如图,连接BO′、BC.∵CE⊥AD,∴∠AEC=90°,∴在点D移动的过程中,点E在以AC为直径的圆上运动,∵AB是直径,∴∠ACB=90°,在Rt△ABC中,∵AC=4,AB=5,∴BC===3,在Rt△BCO′中,BO′===,∵O′E+BE≥O′B,∴当O′、E、B共线时,BE的值最小,最小值为O′B-O′E=-2,故答案为:.如图,连接BO′、BC.在点D移动的过程中,点E在以AC为直径的圆上运动,当O′、E、B共线时,BE的值最小,最小值为O′B-O′E,利用勾股定理求出BO′即可解决问题.本题考查圆综合题、勾股定理、点与圆的位置关系等知识,解题的关键是确定等E的运动轨迹是以AC为直径的圆上运动,属于中考填空题中压轴题.19.【答案】解:(-3)2-+|-2|=9-4+2=7.【解析】先算平方、绝对值、二次根式化简,再计算加减法即可求解.考查了实数的运算,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握平方、二次根式、绝对值等知识点的运算.20.【答案】解:+•=+•=+=,当a=+1时,原式==.【解析】将原式第二项第一个因式的分子利用完全公式分解因式,分母利用平方差公式分解因式,约分后再利用同分母分式的加法法则计算,得到最简结果,然后将a的值代入化简后的式子中计算,即可得到原式的值.此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式,应先将多项式分解因式后再约分,此外化简求值题要先将原式化为最简时再代值.21.【答案】解:解不等式3x-8<x,得:x<4,解不等式≤,得:x≥1,则不等式组的解集为1≤x<4.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.【答案】解:设订购了A型粽子x千克,B型粽子y千克,根据题意,得,解得.答:订购了A型粽子40千克,B型粽子60千克.【解析】订购了A型粽子x千克,B型粽子y千克.根据B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元列出方程组,求解即可.本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组再求解.23.【答案】证明:(1)∵AD⊥BC,∠ABC=45°∴∠ABC=∠BAD=45°,∴AD=BD,∵DA⊥BC,BE⊥AC∴∠C+∠DAC=90°,∠C+∠CBE=90°∴∠CBE=∠DAC,且AD=BD,∠ADC=∠ADB=90°∴△BDF≌△ADC(ASA)(2)∵△BDF≌△ADC∴AD=BD=4,CD=DF=3,BF=AC∴BF==5∴AC=5,∵S△ABC=×BC×AD=×AC×BE∴7×4=5×BE∴BE=【解析】(1)由题意可得AD=BD,由余角的性质可得∠CBE=∠DAC,由“ASA”可证△BDF≌△ADC;(2)由全等三角形的性质可得AD=BD=4,CD=DF=3,BF=AC,由三角形的面积公式可求BE的长度.本题考查了全等三角形的判定和性质,等腰三角形的性质,利用三角形面积公式可求BE 的长度.24.【答案】16 17.5 90【解析】解:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,∴b=17.5,故答案为:16,17.5;(2)600×[6÷(5÷12.5%)]=90(人),故答案为:90;(3)如图,∵共有20种等可能的结果,两名同学恰为一男一女的有12种情况,∴则P(恰好选到一男一女)==.(1)首先求得总人数,然后根据百分比的定义求解;(2)利用总数乘以对应的百分比即可求解;(3)利用列举法,根据概率公式即可求解.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.【答案】解:(1)∵反比例函数y=(x>0)的图象经过点C(4,n)和点D(n+,3).∴m=4n=3(n+),解得n=1,∴m=4×1=4,∴反比例函数的表达式为y=;(2)如图,过C作CE⊥x轴于E,设直线CD的解析式为y=kx+b,把点C(4,1),点D(,3)代入,可得,解得,∴直线CD的解析式为y=-x+4,令x=0,则y=4,∴A(0,4),即AO=4,设BO=x,则BE=4-x,∵∠ABC=90°=∠AOB=∠BEC,∴∠BAO+∠ABO=90°=∠CBE+∠ABO,∴∠BAO=∠CBE,∴△ABO∽△BCE,∴,即,解得x=2,∴B(2,0).【解析】(1)依据反比例函数图象上点的坐标特征,即可得到n的值,进而得出反比例函数的表达式;(2)利用待定系数法即可得到直线CD的解析式为y=-x+4,进而得到点A的坐标,再根据△ABO∽△BCE,即可得到点B的坐标.本题主要考查了反比例函数图象上点的坐标特征以及相似三角形的判定与性质,作辅助线构造相似三角形是解决问题的关键.26.【答案】(1)证明:连接OE,如图,∵OB=OE,∴∠B=∠OEB,∵AB=AC,∴∠B=∠C,∴∠OEB=∠C,∴OE∥AC,∵EF为切线,∴OE⊥EF,∴EF⊥AC;(2)解:连接DE,如图,设.⊙O的半径长为r,∵BD为直径,∴∠BED=90°,在Rt△BDE中,∵∠B=30°,∴DE=BD=r,BE=r,∵DF∥BC,∴∠EDF=∠BED=90°,∵∠C=∠B=30°,∴∠CEF=60°,∴∠DFE=∠CEF=60°,在Rt△DEF中,DF=r,∴EF=2DF=r,在Rt△CEF中,CE=2EF=r,而BC=2,∴r+r=2,解得r=,即⊙O的半径长为.【解析】(1)连接OE,如图,先证明OE∥AC,再利用切线的性质得OE⊥EF,从而得到EF⊥AC;(2)连接DE,如图,设.⊙O的半径长为r,利用圆周角定理得到∠BED=90°,则DE=BD=r,BE=r,再证明∠EDF=90°,∠DFE=60°,接着用r表示出DF=r,EF=r,CE=r,从而得到r+r=2,然后解方程即可.本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理和垂径定理.27.【答案】解:(1)如图1,过P作PE⊥OA于E,NF⊥OA,∵PQ∥OA,PM∥OB,∴四边形OMPQ为平行四边形,∴PM=OQ=,∠PME=∠AOB=45°,∴PE=PM sin45°=1,ME=1,∴CE=OC-OM-ME=1,∴tan∠PCE==1,∴∠PCE=45°,∴∠CNO=90°,∴CN⊥OB;(2)①-的值不发生变化,理由:设OM=x,ON=y,∵四边形OMPQ为菱形,∴OQ=QP=OM=x,NQ=y-x,∵PQ∥OA,∴∠NQP=∠O,∵∠QNP=∠ONC,∴△NQP∽△NOC,∴,∴,∴6y-6x=xy,∴-=,∴-=;②如图2,过P作PE⊥OA,过N作NF⊥OA,∴S1=OM×PE,S2=OC×NF,∴,∵PM∥OB,∴∠PMC=∠O∠,∵∠PCM=∠NCO,∴△CPM∽△CNO,∴,∴,∵0<x<6,∴0<<.【解析】(1)先判断四边形OMPQ为平行四边形,再用锐角三角函数求出∠PCE=45°,即可;(2)先判断出△NQP∽△NOC,△CPM∽△CNO再得到比例式,求解即可.此题是四边形综合题,主要考查了相似三角形的性质和判定,平行四边形的判定和性质,锐角三角函数的定义,解本题的关键是用锐角三角函数.28.【答案】解:(1)令y=0,则ax2+(a+3)x+3=0,∴(x+1)(ax+3)=0,∴x=-1或-,∵抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),∴-=4,∴a=-.∵A(4,0),B(0,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=-x+3.(2)如图1中,∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PNM=∠ANE,∴△PNM∽△ANE,∴=,∵NE∥OB,∴=,∴AN=(4-m),∵抛物线解析式为y=-x2+x+3,∴PN=-m2+m+3-(-m+3)=-m2+3m,∴=,解得m=2.(3)如图2中,在y轴上取一点M′使得OM′=,连接AM′,在AM′上取一点E′使得OE′=OE.∵OE′=2,OM′•OB=×3=4,∴OE′2=OM′•OB,∴=,∵∠BOE′=∠M′OE′,∴△M′OE′∽△E′OB,∴==,∴M′E′=BE′,∴AE′+BE′=AE′+E′M′=AM′,此时AE′+BE′最小(两点间线段最短,A、M′、E′共线时),最小值=AM′==.【解析】(1)令y=0,求出抛物线与x轴交点,列出方程即可求出a,根据待定系数法可以确定直线AB解析式.(2)由△PNM∽△ANE,推出=,列出方程即可解决问题.(3)在y轴上取一点M使得OM′=,构造相似三角形,可以证明AM′就是E′A+E′B的最小值.本题考查相似三角形的判定和性质、待定系数法、最小值问题等知识,解题的关键是构造相似三角形,找到线段AM′就是E′A+E′B的最小值,属于中考压轴题.。
江苏省中考数学二模试卷一、选择题(共6小题,每小题3分,计18分)1.4的算术平方根是()A.±2 B.C.2 D.﹣22.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.3.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为80分、85分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84.5分C.85.5分D.86.5分4.如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A.△ABE B.△ACF C.△ABD D.△ADE5.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=12,AB=10,则AE的长为()A.8 B.12 C.16 D.206.如图,抛物线y=﹣2x2﹣8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向左平移得C2,C2与x轴交于点B,D.若直线y=﹣x+m与C1,C2共有3个不同的交点,则m的取值范围是()A.﹣3<m<﹣B.C.﹣2<m< D.﹣3<m<﹣2二、填空题(共10小题,每小题3分,计30分)7.函数中,自变量x的取值范围是.8.钓鱼诸岛是中国的固有领土,位于中国东海,面积约6344000平方米,数据6344000用科学记数法表示为.9.若直线y=2x+3b+c与x轴交于点(﹣2,0),则代数式2﹣6b﹣2c的值为.10.已知,则= .11.将一张宽为5cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是.12.已知一个不透明的布袋里装有2个红球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a等于.13.如图,A点为反比例函数图象上一点,过A点作AB⊥y轴,B为垂足,点P 为x轴上任意一点,且△ABP的面积为2,则k= .14.根据图中所标注的数据,计算此圆锥的侧面积cm2(结果保留π).15.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天的销售利润最大.16.在平面直角坐标系中,⊙P的圆心P的坐标为(a,4),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值为.三、解答题(共10小题,计102分)17.(1)计算:(2)解不等式组.18.先化简,再求值:(1+)÷(m﹣),其中实数m使关于x的一元二次方程x2﹣4x﹣m=0有两个相等的实数根.19.国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2016年某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了天的空气质量检测结果进行统计;(2)扇形统计图中3级空气质量所对应的圆心角为°;(3)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2016年该城市有多少天不适宜开展户外活动.20.在▱ABCD中,AB=2BC=4,E、F分别为AB、CD的中点①求证:△ADE≌△CBF;②若四边形DEBF为菱形,求四边形ABCD的面积.21.某校九年级两个班,各选派10名学生参加学校举行的“数学奥林匹克”大赛预赛.各参赛选手的成绩如下:九(1)班:88,91,92,93,93,93,94,98,98,100九(2)班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差九(1)班10094b9312九(2)班99a95.5938.4(1)直接写出表中a、b的值;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由;(3)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98分”的学生中任选二个,求另外两个决赛名额落在不同班级的概率.22.某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?23.如图,AC是某市环城路的一段,AE,BF,CD都是南北方向的街道,其与环城路AC的交叉路口分别是A,B,C.经测量花卉世界D位于点A的北偏东45°方向、点B 的北偏东30°方向上,AB=2km,∠DAC=15°.(1)求∠DBC的度数;(2)求C,D之间的距离.24.如图,△ABC中,以AC为直径的⊙O与边AB交于点D,点E为⊙O上一点,连接CE并延长交AB于点F,连接ED.(1)若∠B+∠FED=90°,求证:BC是⊙O的切线;(2)若FC=6,DE=3,FD=2,求⊙O的直径.25.如图,已知直线y=﹣x+1与x轴交于A点,与y轴交于B点,P(a,b)为双曲线y=(x>0)上一动点,过P点分别作x轴、y轴的垂线,垂足分别为C、D,交直线AB于点E、F(1)用含b的代数式表示E点的坐标用含a的代数式表示F点的坐标(2)求证:△AOE∽△BFO(3)当点P在双曲线y=(x>0)上移动时,∠EOF也随之变化,试问∠EOF的大小是否变化,如果不变,求出其值,如果变化,说明理由.26.如图,二次函数y=a(x2﹣4x+3)(a>0)的图象与x轴交于A、B两点,与y轴交于点C,点D是抛物线的顶点(1)若△ABD为直角三角形,求此二次函数的解析式;(2)P为抛物线对称轴上一点,且P点的纵坐标t是大于3的常数,试问是否存在一个正数a,使得四边形PA、PB、PC、PD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.(3)是否存在实数a,使得△OAC沿AC翻折后,点O的对应点O′落在△ABC的外部?若存在,求出a的范围,若不存在,请说明理由.参考答案与试题解析一、选择题(共6小题,每小题3分,计18分)1.4的算术平方根是()A.±2 B.C.2 D.﹣2【考点】算术平方根.【分析】根据算术平方根的定义即可得出答案.【解答】解:4的算术平方根是2,故选C.2.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.3.小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为80分、85分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是()A.255分B.84.5分C.85.5分D.86.5分【考点】加权平均数.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:2+3+5=10根据题意得:80×+85×+90×=16+25.5+45=86.5(分)答:小王的成绩是86.5分.故选:D.4.如图,AC,BE是⊙O的直径,弦AD与BE交于点F,下列三角形中,外心不是点O的是()A.△ABE B.△ACF C.△ABD D.△ADE【考点】三角形的外接圆与外心.【分析】利用外心的定义,外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,进而判断得出即可.【解答】解:如图所示:只有△ACF的三个顶点不都在圆上,故外心不是点O的是△ACF.故选:B.5.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=12,AB=10,则AE的长为()A.8 B.12 C.16 D.20【考点】平行四边形的性质.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=6,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=6,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO==8,∴AE=2AO=16.故选C.6.如图,抛物线y=﹣2x2﹣8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向左平移得C2,C2与x轴交于点B,D.若直线y=﹣x+m与C1,C2共有3个不同的交点,则m的取值范围是()A.﹣3<m<﹣B.C.﹣2<m< D.﹣3<m<﹣2【考点】二次函数图象与几何变换.【分析】首先求出点A和点B的坐标,然后求出C2解析式,分别求出直线y=x+m与抛物线C2相切时m的值以及直线y=x+m过点B时m的值,结合图形即可得到答案.【解答】解:令y=﹣2x2﹣8x﹣6=0,即x2+4x+3=0,解得x=﹣1或﹣3,则点A(﹣1,0),B(﹣3,0),由于将C1向左平移2个长度单位得C2,则C2解析式为y=﹣2(x+4)2+2(﹣5≤x≤﹣3),当y=﹣x+m1与C2相切时,令y=﹣x+m1=y=﹣2(x+4)2+2,即2x2+15x+30+m1=0,△=﹣8m1﹣15=0,解得m1=﹣,当y=﹣x+m2过点B时,即0=3+m2,m2=﹣3,当﹣3<m<﹣时直线y=﹣x+m与C1、C2共有3个不同的交点,故选:A.二、填空题(共10小题,每小题3分,计30分)7.函数中,自变量x的取值范围是x≠1 .【考点】函数自变量的取值范围;分式有意义的条件.【分析】分式的意义可知分母:就可以求出x的范围.【解答】解:根据题意得:x﹣1≠0,解得:x≠1.故答案为:x≠1.8.钓鱼诸岛是中国的固有领土,位于中国东海,面积约6344000平方米,数据6344000用科学记数法表示为 6.344×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6344000=6.344×106.故答案为:6.344×106.9.若直线y=2x+3b+c与x轴交于点(﹣2,0),则代数式2﹣6b﹣2c的值为﹣6 .【考点】一次函数图象上点的坐标特征.【分析】先将(﹣2,0)代入y=2x+3b+c,得到3b+c=4,再将2﹣6b﹣2c变形为2﹣2(3b+c),然后把3b+c=4代入计算即可.【解答】解:∵直线y=2x+3b+c与x轴交于点(﹣2,0),∴0=2×(﹣2)+3b+c,∴3b+c=4,∴2﹣6b﹣2c=2﹣2(3b+c)=2﹣2×4=﹣6.故答案为﹣6.10.已知,则= ﹣.【考点】比例的性质.【分析】根据等式的性质,可得a=b,根据分式的性质,可得答案.【解答】解:两边都乘以b,得a=b.==﹣,故答案为:﹣.11.将一张宽为5cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是cm2.【考点】翻折变换(折叠问题).【分析】当AC⊥AB时,重叠三角形面积最小,此时△ABC是等腰直角三角形,利用三角形面积公式即可求解.【解答】解:如图,当AC⊥AB时,三角形面积最小,∵∠BAC=90°∠ACB=45°∴AB=AC=5cm,∴S△ABC=×5×5=cm2.故答案是:cm2.12.已知一个不透明的布袋里装有2个红球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a等于 6 .【考点】概率公式.【分析】由一个不透明的布袋里装有2个红球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,根据概率公式可得:,解此分式方程即可求得答案.【解答】解:根据题意得:,解得:a=6,经检验,a=6是原分式方程的解,所以a=6.故答案为6.13.如图,A点为反比例函数图象上一点,过A点作AB⊥y轴,B为垂足,点P 为x轴上任意一点,且△ABP的面积为2,则k= ﹣4 .【考点】反比例函数系数k的几何意义.【分析】由于同底等高的两个三角形面积相等,所以△AOB的面积=△ABP的面积=2,然后根据反比例函数y=中k的几何意义,知△AOB的面积=|k|,从而确定k的值,求出反比例函数的解析式.【解答】解:如图,连接AO,设反比例函数的解析式为y=.∵△AOB的面积=△ABP的面积=2,△AOB的面积=|k|,∴|k|=2,∴k=±4;又∵反比例函数的图象的一支位于第二象限,∴k<0.∴k=﹣4.故答案为:﹣4.14.根据图中所标注的数据,计算此圆锥的侧面积15πcm2(结果保留π).【考点】圆锥的计算.【分析】先利用勾股定理计算出圆锥的母线长为5cm,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算此圆锥的侧面积.【解答】解:圆锥的高为4cm,圆锥的底面圆的半径为3cm,所以圆锥的母线长==5(cm),所以此圆锥的侧面积=•2π•3•5=15(cm2).故答案为15π.15.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为22 元时,该服装店平均每天的销售利润最大.【考点】二次函数的应用.【分析】根据“利润=(售价﹣成本)×销售量”列出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;把二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答.【解答】解:设定价为x元,根据题意得:y=(x﹣15)[8+2(25﹣x)]=﹣2x2+88x﹣870∴y=﹣2x2+88x﹣870,=﹣2(x﹣22)2+98∵a=﹣2<0,∴抛物线开口向下,∴当x=22时,y最大值=98.故答案为:22.16.在平面直角坐标系中,⊙P的圆心P的坐标为(a,4),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值为4﹣或4+.【考点】垂径定理;一次函数图象上点的坐标特征;勾股定理.【分析】分为两种情况:①当P在直线y=x的左边时,过P1D⊥AB于D,由垂径定理求出AD、由勾股定理求出P1D,过P1作P1D∥直线y=x,交y轴于D,过D作DB⊥直线y=x于B,得出DB=P1D=1,OB=DB=1,由勾股定理求出DO,得出直线P1D的解析式是y=x+,把P(a,4)代入求出a即可;②与①解法类似,当P在直线y=x的右边时,同法得出直线的解析式y=x﹣,把p(a,4)代入求出a的另一个值.【解答】解:分为两种情况:①当P在直线y=x的左边时,过P1D′⊥AB于D′,由垂径定理得:AD′=×2=,∵P1A=2,由勾股定理得:P1D′=1,过P1作P1D∥直线y=x,交y轴于D,过D作DB⊥直线y=x于B,则DB=P1D=1,∵直线y=x,∴∠DOB=45°,∴OB=DB=1,由勾股定理得:DO=,∵直线P1D∥直线y=x,∴直线P1D的解析式是y=x+(即把直线y=x相上平移个单位),∴把P(a,4)代入得:4=a+,∴a=4﹣,②当P在直线y=x的右边时,与①解法类似,P2M=ON=1,由勾股定理得OH=,把直线y=x向下平移个单位得出直线y=x﹣,把p(a,4)代入求出a的另一个值是4+.故答案为:4﹣或4+.三、解答题(共10小题,计102分)17.(1)计算:(2)解不等式组.【考点】解一元一次不等式组;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】(1)根据零指数幂,负整数指数幂,二次根式的性质,特殊角的三角函数值分别求出每一部分的值,再合并即可;(2)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:(1)原式=1+9+2﹣2|﹣1|=10+2﹣2+=8+3;(2)∵解不等式①得:x≥﹣1,解不等式②得:x<2,∴不等式组的解集为﹣1≤x<2.18.先化简,再求值:(1+)÷(m﹣),其中实数m使关于x的一元二次方程x2﹣4x﹣m=0有两个相等的实数根.【考点】分式的化简求值;根的判别式.【分析】先算括号里面的,再算除法,根据实数m使关于x的一元二次方程x2﹣4x ﹣m=0有两个相等的实数根求出m的值,代入分式进行计算即可.【解答】解:原式=÷=•=,∵实数m使关于x的一元二次方程x2﹣4x﹣m=0有两个相等的实数根,∴△=0,即(﹣4)2+4m=0,解得m=﹣4,∴原式=﹣.19.国家环保局统一规定,空气质量分为5级.当空气污染指数达0﹣50时为1级,质量为优;51﹣100时为2级,质量为良;101﹣200时为3级,轻度污染;201﹣300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2016年某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了50 天的空气质量检测结果进行统计;(2)扇形统计图中3级空气质量所对应的圆心角为72 °;(3)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2016年该城市有多少天不适宜开展户外活动.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据4级的天数数除以4级所占的百分比,可得答案;(2)根据圆周角乘以3级所占的百分比,可得答案;(3)根据有理数的减法,可得5级的天数,根据5级的天数,再根据样本数据估计总体,可得答案.【解答】解:(1)本次调查共抽取了24÷48%=50(天),故答案为:50;(2)360°×=72°,故答案为:72;(3)5级抽取的天数50﹣3﹣7﹣10﹣24=6天,365××100%=219(天),答:2015年该城市有219天不适宜开展户外活动.20.在▱ABCD中,AB=2BC=4,E、F分别为AB、CD的中点①求证:△ADE≌△CBF;②若四边形DEBF为菱形,求四边形ABCD的面积.【考点】菱形的性质;全等三角形的判定与性质;平行四边形的性质.【分析】①欲证明△ADE≌△CBF,只要证明AD=BC,∠A=∠C,AE=CF即可.②连接BD,根据S四边形ABCD=2S△ABD,只要证明△ADB是直角三角形,求出AD、BD即可解决问题.【解答】①证明:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∠A=∠C,∵E、F分别为AB、CD的中点,∵AE=EB,DF=FC,∴AE=CF,在△ADE和△CBF中,,∴△ADE≌△CBF,②连接BD,由①有AE=EB,∵四边形DEBF是菱形,∴DE=EB=AE,∴△ADB是直角三角形,在RT△ADB中,∵∠ADB=90°,AD=BC=2,AB=4,∴BD==2,∵四边形ABCD是平行四边形,∴S平行四边形ABCD=2•S△ADB=2××2×2=4.21.某校九年级两个班,各选派10名学生参加学校举行的“数学奥林匹克”大赛预赛.各参赛选手的成绩如下:九(1)班:88,91,92,93,93,93,94,98,98,100九(2)班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差九(1)班10094b9312九(2)班99a95.5938.4(1)直接写出表中a、b的值;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由;(3)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98分”的学生中任选二个,求另外两个决赛名额落在不同班级的概率.【考点】列表法与树状图法;算术平均数;中位数;众数;方差.【分析】(1)根据平均数的定义计算(2)班的平均数,根据中位数的定义确定(1)班的中位数;(2)可利用平均数或中位数或方差的意义说明九(2)班成绩好;(3)设九(1)班中98分的两名学生分别用A、B表示,九(2)班中98分的两名学生分别用a、b表示,画树状图展示所有9种等可能的结果数,找出另外两个决赛名额落在不同班级的结果数,然后根据概率公式求解.【解答】解:(1)a=95,b=93;(2)九(2)班成绩好的理由为:(2)班的平均数比(1)高;(2)班的方差比(1)班小,(2)班的成绩比(1)班稳定;(3)设九(1)班中98分的两名学生分别用A、B表示,九(2)班中98分的两名学生分别用a、b表示,画树状图为:共有9种等可能的结果数,其中另外两个决赛名额落在不同班级的结果数为8,所以另外两个决赛名额落在不同班级的概率==.22.某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.【分析】(1)设熟练工加工1件A型服装需要x小时,加工1件B型服装需要y小时,根据“一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时”,列出方程组,即可解答.(2)当一名熟练工一个月加工A型服装a件时,则还可以加工B型服装(25×8﹣2a)件.从而得到W=﹣8a+3200,再根据“加工A型服装数量不少于B型服装的一半”,得到a≥50,利用一次函数的性质,即可解答.【解答】解:(1)设熟练工加工1件A型服装需要x小时,加工1件B型服装需要y 小时.由题意得:,解得:答:熟练工加工1件A型服装需要2小时,加工1件B型服装需要1小时.(2)当一名熟练工一个月加工A型服装a件时,则还可以加工B型服装(25×8﹣2a)件.∴W=16a+12(25×8﹣2a)+800,∴W=﹣8a+3200,又∵a≥,解得:a≥50,∵﹣8<0,∴W随着a的增大则减小,∴当a=50时,W有最大值2800.∵2800<3000,∴该服装公司执行规定后违背了广告承诺.23.如图,AC是某市环城路的一段,AE,BF,CD都是南北方向的街道,其与环城路AC的交叉路口分别是A,B,C.经测量花卉世界D位于点A的北偏东45°方向、点B 的北偏东30°方向上,AB=2km,∠DAC=15°.(1)求∠DBC的度数;(2)求C,D之间的距离.【考点】解直角三角形的应用-方向角问题.【分析】由各方向角得出:∠EAD=45°,FBD=30°,又∠DAC=15°,则∠EAC=60°,∠FBC=60°,∠DBC=30°,△ABD是等腰三角形,∠ADB的大小,即可;(2)过B作BO⊥DC,交其延长线于点O,把求CD的问题转化为求DO和CO的问题【解答】解:(1)由示意图可得:∠EAD=45°,∠FBD=30°,又∵∠DAC=15°,∴∠EAC=60°,∵AE∥BF,∴∠FBC=∠EAB=60°,∴∠DBC=30°,∴∠BDA=∠DBC﹣∠DAB=30°﹣15°=15°,∴∠BDA=∠DAB,∴AB=DB=2km,∴∠ADB=15°,∴∠DBC=∠ADB+∠DAC=15°+15°=30°;(2)如图,过B作BO⊥DC,交其延长线于点O,在Rt△DBO中,BD=2,∠DBO=60°,∴DO=2×sin60°=,BO=2×cos60°=1.在Rt△CBO中,∠CBO=30°,CO=BOtan30°=,∴CD=DO﹣CO=﹣=(km).即C,D之间的距离km.24.如图,△ABC中,以AC为直径的⊙O与边AB交于点D,点E为⊙O上一点,连接CE并延长交AB于点F,连接ED.(1)若∠B+∠FED=90°,求证:BC是⊙O的切线;(2)若FC=6,DE=3,FD=2,求⊙O的直径.【考点】切线的判定.【分析】(1)利用圆内接四边形对角互补以及邻补角的定义得出∠FED=∠A,进而得出∠B+∠A=90°,求出答案;(2)利用相似三角形的判定与性质首先得出△FED∽△FAC,进而求出即可.【解答】(1)证明:∵∠A+∠DEC=180°,∠FED+∠DEC=180°,∴∠FED=∠A,∵∠B+∠FED=90°,∴∠B+∠A=90°,∴∠BCA=90°,∴BC是⊙O的切线;(2)解:∵∠CFA=∠DFE,∠FED=∠A,∴△FED∽△FAC,∴=,∴=,解得:AC=9,即⊙O的直径为9.25.如图,已知直线y=﹣x+1与x轴交于A点,与y轴交于B点,P(a,b)为双曲线y=(x>0)上一动点,过P点分别作x轴、y轴的垂线,垂足分别为C、D,交直线AB于点E、F(1)用含b的代数式表示E点的坐标(1﹣b,b)用含a的代数式表示F点的坐标(a,1﹣a)(2)求证:△AOE∽△BFO(3)当点P在双曲线y=(x>0)上移动时,∠EOF也随之变化,试问∠EOF的大小是否变化,如果不变,求出其值,如果变化,说明理由.【考点】反比例函数综合题.【分析】(1)易得点E的纵坐标为b,点F的横坐标为a,代入直线的解析式y=﹣x+1,即可用a,b的式子表示出E、F两点的坐标;(2)由直线y=﹣x+1与x,y轴分别交于A、B两点可得OA=OB=1,从而得到∠OAB=45°,将OE2、EF、EA分别用a、b的代数式表示,可得OE2=EF•EA,可证明△EOF∽△EAO,可得到∠EOA=∠EFO,又∠EAO=∠FBO,可证明△AOE∽△BFO;(3)由(2)可得∠EOF=∠OAE=45°,其值不变.【解答】解:(1)如图1,∵PM⊥x轴与M,交线段AB于F,∴x F=x M=x P=a,∵PN⊥y轴于N,交线段AB于E,∴y E=y N=y P=b,∵点E、F在直线AB上,∴y E=﹣x E+1=b,y F=﹣x F+1=﹣a+1,∴x E=1﹣b,y F=1﹣a,∴点E的坐标为(1﹣b,b),点F的坐标为(a,1﹣a).故答案为:(1﹣b,b);(a,1﹣a);(2)证明:过点E作EH⊥OM,垂足为H,如图2,∵EN⊥ON,∴OE2=ON2+EN2=b2+(1﹣b)2=2b2+1﹣2b,∵EH⊥OM,EH=b,AH=1﹣(1﹣b)=b,∴EA==b,同理可得:FA=(1﹣a),∴EF=EA﹣FA=b﹣(1﹣a)=(b+a﹣1),∵2ab=1,∴EF•EA=(b+a﹣1)b=2(b2+ab﹣b)=2b2+2ab﹣2b=2b2+1﹣2b,∴OE2=EF•EA,∴=,∵∠OEF=∠AEO,∴△OEF∽△AEO,∴∠EFO=∠AOE,∵OA=OB=1,∠AOB=90°,∴∠OAB=∠OBA=45°,∴△AOE∽△BFO;(3)由(2)可知△OEF∽△AEO,∴∠EOF=∠EAO=45°,∴∠EOF的大小不变,始终等于45°.26.如图,二次函数y=a(x2﹣4x+3)(a>0)的图象与x轴交于A、B两点,与y轴交于点C,点D是抛物线的顶点(1)若△ABD为直角三角形,求此二次函数的解析式;(2)P为抛物线对称轴上一点,且P点的纵坐标t是大于3的常数,试问是否存在一个正数a,使得四边形PA、PB、PC、PD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.(3)是否存在实数a,使得△OAC沿AC翻折后,点O的对应点O′落在△ABC的外部?若存在,求出a的范围,若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)求出A、B、D坐标,理由等腰直角三角形性质即可解决问题.(2)存在.先求出直线CD解析式,再求出线段CD的垂直平分线的解析式,即可求出点P坐标,观察点P纵坐标即可解决问题.(3)存在.如图2中,作AF⊥BC,垂足为F,求出OA=AF时,OC的长即可解决问题.【解答】解:(1)令y=0,则x2﹣4x+3=0,解得x=3或1,∴A(1,0).B(3,0),又∵y=a(x﹣2)2﹣a,∴顶点D(2,﹣a),∵△ABD是直角三角形,DA=DB,∴|﹣a|=AB,|﹣a|=1,∵a>0,∴a=1,∴二次函数解析式为y=x2﹣4x+3,(2)存在.理由:如图1中,∵点P在对称轴上,∴PA=PB,∵四边形PA、PB、PC、PD与一个平行四边形的四条边对应相等,∴PC=PD,设点P(2,t),∵C(0,3a),D(2,﹣a),∴直线CD解析式为y=﹣2ax+3a,线段CD的垂直平分线的解析式为y=x+a﹣,∴点P的纵坐标t=+a,∴当a=3时,t>3,∴存在一个正数a,使得四边形PA、PB、PC、PD与一个平行四边形的四条边对应相等.(3)如图2中,作AF⊥BC,垂足为F,当OA=AF=1时,在RT△AFB中,∵AB=2,AF=1,∴AB=2AF,∴∠ABF=30°,∴在RT△BOC中,∵∠BOC=90°,∠OBC=30°,OB=3,∴OC=OB•tan30°=3×=,由图象可知当0<3a<时,即0<a时,点O的对应点O′落在△ABC的外部.。
最新苏州市中考数学二模拟试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的代号填入题后括号内. 1.-32的相反数是( ) A .-23B .32C .23D .-32 2.计算a 2b ·a 的结果是( )A .a 3b B .2a 2b C .a 2b 2D .a 2b3.江苏省占地面积约为107200平方公里.将107200用科学记数法表示应为( ) A .0.1072×106B .1.072×105C .1.072×106D .10.72×1044.如图,∠1=50°,如果AB ∥DE ,那么∠D 的度数为( )A. 40°B. 50°C. 130°D. 140°5.已知实数0<a ,则下列事件中是必然事件的是( )A .03<+aB .03<-aC .03>aD .03>a6.已知点A (2,1)在二次函数m x x y +-=82(m 为常数)的图像上,则点A 关于图像对称轴的对称点坐标是( ) A .(4,1)B .(5,1)C .(6,1)D .(7,1) 7.下列各数中,是无理数的是( ) A .cos30° B .(-π)0C .-31D .64 8.体积为80的正方体的棱长在( )A .3到4之间B .4到5之间C .5到6之间D .6到7之间9.如图,将等边△ABC 的边AC 逐渐变成以B 为圆心、BA 为半径的⌒AC ,长度不变,AB 、BC 的长度也不变,则∠ABC 的度数大小由60°变为() A .⎪⎭⎫⎝⎛π60° B .⎪⎭⎫ ⎝⎛π90° C .⎪⎭⎫ ⎝⎛π120° D .⎪⎭⎫ ⎝⎛π180°10.如图,正方形OABC 的边长为6,A ,C 分别位于x 轴、y 轴上,点P 在AB 上,CP 交OB 于点Q ,函数y =xk 的图象经过点Q ,若S △BPQ =41S △OQC ,则k 的值为( )A .-12B .12C .16D .18二、填空题:本大题共8小题,每小题3分,共24分,不需写出解答过程,请把最后结果填在题中横线上. 11.在函数y =31+x 中,自变量x 的取值范围是. 12.如图,在正六边形ABCDEF 中,连接AE ,DF,则∠1=°.13.若△ABC 一边长为4,另两边长分别是方程x 2-5x +6=0的两实根,则△ABC 的周长为. 14.用半径为6cm ,圆心角为120°的扇形围成一个圆锥,则圆锥的底面圆半径为cm .15.如图,在⊙O 中,CD 是直径,弦AB ⊥CD ,垂足为E ,若∠C=15°,AB=6 cm ,则⊙O 半径为cm . 16.已知二次函数y =ax 2+bx +c(a ≠0)中,函数值y 与自变量x 的部分对应值如下表:则关于x 的一元二次方程ax 2+bx +c =-2的根是.17.若x ,y 满足方程组⎩⎨⎧=-=+124y x y x ,则4x 2-4xy +y 2的值为.18.已知x 、y 都是正实数,且满足x 2+2xy +y 2+x +y -12=0,则x(1-y)的最小值为. 三.解答题:本大题共10小题,共76分.解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.19.(5分)计算:-272-131-⎪⎭⎫⎝⎛+2cos60°;(第9题)20.(5分)解不等式组:⎪⎩⎪⎨⎧>-≤+x x x 312213.21.(6分)先化简,再求值:(b a b ++b a b -) ÷22ba a -.其中a =2016,b =2.22. (6分)甲、乙两公司为“见义勇为基金会”各捐款60000元,已知乙公司比甲公司人均多捐40元,甲公司的人数比乙公司的人数多20%.问甲、乙两公司的人数分别是多少?.23.(8分)我校为了解学生“自主学习、合作交流”的情况,对某班部分同学进行了一段时间的跟踪调查,将调查结果(A:特别好;B:好;C:一般;D:较差)绘制成以下两幅不完整的统计图.请根据图中提供的信息,解答下列问题: (1)补全条形统计图;(2)扇形统计图中,D 类所占圆心角为度;(3)学校想从被调查的A 类(1名男生2名女生)和D 类(男女生各占一半)中分别选取一位同学进行“一帮一”互助学习,请用画树形图或列表的方法求所选的两位同学恰好是一男一女的概率.24.(8分)如图,在四边形ABCD 中,AD=CD=8,AB=CB=6,点E 、F 、G 、H 分别是DA 、AB 、BC 、CD 的中点.(1)求证:四边形EFGH 是矩形; (2)若DA ⊥AB ,求四边形EFGH 的面积..HED CA25.(8分)如图,已知矩形OABC 的两边OA 、OC 分别落在x 轴、y 轴的正半轴上,顶点B 的坐标是(6,4),反比例函数y =xk(x >0)的图象经过矩形对角线的交点E ,且与BC 边交于点D . (1)①求反比例函数的解析式与点D 的坐标;②直接写出△ODE 的面积;(2)若P 是OA 上的动点,求使得“PD+PE 之和最小”时的直线PD 的解析式.26.(10分)已知⊙O 的半径为5,且点O 在直线l 上,小明用一个三角板学具(∠ABC =90°,AB =BC =8)做数学实验:(1)如图①,若A 、B 两点在⊙O 上滑动,直线BC 分别与⊙O 、l 相交于点D 、E.①求BD 的长;②当OE =6时,求BE 的长.(2)如图②,当点B 在直线l 上,点A 在⊙O 上,BC 与⊙O 相切于点P 时,则切线长PB =.(备用图)27. (10分)在平面直角坐标系中,一次函数y=kx+b的图象与x轴、y轴分别相交于A(﹣3,0),B(0,﹣3)两点,二次函数y=x2+mx+n的图象经过点A.(1)求一次函数y=kx+b的解析式;(2)若二次函数y=x2+mx+n图象的顶点在直线AB上,求m,n的值;(3)当﹣3≤x≤0时,二次函数y=x2+mx+n的最小值为﹣4,求m,n的值.28. (10分)如图,在平面直角坐标系中,直角梯形OABC,BC∥OA,一边OA在x轴上,另一边OC在y轴上,且OA=AB=5cm,BC=2cm,以OC为直径作⊙P.(1)求⊙P的直径;(2)⊙P沿x轴向右滚动过程中,当⊙P与x轴相切于点A时,求⊙P被直线AB截得的线段AD 长;(3)⊙P沿x轴向右滚动过程中,当⊙P与直线AB相切时,求圆心P移动的距离.参考答案一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)二、填空题:11. x ≠-3;12. 120°;13. 9;14. 2;15. 6;16. -4,0 ;17.25;18. -1. 19.-20. (本题5分)⎪⎩⎪⎨⎧>-≤+x ②x ①x 312213解:解不等式①,得x ≤31, 解不等式②,得x <-1, 不等式组的解集为x <-1. 21. (法一) 解:原式=⎝⎛⎭⎪⎫b a +b + b a -b ·(a +b)(a -b)a = b a +b ·(a +b)(a -b)a + b a -b ·(a +b)(a -b)a =b(a -b)a +b(a +b)a=ab -b 2+ab +b 2a =2b ···························· 4分(法二) 解:原式=⎣⎢⎡⎦⎥⎤b(a -b)(a +b)(a -b)+b(a +b) (a +b)(a -b) ·(a +b)(a -b)a =ab -b 2+ab +b 2(a +b)(a -b)·(a +b)(a -b)a=2b ··································· 4分当2016,2a b ==时,原式=22.┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉┉6分22.解:设乙公司的人数为x 人,则甲公司的人数为(1+20%)x 人,…………1分由题意得60000 x -60000(1+20%)x =40……………………………………………3分解得,x =250,经检验x =250是方程的解. …………………………………5分 则(1+20%)x =300.答:甲公司有300人,乙公司有250人. …………………………………………6分 23. 解:(1)∵B 有10人,占50%,∴总人数:10÷50%=20(人),A 占:3÷20=15%,D 占:1﹣25%﹣15%﹣50%=10%,∴C 类:20×25%=5人,D 类:20×10%=2人,补全统计图:(2)D 类所占圆心角为:10%×360°=36°;故答案为:36; (3)画树状图得:∵共有6种等可能的结果,所选的两位同学恰好是一男一女的有3种情况, ∴所选的两位同学恰好是一男一女的概率为:2163=. 24. 证明:(1)连接AC 、BD∵点E 、F 、G 、H 分别是DA 、AB 、BC 、CD 的中点. ∴EF 是△ABD 的中位线∴EF ∥BD …………………………………………………………2分 同理可得:EF ∥BD ∥HG ,EH ∥AC ∥FG∴四边形EFGH 是平行四边形…………………………………3分 ∵AD=CD ,AB=BC ,且BD=BD ,∴△ADB ≌△CDB ,∴∠ADB=∠CDB∴∠DPA=90°……………………………………………………4分∴∠HEF=∠DME=∠DPA=90°∴四边形EFGH是矩形…………………………………………5分(2)∵DA⊥AB ,AD =8,AB =6∴DB=10=2EF,∴EF=5……………………………………6分∴AP=AD×AB÷DB=4.8∴EH=12AC=AP=4.8……………………………………………7分∴矩形EFGH的面积等于24.…………………………………8分25. 【考点】反比例函数综合题.【分析】(1)①连接OE,则O、E、三点共线,则E是OB的中点,即可求得E的坐标,利用待定系数法求得函数的解析式,进而求得D的坐标;②根据S△ODE=S△OBC﹣S△OCD﹣S△BDE即可求解;(2)作E关于X轴对称点E',则直线DE'就是所求的直线PE,利用待定系数法即可求解.【解答】解:(1)①连接OB,则O、E、B三点共线.∵B的坐标是(6,4),E是矩形对角线的交点,∴E的坐标是(3,2),∴k=3×2=6,则函数的解析式是y=.当y=4时,x=1.5,即D的坐标是(1.5,4);②S△OBC=BC•OC=×6×4=12,S△OCD=OC•CD=×4×1.5=3,S△BDE=×(6﹣1.5)×2=4.5,则S△ODE=S△OBC﹣S△OCD﹣S△BDE=12﹣3﹣3﹣4.5=4.5;(2)作E关于OA轴的对称点E',则E'的坐标是(3,﹣2).连接E'D,与x轴交点是P,此时PD+PE 最小.设y=mx+n,把E'和D的坐标代入得:,解得:,则直线PD的解析式是y=﹣4x+10.【点评】本题考查了待定系数法求函数的解析式,以及图形的对称,求得函数的解析式是关键.26. (1)①连接AD,∵∠ABC=90°,∴AD为⊙O的直径,∴AD=10,∵AB=8,∴BD=6. ………………………………………………………………3分②如图①,作OF⊥BE于F,∵BD=6,半径为5,则OF=4∵OE=6,∴EF=25,∴BE=25+3……………………………5分如图②,作OF⊥BD于F,∵BD=6,半径为5,则OF=4∵OE=6,∴EF=25,∴BE=25-3……………………………7分当BC的延长线与l相交于点E时,不满足条件OE=6.(2)4. ………………………………………………………………………………9分提示:解法一:如图③连接OP,OA,作OQ⊥AB于Q,易证BPOQ为矩形,∴BQ=5,∴AQ=3,∴OQ=4=BP.解法二:如图④连接PO,并延长交⊙O于点Q,连AQ,AP,证△ABP∽△PAQ,∴PA2=80,∴BP=4.27. (本小题满分10分)解:(1)A(﹣3,0),B(0,﹣3)代入y=kx+b得⎩⎨⎧-==+-33bbk,解得⎩⎨⎧-=-=31bk,∴一次函数y=kx+b的解析式为:y=﹣x﹣3;(2)二次函数y=x2+mx+n图象的顶点为)44,2(2mnm--∵顶点在直线AB:y=﹣x﹣3上,44322mnm-=-又∵二次函数y=x2+mx+n的图象经过点A(﹣3,0),∴9﹣3m+n=0,∴组成方程组为⎪⎩⎪⎨⎧=+--=-3944322nmmnm解得⎩⎨⎧==34nm或⎩⎨⎧==96nm.(3)∵二次函数y=x2+mx+n的图象经过点A.∴9﹣3m+n=0,∵当﹣3≤x≤0时,二次函数y=x2+mx+n的最小值为﹣4,①如图1,当对称轴﹣3<2m-<0时 最小值为4442-=-m n ,与9﹣3m+n=0,组成程组为⎪⎩⎪⎨⎧=+--=-0394442n m m n 解得:⎩⎨⎧-==32n m 或⎩⎨⎧==2110n m (由﹣3<2m-<0知不符合题意舍去) ∴⎩⎨⎧-==32n m .②如图2,当对称轴2m-≥0时,在﹣3≤x ≤0时,x 为0时有最小值为﹣4, 把(0,﹣4)代入y=x 2+mx+n 得n=﹣4, 把n=﹣4代入与9﹣3m+n=0,得m=35. ∵2m-≥0, ∴m ≤0,∴此种情况不成立, ③当对称轴2m-≤—3时,最小值为0,不可能为﹣4, 综上所述m=2,n=﹣3. 28. (本题10分)解:(1)如图,过B 作BD ⊥OA.由题意知:∠BCO =∠DOC =∠BDO =90°.∴ 四边形ODBC 为矩形.∴ OC =BD ,OD =BC. ∵ BC =2,∴ DA =OA -OD =5-2.在Rt △ABD 中,根据勾股定理,得:BD 2=AB 2-DA2∴ BD =4. ································· 3分 (2)如图,当⊙P 与x 轴相切于A 时, 设其与CB 所在直线相切于E. 易知P 在EA 上,且CE =AO =5 ∴ BE =3. 连接ED. ∵ EA 为直径, ∴ ∠EDA =90°. 设AD =x ,则BD =5-x由勾股定理知32-(5-x )2=42-x2&知识就是力量&@学无止境!@ 解得x =165∴ AD =165cm. 6分 (3)如图,当⊙P 与AB 相切时,分两种情况.①当⊙P 滚动到P 1时,设PP 1=x ,由题意易知:PP 1=CE =O G =x ,则BE =BC -CE =2-x ,AG =AO -OG =5-x.∵ ⊙P 1与AB 、AO 相切于点F 、G ,∴ AF =AG =5-x.∵ ⊙P 1与BC 、AB 相切于点E 、F ,∴ BF =BE =2-x.∵ AB =5,AF +BF =AB ,∴ 5-x +2-x =5.7-2x =5,-2x =-2x =1,即PP 1=1cm. 8分②当⊙P 滚动到P 2时,设PP 2=x ,易知:OJ =CH =PP 2=x ,则AJ =x -5,BH =x -2. ∵ ⊙P 2与AB 、CH 相切,∴ BI =BH =x -2.同理,AI =AJ =x -5.∵ AB =BI +AI ,∴ x -2+x -5=5.x =6,即PP 2=6cm.∴ 当⊙P 与直线AB 相切时,点P 移动的距离为1cm 或6cm. ··········· 10分。
2020年江苏中考数学一模二模考试试题分类(苏州专版)(8)——概率和统计一.选择题(共22小题)1.(2020•吴中区二模)小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表,若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()抛掷次数100 200 300 400 500正面朝上的频数53 98 156 202 244A.200 B.300 C.500 D.8002.(2020•高新区二模)学校为了丰富学生课余活动开展了一次“爱我学校,唱我学校”的歌咏比赛,共有18名同学入围,他们的决赛成绩如表,则入围同学决赛成绩的中位数和众数分别是()成绩(分)9.40 9.50 9.60 9.70 9.80 9.90 人数 2 3 5 4 3 1 A.9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.603.(2020•昆山市二模)如图所示3×3的正方形网格,若向该网格中进行随机投掷飞镖试验,则飞镖扎在阴影区域(顶点均在格点上)的概率为()A.B.C.D.4.(2020•昆山市二模)一组数据:1,2,3,3,5,5,5,6的众数是()A.3 B.4 C.5 D.65.(2020•吴江区二模)九年级(1)班25名女同学进行排球垫球,每人只测一次,测试结果统计如表:8 12 20 23 24 26 32 36排球垫球(次)人数 1 1 2 4 7 6 3 1 这25名女同学排球垫1球次数的众数和中位数分别是()A.24,26 B.36,23.5 C.24,23.5 D.24,246.(2020•吴江区一模)在新年晚会的投飞镖游戏环节中,7名同学投掷的成绩(单位:环)分别是7,9,9,4,9,8,8,则这组数据的中位数是()A.4 B.7 C.8 D.97.(2020•昆山市一模)长沙某抗战纪念馆馆长联系某中学,选择18名青少年志愿者在同日参与活动,年龄如表所示:这18名志愿者年龄的众数和中位数分别是()年龄(单位:岁)12 13 14 15人数 3 5 6 4A.13,14 B.14,14 C.14,13 D.14,158.(2020•相城区校级二模)如图,飞镖游戏中的每一块正方形除颜色外都相同,若某人向游戏板投据飞镖一次(假设飞镖在游戏板上),则飞镖落在阴影部分的概率是()A.B.C.D.9.(2020•工业园区校级二模)某中学初三(1)班的8名同学在一次排球垫球测试中的成绩如下:(单位:个)35,38,42,44,40,47,45,45则这组数据的中位数是()A.44 B.43 C.42 D.4010.(2020•姑苏区校级二模)有一组数据:1,3,3,6,7,8,这组数据的中位数是()A.3 B.3.5 C.4 D.4.511.(2020•姑苏区校级二模)如图,在边长为1的小正方形网格中,△ABC的三个顶点均在格点上,若向正方形网格中投针,落在△ABC内部的概率是()A.B.C.D.12.(2020•常熟市二模)在2019年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、平均数依次是()A.48,48,48 B.48,47.5,47.5C.48,48,48.5 D.48,47.5,48.513.(2020•苏州二模)如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是()A.B.C.D.14.(2020•昆山市二模)一组数据:2,4,6,4,8的中位数和众数分别是()A.6,4 B.4,4 C.6,8 D.4,615.(2020•常熟市二模)在一个不透明的袋子中放有a个球,其中有6个白球,这些球除颜色外完全相同,若每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则a的值约为()A.10 B.15 C.20 D.2416.(2020•苏州一模)某校为了了解学生到校的方式,随机抽取了部分学生进行问卷调查,并将调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,则扇形统计图中“步行”对应的圆心角的度数为()A.54°B.60°C.72°D.108°17.(2020•工业园区一模)如图所示的飞镖游戏板是顺次连接正六边形的三个不相邻的顶点后得到的,若某人向该游戏板投掷镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.1 B.C.D.18.(2020•高新区模拟)五张完全相同的卡片上,分别画有圆、平行四边形、等边三角形、角、线段,现从中随机抽取一张,恰好抽到轴对称图形的概率是()A.B.C.D.19.(2020•相城区一模)如图,在边长为1的小正方形网格中,△ABC的三个顶点均在格点上,若向正方形网格中投针,落在△ABC内部的概率是()A.B.C.D.20.(2020•高新区一模)下列事件是必然事件的是()A.打开电视机,正在播放动画片B.在一只装有5个红球的袋中摸出1球,一定是红球C.某彩票中奖率是1%,买100张一定会中奖D.2018年世界杯德国队一定能夺得冠军21.(2020•姑苏区校级模拟)下列说法错误的是()A.必然发生的事件发生的概率为1B.不可能发生的事件发生的概率为0C.随机事件发生的概率大于0且小于1D.概率很小的事件不可能发生22.(2020•常熟市二模)如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,随机在大正方形及其内部区域投针,若针孔扎到小正方形(阴影部分)的概率是,则大、小两个正方形的边长之比是()A.4:1 B.2:1 C.1:4 D.1:2二.填空题(共6小题)23.(2020•姑苏区校级二模)如图,正方形ABCD内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为.24.(2020•昆山市二模)在校园“阅读节”活动中,对某班每一位同学在一周内平均阅读书籍的本数作了调查,并将收集到的数据绘制成了“一周阅读书籍数量”统计表,如表所示,则该班级全体同学一周平均阅读书籍数量是本.4 3 2 1 0阅读书籍数量(本)人数 6 15 13 5 1 25.(2020•姑苏区一模)转动如图所示被等分为8份的转盘一次,指针指向阴影部分的概率为.26.(2020•工业园区一模)某工程队有10名员工,他们的工种及相应每人每月工资如表:工种人数每人每月工资/元电工 2 6000木工 3 5000瓦工 5 4000现该工程队对工资进行了调整:每人每月工资增加300元.与调整前相比,该工程队员工每月工资的方差.(填“变小”、“不变”或“变大”)27.(2020•高新区二模)如图,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域的概率为.28.(2020•吴江区三模)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁,现在任意取出一把钥匙去开任意一把锁,一次就能打开锁的概率是.三.解答题(共12小题)29.(2020•吴中区二模)今年6月1日起苏州市全面实行垃圾分类,为了解同学们对垃圾分类知识的知晓情况,我区某校环保社团的同学们进行了抽样调查,对收集的信息进行整理,绘制了下面两幅尚不完整的统计图.请你根据统计图所提供的数据,解答下列问题:图中A表示“很了解”,B表示“了解”,C表示“一般”,D表示“不了解”.(1)被调查的总人数是人,扇形统计图中C部分所对应的扇形圆心角的度数为;(2)若该校共有学生1800人,请根据上述调查结果,估计该校学生中B类有多少人.30.(2020•吴中区二模)某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和1个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品.(1)如果小明只有一次摸球机会,那么小明获得奖品的概率为.(2)如果小明有两次摸球机会(摸出后不放回),求小明获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程)31.(2020•昆山市二模)某学校为了了解九年级学生上学期间平均每天的睡眠情况,现从全校600名九年级学生中随机抽取了部分学生,调查了这些同学上学期间平均每天的睡眠时间t(单位:小时),并根据调查结果列出统计表,绘制成扇形统计图,如图所示.请你根据图表提供的信息解答下列问题:平均每天睡眠时间分组统计表组别序号睡眠时间t(小时)人数(频数)1组t<6 m2组6≤t<7 213组7≤t<8 n4组t≥8 4(1)m=,n=,a=(a为百分号前的数字);(2)随机抽取的这部分学生平均每天睡眠时间的中位数落在组(填组别序号);(3)估计全校600名九年级学生中平均每天睡眠时间不低于7小时的学生有名;(4)若所抽查的睡眠时间t≥8(小时)的4名学生,其中2名男生和2名女生,现从这4名学生中随机选取2名学生参加个别访谈,请用列表或画树状图的方法求选取的2名学生恰为1男1女的概率.32.(2020•姑苏区一模)新学期复学后,学校为了保障学生的出行安全,随机调查了部分学生的上学方式(每位学生从乘私家车、坐公交、骑车和步行4种方式中限选1项),根据调查数据制作了如图所示的不完整的统计表和扇形统计图.上学方式统计表上学方式人数乘私家车42坐公交54骑车a步行b(1)本次学校共调查了名学生,a=,m=;(2)求扇形统计图中“步行”对应扇形的圆心角;(3)甲、乙两位同学住在同一小区,且都坐公交车上学,有A、B、C三路公交车途径该小区和学校,假设甲、乙两位同学坐这三路公交车是等可能的,请用列表或画树状图的方法求某日甲、乙两位同学坐同一路公交车到学校的概率.33.(2020•吴江区二模)初三(1)班针对“垃圾分类”知晓情况对全班学生进行专题调查活动,对“垃圾分类”的知晓情况分为A、B、C、D四类.其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,每名学生可根据自己的情况任选其中一类,班长根据调查结果进行了统计,并绘制成了不完整的条形统计图和扇形统计图.根据以上信息解决下列问题:(1)初三(1)班参加这次调查的学生有人,扇形统计图中类别C所对应扇形的圆心角度数为°;(2)求出类别B的学生数,并补全条形统计图;(3)类别A的4名学生中有2名男生和2名女生,现从这4名学生中随机选取2名学生参加学校“垃圾分类”知识竞赛,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.34.(2020•工业园区一模)学校随机抽取部分学生就“你是否喜欢网课”进行问卷调查,并将调查结果进行统计后,绘制成如下统计表和扇形统计图.调查结果统计表态度非常喜欢喜欢一般不知道频数90 b30 10频率a0.35 0.20(1)在统计表中,a=,b=;(2)求出扇形统计图中“喜欢”网课所对应扇形的圆心角度数;(3)已知该校共有2000名学生,试估计该校“非常喜欢”网课的学生有多少人?35.(2020•吴江区一模)苏州市某初中学校对本校初中学生完成家庭作业的时间做了总量控制,规定每天完成家庭作业时间不超过1.5小时.该校数学课外兴趣小组对本校初中学生回家完成作业的时间做了一次随机抽样调查,并绘制出频数分布表和频数分布直方图的一部分.时间(小时)频数(人数)频率0≤t<0.5 4 0.10.5≤t<1 a0.31≤t<1.5 10 0.251.5≤t<2 8 b2≤t<2.5 6 0.15合计 1(1)a=,b=;(2)补全频数分布直方图;(3)请估计该校1500名初中学生中,约有多少学生在1.5小时以内完成家庭作业.36.(2020•吴江区一模)小张用4张相同的小纸条做成甲、乙、丙、丁4支签,放在一个盒子中,搅匀后先从盒子中任意抽出1支签(不放回),再从剩余的3支签中任意抽出1支签.(1)小张第一次抽到的是乙签的概率是;(2)求抽出的两支签中,1支为甲签、1支为丙签的概率(用画树状图或列表法求解).37.(2020•常熟市校级模拟)某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整)(1)求扇形统计图中交通监督所在扇形的圆心角度数;(2)求D班选择环境保护的学生人数,并补全折线统计图;(温馨提示:请画在答题卷相对应的图上)(3)若该校共有学生1500人,试估计该校选择文明宣传的学生人数.38.(2020•姑苏区一模)某校决定对学生感兴趣的球类项目(A:足球,B:篮球,C:排球,D:羽毛球,E:乒乓球)进行问卷调查,学生可根据自己的喜好选修一门,李老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图).(1)该班学生人数有人;(2)将条形统计图补充完整;(3)若该校共有学生3500名,请估计有多少人选修足球?(4)该班班委5人中,1人选修篮球,3人选修足球,1人选修排球,李老师要从这5人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.39.(2020•高新区一模)甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.(1)若由甲挑一名选手打第一场比赛,选中乙的概率是多少?(直接写出答案)(2)任选两名同学打第一场,请用树状图或列表法求恰好选中甲、乙两位同学的概率.40.(2020•昆山市一模)某市教育行政部门为了解初中学生参加综合实践活动的情况,随机抽取了本市初一、初二、初三年级各500名学生进行了调查.调查结果如图所示,请你根据图中的信息回答问题.(其中社区服务占14%,社会调查占16%)(1)在被调查的学生中,参加综合实践活动的有多少人?参加科技活动的有多少人?(2)如果本市有3万名初中学生,请你估计参加科技活动的学生约有多少名?2020年江苏中考数学一模二模考试试题分类(苏州专版)(8)——概率和统计参考答案与试题解析一.选择题(共22小题)1.(2020•吴中区二模)小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表,若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()抛掷次数100 200 300 400 500正面朝上的频数53 98 156 202 244A.200 B.300 C.500 D.800【答案】C【解答】解:观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,所以当抛掷硬币的次数为1000时,“正面朝上”的频数最接近1000×0.5=500次,故选:C.2.(2020•高新区二模)学校为了丰富学生课余活动开展了一次“爱我学校,唱我学校”的歌咏比赛,共有18名同学入围,他们的决赛成绩如表,则入围同学决赛成绩的中位数和众数分别是()成绩(分)9.40 9.50 9.60 9.70 9.80 9.90 人数 2 3 5 4 3 1 A.9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.60【答案】B【解答】解:在这一组数据中9.60是出现次数最多的,故众数是9.60,而这组数据处于中间位置的那两个数都是9.60和9.6,由中位数的定义可知,这组数据的中位数是9.60.故选:B.3.(2020•昆山市二模)如图所示3×3的正方形网格,若向该网格中进行随机投掷飞镖试验,则飞镖扎在阴影区域(顶点均在格点上)的概率为()A.B.C.D.【答案】A【解答】解:∵大正方形的面积=3×3=9,阴影部分的面积=大正方形的面积﹣4个小直角三角形的面积=9﹣4××2×1=9﹣4=5,∴阴影部分的面积占总面积的,∴飞镖落在阴影区域(顶点都在格点上)的概率为.故选:A.4.(2020•昆山市二模)一组数据:1,2,3,3,5,5,5,6的众数是()A.3 B.4 C.5 D.6【答案】C【解答】解:在这一组数据中5是出现次数最多的,故众数是5.故选:C.5.(2020•吴江区二模)九年级(1)班25名女同学进行排球垫球,每人只测一次,测试结果统计如表:8 12 20 23 24 26 32 36排球垫球(次)人数 1 1 2 4 7 6 3 1 这25名女同学排球垫1球次数的众数和中位数分别是()A.24,26 B.36,23.5 C.24,23.5 D.24,24【答案】D【解答】解:由表可知,24出现次数最多,所以众数为24;由于一共测了25人,所以中位数为排序后的第13人,即24.故选:D.6.(2020•吴江区一模)在新年晚会的投飞镖游戏环节中,7名同学投掷的成绩(单位:环)分别是7,9,9,4,9,8,8,则这组数据的中位数是()A.4 B.7 C.8 D.9【答案】C【解答】解:按从小到大的顺序排列为4,7,8,8,9,9,9,最中间的数是8,故这组数据的中位数是8.故选:C.7.(2020•昆山市一模)长沙某抗战纪念馆馆长联系某中学,选择18名青少年志愿者在同日参与活动,年龄如表所示:这18名志愿者年龄的众数和中位数分别是()年龄(单位:岁)12 13 14 15人数 3 5 6 4A.13,14 B.14,14 C.14,13 D.14,15【答案】B【解答】解:观察图表可知:年龄是14的人数有6人,出现次数最多,故众数为14;由图可知参加社区服务志愿者的共有18人,所以中位数为(14+14)÷2=14,故中位数是14;故选:B.8.(2020•相城区校级二模)如图,飞镖游戏中的每一块正方形除颜色外都相同,若某人向游戏板投据飞镖一次(假设飞镖在游戏板上),则飞镖落在阴影部分的概率是()A.B.C.D.【答案】B【解答】解:∵总面积为4×4=16,其中阴影部分面积为4×3﹣×(1×2+2×3+2×4)=4,∴飞镖落在阴影部分的概率是=,故选:B.9.(2020•工业园区校级二模)某中学初三(1)班的8名同学在一次排球垫球测试中的成绩如下:(单位:个)35,38,42,44,40,47,45,45则这组数据的中位数是()A.44 B.43 C.42 D.40【答案】B【解答】解:将这组数据从小到大重新排列为35、38、40、42、44、45、45、47,所以这组数据的中位数为=43,故选:B.10.(2020•姑苏区校级二模)有一组数据:1,3,3,6,7,8,这组数据的中位数是()A.3 B.3.5 C.4 D.4.5【答案】D【解答】解:将题目中的数据按照从小到大排列是:1,3,3,6,7,8,故这组数据的中位数是:=4.5,故选:D.11.(2020•姑苏区校级二模)如图,在边长为1的小正方形网格中,△ABC的三个顶点均在格点上,若向正方形网格中投针,落在△ABC内部的概率是()A.B.C.D.【答案】C【解答】解:∵正方形的面积=2×2=4,三角形ABC的面积=4﹣﹣1×2×﹣1×2×=,则落在△ABC内部的概率是=;故选:C.12.(2020•常熟市二模)在2019年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、平均数依次是()A.48,48,48 B.48,47.5,47.5C.48,48,48.5 D.48,47.5,48.5【答案】A【解答】解:这组数据48出现的次数最多,出现了3次,则这组数据的众数是48;把这组数据从小到大排列,最中间两个数的平均数是(48+48)÷2=48,则中位数是48;这组数据的平均数是:(47×2+48×3+50)÷6=48,故选:A.13.(2020•苏州二模)如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是()A.B.C.D.【答案】A【解答】解:因为两个同心圆等分成八等份,飞镖落在每一个区域的机会是均等的,其中黑色区域的面积占了其中的四等份,所以P(飞镖落在黑色区域)==.故选:A.14.(2020•昆山市二模)一组数据:2,4,6,4,8的中位数和众数分别是()A.6,4 B.4,4 C.6,8 D.4,6【答案】B【解答】解:将数据按从小到大排列:2,4,4,6,8其中数据4出现了2次,出现的次数最多,为众数;4处在第3位,4为中位数.所以这组数据的众数是4,中位数是4.故选:B.15.(2020•常熟市二模)在一个不透明的袋子中放有a个球,其中有6个白球,这些球除颜色外完全相同,若每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则a的值约为()A.10 B.15 C.20 D.24【答案】D【解答】解:根据题意得=0.25,解得:a=24,经检验:a=24是分式方程的解,故选:D.16.(2020•苏州一模)某校为了了解学生到校的方式,随机抽取了部分学生进行问卷调查,并将调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,则扇形统计图中“步行”对应的圆心角的度数为()A.54°B.60°C.72°D.108°【答案】C【解答】解:由图可得,本次抽查的学生有:15÷30%=50(人),扇形统计图中“步行”对应的圆心角的度数为:360°×=72°,故选:C.17.(2020•工业园区一模)如图所示的飞镖游戏板是顺次连接正六边形的三个不相邻的顶点后得到的,若某人向该游戏板投掷镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.1 B.C.D.【答案】B【解答】解:设正六边形的边长为a,则总面积为a2×6=a2,其中阴影部分面积为×(a)2=a2,∴飞镖落在阴影部分的概率是=,故选:B.18.(2020•高新区模拟)五张完全相同的卡片上,分别画有圆、平行四边形、等边三角形、角、线段,现从中随机抽取一张,恰好抽到轴对称图形的概率是()A.B.C.D.【答案】D【解答】解:卡片中,轴对称图形有圆、等边三角形、角、线段,根据概率公式,P(轴对称图形)=.故选:D.19.(2020•相城区一模)如图,在边长为1的小正方形网格中,△ABC的三个顶点均在格点上,若向正方形网格中投针,落在△ABC内部的概率是()A.B.C.D.【答案】C【解答】解:∵阴影部分的面积为××2=5,总面积为16,∴向正方形网格中投针,落在△ABC内部的概率是,故选:C.20.(2020•高新区一模)下列事件是必然事件的是()A.打开电视机,正在播放动画片B.在一只装有5个红球的袋中摸出1球,一定是红球C.某彩票中奖率是1%,买100张一定会中奖D.2018年世界杯德国队一定能夺得冠军【答案】B【解答】解:A.打开电视机,正在播放动画片是随机事件;B.在一只装有5个红球的袋中摸出1球,一定是红球是必然事件;C.某彩票中奖率是1%,买100张一定会中奖是随机事件;D.2018年世界杯德国队一定能夺得冠军是随机事件;故选:B.21.(2020•姑苏区校级模拟)下列说法错误的是()A.必然发生的事件发生的概率为1B.不可能发生的事件发生的概率为0C.随机事件发生的概率大于0且小于1D.概率很小的事件不可能发生【答案】D【解答】解:A、必然发生的事件发生的概率为1,正确;B、不可能发生的事件发生的概率为0,正确;C、随机事件发生的概率大于0且小于1,正确;D、概率很小的事件也有可能发生,故错误,故选:D.22.(2020•常熟市二模)如图,“赵爽弦图”是由四个全等的直角三角形与中间一个小正方形拼成的一个大正方形,随机在大正方形及其内部区域投针,若针孔扎到小正方形(阴影部分)的概率是,则大、小两个正方形的边长之比是()A.4:1 B.2:1 C.1:4 D.1:2【答案】B【解答】解:∵针扎到小正方形(阴影部分)的概率是,∴=,∴大、小两个正方形的边长之比是2:1;故选:B.二.填空题(共6小题)23.(2020•姑苏区校级二模)如图,正方形ABCD内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为.【答案】.【解答】解:设正方形的边长为2a,则正方形的内切圆的半径为a,所以针尖落在黑色区域内的概率==.故答案为.24.(2020•昆山市二模)在校园“阅读节”活动中,对某班每一位同学在一周内平均阅读书籍的本数作了调查,并将收集到的数据绘制成了“一周阅读书籍数量”统计表,如表所示,则该班级全体同学一周平均阅读书籍数量是 2.5本.4 3 2 1 0阅读书籍数量(本)人数 6 15 13 5 1 【答案】见试题解答内容【解答】解:(4×6+3×15+2×13+1×5+0×1)÷(6+15+13+5+1)=100÷40=2.5(本).答:该班级全体同学一周平均阅读书籍数量是2.5本.故答案为:2.5.25.(2020•姑苏区一模)转动如图所示被等分为8份的转盘一次,指针指向阴影部分的概率为.【答案】见试题解答内容【解答】解:转动如图所示的转盘一次,指针指向阴影部分的概率为=,故答案为:.26.(2020•工业园区一模)某工程队有10名员工,他们的工种及相应每人每月工资如表:工种人数每人每月工资/元电工 2 6000木工 3 5000瓦工 5 4000现该工程队对工资进行了调整:每人每月工资增加300元.与调整前相比,该工程队员工每月工资的方差不变.(填“变小”、“不变”或“变大”)【答案】见试题解答内容【解答】解:∵每人每月工资增加300元,∴平均每人工资都增加300元,∴该工程队员工每月工资的方差不变.故答案为:不变.27.(2020•高新区二模)如图,在平行四边形纸片上作随机扎针实验,针头扎在阴影区域的概率为.【答案】见试题解答内容【解答】解:∵四边形是平行四边形,∴对角线把平行四边形分成面积相等的四部分,观察发现:图中阴影部分面积=S四边形,∴针头扎在阴影区域内的概率为;故答案为:.28.(2020•吴江区三模)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁,现在任意取出一把钥匙去开任意一把锁,一次就能打开锁的概率是.【答案】见试题解答内容【解答】解:列表如下:(其中1,2,3,4分别表示四把钥匙,a,b表示四把锁,1能开启a,2能开启b),1 2 3 4a(1,a)(2,a)(3,a)(4,a)b(1,b)(2,b)(3,b)(4,b)所有等可能的情况有8种,任意取出一把钥匙去开任意一把锁,一次就能打开锁的情况有2种,(1,a),(2,b),则P==.故答案为:三.解答题(共12小题)29.(2020•吴中区二模)今年6月1日起苏州市全面实行垃圾分类,为了解同学们对垃圾分类知识的知晓情况,我区某校环保社团的同学们进行了抽样调查,对收集的信息进行整理,绘制了下面两幅尚不完整的统计图.请你根据统计图所提供的数据,解答下列问题:图中A表示“很了解”,B表示“了解”,C表示“一般”,D表示“不了解”.(1)被调查的总人数是50人,扇形统计图中C部分所对应的扇形圆心角的度数为216°;(2)若该校共有学生1800人,请根据上述调查结果,估计该校学生中B类有多少人.【答案】见试题解答内容【解答】解:(1)5÷10%=50(人),360°×=216°,故答案案为:50,216°;(2)1800×=360(人),答:该校1800名学生中B类有360人.30.(2020•吴中区二模)某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和1个黑球,这些球除颜色外都相同,顾客每次摸出一个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品.(1)如果小明只有一次摸球机会,那么小明获得奖品的概率为.(2)如果小明有两次摸球机会(摸出后不放回),求小明获得2份奖品的概率.(请用“画树状图”或“列表”等方法写出分析过程)【答案】见试题解答内容【解答】解:(1)如果小明只有一次摸球机会,那么小明获得奖品的概率为,故答案为:;(2)列表如下:。
江苏省苏州市中考数学二模试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.二次函数2x y =的图象向右平移3个单位,得到新的图象的函数表达式是( )A .32+=x yB .32-=x yC .2)3(+=x yD .2)3(-=x y 2.下列图形中,是中心对称图形而不是轴对称图形的是( )A . 平行四边形B . 正方形C . 正三角形D . 线段AB 3.如图,在边长为4的等边三角形ABC 中,AD 是BC 边上的高,点E 、F 是AD 上的两点,则图中阴影部分的面积是( )A .43B .33C .23D .34.下列是二元一次方程的是( )A .36x x -=B .32x y =C .10x y -=D .23x y xy -=5.下列说法中,正确的是( )A .买一张电影票,座位号一定是偶数B .投掷一枚均匀的硬币,正面一定朝上C .三条任意长的线段可以组成一个三角形D .从1,2,3,4,5这五个数字中任取一个数,取得奇数的可能性大6.在多项式①2263a ab b ++;②221449m mn n -++;③21025a a -+;④2221ab a b +-;④6321y y -+中,不能用完全平方公式分解因式的有( )A .①②⑤B .③④C .①②④D .②④⑤ 7.从1 到9这九个自然教中任取一个,是2 的倍数或是3 的倍数的概率是( ) A .19 B . 29 C .12D .23 8.某园林占地面积约为800000 m 2,若按比例尺1:2000缩小后,其面积大约相当于( )A .一个篮球的面积B .一张乒乓球台面的面积C .《钱江晚报》一个版面的面积D .《数学》课本封面的面积9.下列说法中正确的个数有( )①全等i 角形对应角所对的边是对应边,对应边所夹的角是对应角②全等三角形对应边所对的角是对应角,对应边所夹的角是对应角③全等三角形中的公共边是对应边,公共角是对应角,对顶角是对应角④两个全等三角形中,相等的边是对应边,相等的角是对应角A.1个 B 2个C.3个D.4个10.下列说法中正确的是()A.直线大于射线B.连结两点的线段叫做两点的距离C.若AB=BC,则B是线段AC的中点D.两点之间线段最短11.运用分配律计算:(-3)×(-8+2-3),有下列四种不同的结果,其中正确的是()A.-3×8-3×2-3×3 B.-3×(-8)-3×2-3×3C.(-3)×(-8)+3×2-3×3 D.(-3)×(-8)-3×2+3×3二、填空题12.如图1,先将一矩形ABCD置于直角坐标系中,使点A与坐标系的原点重合,边AB、AD分别落在x轴、y轴上,再将此矩形在坐标平面内按逆时针方向绕原点旋转30°(如图2),若AB=4,BC=3,则图1和图2中点B点的坐标为;点C的坐标.解答题13.如果一个几何体的主视图、左视图与俯视图都是一样的图形,那么这个几何体可能是.14.已知 CD 是 Rt△ABC 斜边上的高线,且 AB= 10,若 sin∠ACD=45,则CD= .15.如图,铁道口栏杆的短臂长为1.2m,长臂长为8m,当短臂端点下降0.6m时,长臂端点升高________m(杆的粗细忽略不计).16.如图,△EDC 是由△ABC 缩小后得到的,那么点E的坐标是.17.如图,AB = CD,∠AOC= 85°,则∠BOD= .18.已知一个四边形的边长依次分别为a,b,c,d,且a2+b2+c2+d2=2ac+2bd,•则此四边形为.19.如果菱形的周长为24 cm,一条较短的对角线长是6 cm,那么两相邻内角分别为、.20.已知2m n+=,2mn=-,则(1)(1)m n--= .21.认真观察图中的4个图中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征.特征 1:;特征2: .22.请举出生活中两个常见的反映旋转变换的例子:______________.23.长方形的长为2ab(m),面积为22a b(m2),则这个长方形的宽为 m,周长为 m. 24.在Rt△ABC中,∠C=90°,其中∠A,∠B的平分线的交点为E,则∠AEB的度数为.三、解答题25.在△ABC 中,∠C=900,∠A=300, BD是∠B的平分线,如图所示.(1)如果AD=2,试求BD和BC的长;(2)你能猜想AB与DC的数量关系吗,请说明理由.26.如图,AB、AC 是⊙O的两条弦,且AB=AC,延长CA 到点 D,使 AD=AC,连结 DB 并延长,交⊙O于点 E,求证:CE 是⊙O 的直径.27.如图所示,Rt△ACB中,∠ABC=90°,点B、C在x轴上,点A是直线y=x+m与双曲线my在第一象限内的交点,O为坐标轴原点,若△AOB 的面积为3.x(1)求m的值,并写出直线和双曲线的函数解析式;(2)求△ABC 的面积.28.如图.(1)如果此图形中四个点的纵坐标不变,横坐标都乘-1,在直角坐标中画出新图形,并比较新图形与原图形有何关系;(2)如果原图中四个点的横坐标不变,纵坐标都加上-2,在直角坐标系中画出新图形,并比较新图形与原图形有何关系.29.已知:如图,AD、BE是△ABC的高,F是DE中点,G是AB的中点.试说明GF⊥DE.30.计算:(1)(-2x)3·(4x2y) (2)(4×106)(8×104)·105 (3)(m3)4+m10·m2+m·m5·m6【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.A3.C4.B5.D6.C7.D8.C9.D10.D11.D二、填空题12.B(4,0)、(32,2), C(4,3)、(2334-,2433+)13.球体或正方体14.24515.416.(—2,2)17.85°18.平行四边形19.60°,l20°20.-321.都是轴对称图形;这些图形的面积都等于4个单位面积22.略23.12ab,5ab24.135°三、解答题25.(1)BD=2,BC=3; (2)AB=32DC.26.连结 CB.∵AB=AC, ∵∠1=∠2 ,∵AD=AC, ∴AB=AD,∴∠ABD=∠D,∵∠1+∠2+∠ABD+∠D=180°,∴∠2+∠ABD=90,∴∠CBE=90°,∴CE 是⊙O 的直径.27.(1)设A 点坐标为(x A ,y A ),∵3AOB S ∆=,∴1||32A A x y ⋅=, ∴||6A A x y ⋅=,由图象在第一象限知m>0,∴6A m x y λ=⋅=,直线的解析式为:6y x =+,双曲线的解析式是6y x= (2)由66y x y x =+⎧⎪⎨=⎪⎩,2660x x +-=,得1153x =,2153x =-(舍去) 由点A 在第一象限知,x>0∴153153),C(一6,0) ∴ABC AOC AOB 12315S S S ∆∆∆=+=+28.(1)图略,四个点的坐标变为(0,0),(-6,3),(-4,0),(-6,-3),新图形与原图形关于 y 轴对称 (2)图略,四个点的坐标变为(0,-2),(6,1),(4,-2),(6,-5),新图形是由原图形向下平移 2个单位长度得到的29.先说明EG=DG ,再利用三线合一说明30.(1)-32x 5y ,(2)3.2×1016,(3)3m 12。
江苏省苏州市中考数学二模试题学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知△ABC ∽△DEF ,∠A =∠D =30°,∠B=50°,AC 与DF 是对应边,则∠F=( )A .50°B .80°C .100°D .150°2. 在同一直角坐标系中,函数k y x=与函数2(1)y k x =-的图象大致是( )A .B .C .D .3. 函数y kx k =-与k y x=-在同一坐标系中的大致图象是( )A .B .C .D .4.从正方形的铁片上,截去2 cm 宽的一条长方形铁片,余下铁片的面积是48cm 2,则原来正方形铁片的面积是( )A .6cm 2B .8 cm 2C .36 cm 2D .64 cm 25. 23,625-11651492326( )A .2 个B .3 个C .4 个D .5 个 6.如图,已知一次函数y kx b =+的图象,当x<0时,y 的取值范围是 ( )A .y>0B .y<OC .-2<y<OD .y<-27.已知点P (4,a+1)到两坐标轴的距离相等,则a 的值为( )A .3B .4C .-5D .3或-5 8.如图所示,AD ⊥BC 于D ,那么以AD 为高的三角形有( )A . 3个B .4个C . 5个D .6个9.下列各个变形正确的是( )A .由 7x=4x-3,移项,得 7x-4x=3B .由 3(2x-1)=1+ 2(x-3),去括号,得6x-1 =1+2x-3C .由 2(2x-1)-3(x-3)= 1,去括号,得4x-2-3x-9= 1D .由 2(x+1)=x+8,去括号,移项,合并,得x=610.已知|2006||2007|0x y -++=,则x 与y 的大小关系是( )A .x y <B .x y >C .0x y <-<D .0x y >->二、填空题11.如图是一束平行的阳光从教室的窗户射入的平面示意图,光线与地面所成角60°,在教室地面的影长 MN= 23m ,若窗户的下檐到教室地面的距离 BC= lm ,则窗户的上檐地面的距离 AC 为 m .12.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的正切值等于 . 13.某人从地面沿着坡度为3:1=i 的山坡走了100米,这时他离地面的高度是______米. 14.二次函数y=x 2-2x-3与x 轴两交点之间的距离为 . 15.已知:251 ,251+=-=y x ,求2xy y x ++的值. EOD C B A16.如图,某同学不小心把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带去玻璃店.17.如图,在Rt△ABC中,∠C=Rt∠,AC=6,AB=BC+2,则斜边AB长为.18.若12xy=⎧⎨=⎩是关于 x,y 方程312mx y-=的一个解,则m= .19.如图是某中学就“月球上有水吗”这一问题调查结果的扇形统计图,则该统计图中,“不知道”部分的圆心角的度数为,已知认为“无水”的同学共有100位,那么参加这次调查的人数是.20.用代数式填空.(1)七年级全体同学,参加市教育局组织的国际教育活动,一共分成n个排,每排3个班,每班 10 人,那么七年级一共有名同学;(2)某班有共青团员 m 名,分成两个团小组,第一团小组有 x名,则第二团小组有名;(3)在 2005 年“世界献血日宣传周”期间,某市总计献血 4.483×lO5 mL,设献血人数为 n 人,则平均每人献血 ml.三、解答题21.如图,已知⊙O1与⊙O2外切于A,⊙O1的直径 CE 的延长线与⊙O2相切于B,过 C作⊙O1的切线与O2O1的延长线相交于D,⊙O1和⊙O的半径长分别是2和 3,求 CD 的长.A B CD M N D ′22.如图,在△ABC 中,AB=AC ,E 是AB 的中点,以点E 为圆心,EB 为半径画弧交 BC 于点 D ,连结 ED ,并延长 ED 到点 F ,使 DF =DE ,连结 FC . 求证:∠F=∠A .23.已知:如图,在□ABCD 中,AB =4,∠ABC =60°,对角线AC ⊥AB ,将□ABCD 对折,使点C 与点A 重合,折痕为MN , 试判断△AMD ′的形状,并说明理由.24.某乡镇企业中有20名工人在同一道工序生产同一零件,以下列出了20名工人在一个正常的工作日中的产量,请你列一个工人日产量的频率统计表.画出频数直方图,并指出多数工人的日产量在哪个范围内变动?220,222,219,230,228,220,236,212,227, 238,240,200,236,215,258,227,228,235, 240,21225.在一块边长为1m 的正方形铁板上截出一个面积为800cm 2的矩形铁板,使长比宽多20cm ,问矩形铁板的长和宽各为多长?26.如图,是一个楼梯的侧面示意图.(1)如果用(4,2)来表示点D的位置,那么点A、C、H又该如何表示呢?(2)按照第(1)题的表示方法,(2,O),(6,4),(8,8)又分别表示哪个点的位置?27.如图,O是△ABC外一点,以点O为旋转中心,将△ABC逆时针方向旋转90°,作出经旋转变换后的像.O.B C28.如图所示,把方格纸上的四边形ABCD作相似变换,使所成的像是原图形的2倍.29.为了解班级中10名男生,l0名女生的记忆能力,进行了如下的实验:先让他们观察一段展示10种水果的录像(一遍),然后请这20名同学写出他们所观察到的水果种类,结果如下(单位:种).8 7(女) 5 6 8(女)7 4 5 6(女) 910(女) 9(女) 7(女) 4 7(女)8(女) 5 9(女) 6 8(女)(1)这组数据是通过什么方法获得的?(2)学生的记忆能力与性别有关吗?为了回答这个问题,你将怎样处理这组数据?你的结论是什么?30.把下列实数在数轴上表示,并比较它们的大小:-2 ,,3.3, π2 3.3π-<<【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.C4.D5.B6.D7.D8.D9.D10.B二、填空题11.312. 21 13. 50 14.415.20.16.③17.1018.5319. 72°,400人20.(1)30n (2)m-x (3)448300n三、解答题21.连结O 2B ,则 O 2B ⊥BC ,∴2221122534BO O O O B =-=-=,又∵CD 为⊙O 1的切线,∴CD ⊥BC ,∴CD ∥O 2B ,∴211O B BO CD O C =, ∴342CD =,∴CD=1.5. 22.∵以点 E 为圆心,EB 为半径画弧交 BC 于点D ,∴EB=DE ,∵E 点是AB 的中点,且 AB=AC ,∴ ED=12AC .∵ DE= DF ,∴ EF=AC ,∵AB=AC ,∴∠ABC=∠ACB , ∵∵EB=DE ,∴∠EBD=∠EDB ,∴∠EDB=∠ACB ,∴EF ∥AC ,∵ EF=AC ,∴四边形AEFC 是平行四边形,∴∠.A=∠F.23.△AMD ′是正三角形.24.图略,多数工人的日产量在220~229之间25.长 40 cm ,宽 20 cm26.(1)A(0,0),C(2,2),H(8,6);(2)B ,F ,I27.略.28.图略29.(1)实验 (2)把数据按男、女生分类,并将数据按从小到大的次序排列结论:女生的记忆力普遍比男生好30.2 3.3π-<<。
2020年江苏省苏州市中考二模试卷数学试卷一、选择题(本大题共10小题,共30分)1.下列四个数中,是正整数的是()A. −2B. πC. 12D. 102.下列运算正确的是()A. a2×a3=a6B. a2+a2=2a4C. a8÷a4=a4D. (a2)3=a53.已知某新型感冒病毒的直轻约为0.000000823米,将0.000000823用科学记数法表示()A. 8.23×10−5B. 8.23×10−6C. 8.23×10−7D. 8.23×10−84.AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C;连接BC,若∠P=40°,则∠B等于()A. 20°B. 25°C. 30°D. 40°5.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:鞋的尺码/cm2323.52424.525销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A. 24.5,24.5B. 24.5,24C. 24,24D. 23.5,246.化简(x−2)÷(2x−1)⋅x的结果是()A. −x2B. x2C. −1D. 17.如图,在Rt△ABC中,CD是斜边AB上的中线.已知AC=3,CD=2,则tan A的值为()A. 34B. 43C. √73D. √748.一元二次方程(x+1)(x−3)=2x−5根的情况是()A. 无实数根B. 有一个正根,一个负根C. 有两个正根,且都小于3D. 有两个正根,且有一根大于39.如图,平行四边形ABCD绕点D逆时针旋转40°,得到平行四边形A′B′C′D(点A′是A点的对应点,点B’是B点的对应点,点C′是C点的对应点),并且A′点恰好落在AB边上,则∠B的度数为()A. .100°B. 105°C. .110°D. .115°10.如图,Rt△ABC中.∠BAC=90°,AB=1,AC=2√2.点D,E分别是边BC,AC上的动点,则DA+DE的最小值为()A. 89B. 169C. 8√29D. 16√29二、填空题(本大题共8小题,共24.0分)11.计算√13×√12=______.12.分式方程2x−2=3x的解是______.x+y=______.13.若x+2y=4,则4+1214.已知直线a//b,将一块含45°角的直角三角板(∠C=90°),按如图所示的位置摆放,若∠1=55°,则∠2的度数为______.15.如图,正六边形内接于⊙O,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是______.16.如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏东60°方向行驶12千米至B地,再沿北偏西45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,则B,C两地的距离为______千米.(结果保留根号)17.如图,正方形ABCD中,AB=6,E是CD的中点,将△ADE沿AE翻折至△AFE,连接CF,则CF的长度是______.18.甲、乙两车从A地出发,匀速驶向B地,甲车以80km/ℎ的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(ℎ)之间的函数关系如图所示.给出下列说法:①乙车的速度是120km/ℎ;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的有______.(把你认为正确结论的序号都填上)三、计算题(本大题共1小题,共8分)19.某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.(1)求每个篮球和每个足球的售价;(2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买多少个足球?四、解答题(本大题共9小题,共68分)20.计算:|1−√3|+2−2−2sin60°21.解不等式组:{2x−1≥x+1 x−1<x+6322.一只不透明的口袋里装有1个红球、1个黄球和若干个白球,这些球除颜色外其余都相同,搅匀后从中任意摸出一个是白球的概率为12(1)试求袋中白球的个数;(2)搅匀后从中任意摸出1个球(不放回),再从余下的球中任意摸出1个球,试用画树状图或列表格的方法,求两次摸出的2个球恰好是1个白球、1个红球的概率,23.在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE,垂足为F.(1)证明:△ABE≌△DFA;(2)若∠CDF=30°,且AB=3,求AE的长.24.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.调查结果统计表组别分组(单位:元)人数A0≤x<304B30≤x<6016C60≤x<90aD90≤x<120bE x≥1202请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有______人,a+b=______,m=______;(2)求扇形统计图中扇形C的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额在60≤x<120范围的人数.(x>0,k是常数)的图象经过A(1,3),B(m,n),其中25.如图,反比例函数y=kxm>1.过点B作y轴的垂线,垂足为C.连接AB,AC,△ABC的面积为15.2(1)求k的值和直线AB的函数表达式:(x>0,k(2)过线段AB上的一点P作PD⊥x轴于点D,与反比例函数y=kx是常数)的图象交于点E,连接OP,OE,若△POE的面积为1,求点P的坐标.26.如图,以△ABC的BC边上一点O为圆心的圆,经过A、C两点,与BC边交于点E,点D为CE的下半圆弧的中点,连接AD交线段EO于点F.AB=BF,CF=4,DF=√10.(1)求证:AB是⊙O的切线;(2)求⊙O的半径r;(3)设点P是BA延长线上的一个动点,连接DP交CF于点M,交弧AC于点N(N与A、C不重合).试问DM⋅DN是否为定值?如果是,求出该定值;如果不是.请说明理由.27.如图,在四边形ABCD中,AB//DC,CB⊥AB.AB=16cm,BC=6cm,CD=8cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为2cm/s.点P和点Q同时出发,设运动的时间为t(s),0<t<5.(1)用含t的代数式表示AP;(2)当以点A.P,Q为顶点的三角形与△ABD相似时,求t的值;(3)当QP⊥BD时,求t的值.28.如图1,抛物线C1:y=x2−ax与C2=−x2+bx相交于点O、C,C1与C2分别交x轴于点B、A,且B为线段AO的中点.(1)点A的坐标为(______,______),点B的坐标为(______,______),a的值为______;b(2)若OC⊥AC,求△OAC的面积;(3)在(2)的条件下,设抛物线C2的对称轴为l,顶点为M(如图2),点E在抛物线C2上点O与点M之间运动,四边形OBCE的面积是否存在最大值?若存在,求出面积的最大值和点E的坐标;若不存在,请说明理由.答案和解析1.【答案】D【解析】解:∵大于零的整数即为正整数.故选:D.根据正整数的定义直接判断即可.本题考查正整数的定义,要理解大于零的整数即为正整数.2.【答案】C【解析】解:A、a2×a3=a5,故原题计算错误;B、a2+a2=2a2,故原题计算错误;C、a8÷a4=a4,故原题计算正确;D、a2)3=a6,故原题计算错误;故选:C.根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;同底数幂的除法法则:底数不变,指数相减;幂的乘方法则:底数不变,指数相乘,合并同类项,只把系数相加,字母部分不变进行分析即可.此题主要考查了同底数幂的乘法、除法、幂的乘方,以及合并同类项,关键是掌握各计算法则.3.【答案】C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000823=8.23×10−7,故选:C.4.【答案】B【解析】解:∵PA切⊙O于点A,∴∠PAB=90°,∵∠P=40°,∴∠POA=90°−40°=50°,∵OC=OB,∴∠B=∠BCO=25°,故选:B.由切线的性质得:∠PAB=90°,根据直角三角形的两锐角互余计算∠POA=50°,最后利用同圆的半径相等得结论.本题考查了切线的性质、等腰三角形的性质,属于常考题型,熟练掌握圆的切线垂直于过切点的半径是关键.5.【答案】A【解析】解:这组数据中,众数为24.5,中位数为24.5.故选:A.利用众数和中位数的定义求解.本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.6.【答案】A【解析】解:(x−2)÷(2x−1)⋅x=(x−2)÷2−xx⋅x=(x−2)⋅x⋅x=−x2,故选:A.根据分式的除法和乘法可以解答本题.本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.7.【答案】C【解析】解:∵CD是Rt△ABC斜边AB上的中线,∴AB=2CD=4,∴BC=√AB2−AC2=√16−9=√7∴tanA=BCAC=√73故选:C.利用直角三角形的斜边中线与斜边的关系,先求出CD,再通过勾股定理求出BC,最后利用直角三角形的边角关系计算tan A.本题考查了直角三角形斜边的中线与斜边的关系、勾股定理及锐角三角函数.掌握直角三角形斜边的中线与斜边的关系是解决本题的关键.在直角三角形中,斜边的中线等于斜边的一半.8.【答案】D【解析】解:(x+1)(x−3)=2x−5整理得:x2−2x−3=2x−5,则x2−4x+2=0,(x−2)2=2,解得:x1=2+√2>3,x2=2−√2,故有两个正根,且有一根大于3.故选:D.直接整理原方程,进而解方程得出x的值.此题主要考查了一元二次方程的解法,正确解方程是解题关键.9.【答案】C【解析】解:由题意,DA=DA′,∠ADA′=40°,∴∠A=∠DA′A=12(180°−40°)=70°,∵四边形ABCD是平行四边形,∴AD//BC,∴∠B+∠A=180°,∴∠B=110°,故选:C.根据旋转不变性可知:DA=DA′,∠ADA′=40°,求出∠A即可解决问题.本题考查旋转变换,平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【答案】B【解析】解:作A关于BC的对称点A′,连接AA′,交BC于F,过A′作A′E⊥AC于E,交BC于D,则AD=A′D,此时AD+DE的值最小,就是A′E的长;Rt△ABC中,∠BAC=90°,AB=1,AC=2√2,∴BC=√12+(2√2)2=3,S△ABC=12AB⋅AC=12BC⋅AF,∴1×2√2=3AF,AF=2√23,∴AA′=2AF=4√23,∵∠A′FD=∠DEC=90°,∠A′DF=∠CDE,∴∠A′=∠C,∵∠AEA′=∠BAC=90°,∴△AEA′∽△BAC,∴AA′A′E =BCAC,∴4√23A′E=2√2,∴A′E=169,即AD+DE的最小值是169;故选:B.如图,作A关于BC的对称点A′,连接AA′,交BC于F,过A′作AE⊥AC于E,交BC于D,则AD=A′D,此时AD+DE的值最小,就是A′E的长,根据相似三角形对应边的比可得结论.本题考查轴对称−最短问题、三角形相似的性质和判定、两点之间线段最短、垂线段最短等知识,解题的关键是灵活运用轴对称以及垂线段最短解决最短问题,属于中考填空题中的压轴题.11.【答案】2【解析】解:原式=√13×12=√4=2,故答案为:2.根据二次根式的乘法法则计算可得.本题主要考查二次根式的乘除法,解题的关键是掌握二次根式的乘法法则:√a⋅√b=√a⋅b(a≥0,b≥0).12.【答案】x=6【解析】解:去分母得:2x=3x−6,解得:x=6,经检验x=6是分式方程的解,故答案为:x=6分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13.【答案】6【解析】【分析】本题考查了代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值.把代数式4+12x+y变形为4+12(x+2y),然后利用整体代入的方法计算.【解答】解:∵x+2y=4,∴4+12x+y=4+12(x+2y)=4+12×4=4+2=6.故答案为6.14.【答案】80°【解析】解:给图中各角标上序号,如图所示.∵∠5=∠4+∠B,∠4=∠1=55°,∠B=45°,∴∠5=45°+55°=100°.∵∠3+∠5=180°,∴∠3=80°.∵直线a//b,∴∠2=∠3=80°.故答案为:80°.给图中各角标上序号,由三角形外角的性质及对顶角相等可求出∠5的度数,由∠5的度数结合邻补角互补可求出∠3的度数,由直线a//b利用“两直线平行,同位角相等”可得出∠2=∠3=80°,此题得解.本题考查了等腰直角三角形、平行线的性质三角形外角的性质,利用三角形外角的性质以及邻补角互补,求出∠3的度数是解题的关键.15.【答案】16【解析】解:如图所示:连接OA,∵正六边形内接于⊙O,∴△OAB,△OBC都是等边三角形,∴∠AOB=∠OBC=60°,∴OC//AB,∴S△ABC=S△OBC,∴S阴=S扇形OBC,则飞镖落在阴影部分的概率是16;故答案为:16.根据图形分析可得求图中阴影部分面积实为求扇形部分面积,而扇形面积是圆面积的16,可得结论.此题主要考查了正多边形和圆、几何概率以及扇形面积求法,得出阴影部分面积=S扇形OBC是解题关键.16.【答案】6√6【解析】解:作BD⊥AC于D,在Rt△ABD中,sin∠DAB=BDAB,∴BD=AB⋅sin∠DAB=6√3,在Rt△CBD中,cos∠CBD=BDBC,∴BC=BDcos∠CBD=6√6(千米),故答案为:6√6.作BD⊥AC于D,根据正弦的定义求出BD,根据余弦的定义求出BC.本题考查的是解直角三角形的应用−方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.17.【答案】65√5【解析】解:如图,连接DF交AE于G,由折叠可得,DE=EF,又∵E是CD的中点,∴DE=CE=EF,∴∠EDF=∠EFD,∠ECF=∠EFC,又∵∠EDF+∠EFD+∠EFC+∠ECF=180°,∴∠EFD+∠EFC=90°,即∠DFC=90°,由折叠可得AE⊥DF,∴∠AGD=∠DFC=90°,又∵ED=3,AD=6,∴Rt△ADE中,AE=3√5,又∵12×AD×DE=12×AE×DG,∴DG=AD×DEAE =65√5,∵∠DAG+∠ADG=∠CDF+∠ADG=90°,∴∠DAG=∠CDF,又∵AD=CD,∠AGD=∠DFC=90°,∴△ADG≌△DCF(AAS),∴CF=DG=65√5,故答案为:65√5.连接DF 交AE 于G ,依据轴对称的性质以及三角形内角和定理,即可得到∠AGD =∠DFC =90°,再根据面积法即可得出DG =AD×DE AE =65√5,最后判定△ADG≌△DCF ,即可得到CF =DG =65√5.本题主要考查了正方形的性质,折叠的性质以及全等三角形的判定与性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.18.【答案】①②③【解析】解:由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km/ℎ.①正确;由图象第2−6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离4×40=160km ,则m =160,②正确;当乙在B 休息1h 时,甲前进80km ,则H 点坐标为(7,80),③正确;乙返回时,甲乙相距80km ,到两车相遇用时80÷(120+80)=0.4小时,则n =6+1+0.4=7.4,④错误.故答案为:①②③.根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.本题考查一次函数的应用,主要是以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态. 19.【答案】解:(1)设每个篮球和每个足球的售价分别为x 元,y 元,根据题意得:{2x +y =3203x +2y =540, 解得:{x =100y =120, 则每个篮球和每个足球的售价分别为100元,120元;(2)设足球购买a 个,则篮球购买(50−a)个,根据题意得:120a +100(50−a)≤5500,整理得:20a ≤500,解得:a ≤25,则最多可购买25个足球.【解析】(1)设每个篮球和每个足球的售价分别为x 元,y 元,根据题意列出方程组,求出方程组的解即可;(2)设篮球购买a 个,则足球购买(50−a)个,根据题意列出不等式,求出不等式的解集即可确定出最多购买的足球.此题考查了一元一次不等式的应用,以及二元一次方程组的应用,弄清题中的等量关系及不等关系是解本题的关键.20.【答案】解:原式=√3−1+14−2×√32, =√3−1+14−√3,=−34.【解析】本题涉及绝对值、负指数幂、特殊角的三角函数值3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值、特殊角的三角函数值等考点的运算.21.【答案】解:解不等式2x−1≥x+1,得:x≥2,解不等式x−1<x+63,得:x<4.5,则不等式组的解集为2≤x<4.5.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.【答案】解:(1)设袋中白球的个数有x个,根据题意得:x1+1+x =12,解得:x=2,答:袋中白球的有2个;(2)根据题意画图如下:共有12种等可能的结果,其中摸出两个球恰好是1个白球、1个红球占4种,所以两次摸出的2个球恰好是1个白球、1个红球的概率是412=13.【解析】(1)设袋中白球的个数有x个,根据概率公式列出算式,再求解即可;(2)根据题意先画出树状图得出所有等情况数和两次摸出的2个球恰好是1个白球、1个红球的情况数,然后根据概率公式求解即可.本题考查了利用列表与树状图求概率的方法:先通过列表或树状图展示所有等可能的结果数n,再找出其中某事件所占有的结果数m,然后根据概率的概念求出这个事件的概率P=mn.23.【答案】证明:(1)∵四边形ABCD是矩形,∴∠B=90°,AD=BC,AD//BC,∴∠DAF=∠AEB,∵AE=BC,∴AD=AE,∵DF⊥AE,∴∠AFD=∠B=90°,在△ABE和△DFA中{∠AEB=∠DAF ∠B=∠AFDAE=AD,∴△ABE≌△DFA(AAS).(2):∵△ABE≌△DFA,∠CDF=30°,AB=3,∴AB=DF=3,AE=AD,∴AE=2AB=6.【解析】(1)根据矩形性质得出∠B=90°,AD=BC,AD//BC,求出∠DAF=∠AEB,AD=AE,∠AFD=∠B=90°,根据AAS证出三角形全等即可.(2)根据全等三角形性质得出AB=DF=3,AE=AD,进而解答即可.本题考查了矩形的性质,全等三角形的性质和判定,勾股定理,解直角三角形的应用,主要考查学生的推理能力和计算能力.24.【答案】(1)50,28,8;(2)扇形统计图中扇形C的圆心角度数是360°×2850=144°;(3)每月零花钱的数额在60≤x<120范围的人数是1000×2850=560(人).【解析】解:(1)调查的总人数是16÷32%=50(人),则b=50×16%=8,a=50−4−16−8−2=20,A组所占的百分比是450=8%,则m=8.a+b=8+20=28.故答案是:50,28,8;(2)、(3)见答案.(1)根据B组的频数是16,对应的百分比是32%,据此求得调查的总人数,利用百分比的意义求得b,然后求得a的值,m的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1000乘以对应的比例即可求解.本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.25.【答案】解:(1)∵反比例函数y=kx(x>0,k是常数)的图象经过A(1,3),∴k=1×3=3,∴反比例函数为y=3x,∵反比例函数y=kx(x>0,k是常数)的图象经过B(m,n),∴n=3m,∵△ABC的面积为152,∴12m⋅(3−3m)=152,解得m=6,∴n=36=12,∴B(6,12),设直线AB的解析式为y=ax+b,∴{a+b=36a+b=12,解得{a=−12b=72,∴直线AB的解析式为y=−12x+72;(2)设P点的坐标为(x,−12x+72),则E(x,3x),∵△POE的面积为1,∴12x⋅(−12x+72−3x)=1,解得x=2或5,∴P(2,52)或(5,1).【解析】本题考查反比例函数与一次函数的交点问题,待定系数法以及三角形面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.(1)根据待定系数法即可求得k的值,得到反比例函数的解析式,把B点代入得到n=3m,根据三角形ABC的面积即可求得B点的坐标,然后根据待定系数法求得直线AB的解析式;(2)设P点的坐标为(x,−12x+72),则E(x,3x),根据△POE的面积为1得出12x⋅(−12x+72−3x)=1,解方程即可求得.26.【答案】(1)证明:如图1,连接OA,OD,∵D为为CE的下半圆弧的中点,EC为⊙O直径,∴ED⏜=CD⏜,∴∠EOD=∠COD=12×180°=90°,∵OA=OD,∴∠OAD=∠ODA,又∵BA=BF,∴∠BAF=∠BFA=∠DFO,∴∠BAF+∠OAD=∠DFO+∠ODA=90°,∴OA⊥AB,∴AB是⊙O的切线;(2)设⊙O的半径为r,由(1)知,∠EOD=90°,在Rt△OFD中,OD=r,OF=4−r,DF=√10,∴r2+(4−r)2=(√10)2,解得,r1=1(舍去),r2=3,∴⊙O半径为3;(3)如图2,连接CN,CD,在Rt△OCD中,OC=OD=r=3,DC=√OC2+OD2=3√2,∵ED⏜=CD⏜,∴∠ECD=∠DNC,又∵∠CDN=∠CDN,∴△DCM∽△DNC,∴DCDN =DMDC,∴DM⋅DN=DC2,∵DC=(3√2)2=18,∴DM⋅DN为定值,该定值为18.【解析】(1)连接OA,OD,由点D为CE的下半圆弧的中点,证得∠EOD=90°,再证∠BAF=∠BFA=∠DFO,由∠OAD=∠ODA可证得∠BAO=90°,可推出结论;(2)设⊙O的半径为r,在Rt△OFD中,利用勾股定理可求出半径r;(3)连接CN,CD,求出DC的长度,证△DCM∽△DNC,利用相似三角形对应边的比相等,可证得DM⋅DN=DC2,因为DC的长度已知,所以可知DM⋅DN为定值,并可求出其值.本题考查了切线的判定定理,圆的有关性质,勾股定理,相似三角形的判定与性质等,解题的关键是第(3)问能够由结论进行猜想,通过作辅助线构造相似,并加以证明.27.【答案】解:(1)如图作DH⊥AB于H,则四边形DHBC是矩形,∴CD=BH=8,DH=BC=6,∴AH=AB−BH=8,AD=√DH2+AH2=10,BD=√CD2+BC2=10,由题意AP=AD−DP=10−2t.(2)当以点A.P,Q为顶点的三角形与△ABD相似时,∴APAD =AQAB或APAB=AQAD,∴10−2t10=2t16或10−2t16=2t10,解得:t=4013或t=2513,∴当t=4013或t=2513时,当以点A.P,Q为顶点的三角形与△ABD相似;(3)当PQ⊥BD时,∠PQN+∠DBA=90°,∵∠QPN+∠PQN=90°,∴∠QPN=∠DBA,∴tan∠QPN=QNPN =34,∴45(10−2t)−2t35(10−2t)=34,解得t=3527,经检验:t=3527是分式方程的解,∴当t =3527s 时,PQ ⊥BD .【解析】(1)如图作DH ⊥AB 于H 则四边形DHBC 是矩形,利用勾股定理求出AD 的长即可解决问题;(2)根据相似三角形的性质列方程即可得到结论;(3)当PQ ⊥BD 时,∠PQN +∠DBA =90°,∠QPN +∠PQN =90°,推出∠QPN =∠DBA ,推出tan ∠QPN =QN PN =34,由此构建方程即可解决问题. 本题考查了相似三角形的性质,矩形的判定和性质,解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形. 28.【答案】(1)(b , 0); ( a , 0 ) ;12 .(2)联立两抛物线解析式可得{y =x 2−ax y =−x 2+2ax,消去y 整理可得2x 2−3ax =0,解得x 1=0,x 2=32a ,x =32a 时,y =34a 2,∴C(32a,34a 2), 过C 作CD ⊥x 轴于点D ,如图1,∴D(32a,0), ∵∠OCA =90°,∴△OCD∽△CAD ,∴CDAD =ODCD ,∴CD 2=AD ⋅OD ,即(34a 2)2=12a ⋅32a ,解得∴a 1=0(舍去),a 2=23√3,a 3=−23√3(舍去),∴OA =2a =4√33,CD =1, ∴S △OAC =12OA ⋅CD =12×4√33×1=2√33;(3)设E(m,−m2+43√3m)(0≤m≤2√33),则S△OBE=12×2√33(−m2+43√3m)=−√33m2+43m.B(2√33,0),C(√3,1),设直线BC的解析式为y=kx+b,{2√33k+b=0√3k+b=1,∴{k=√3b=−2∴直线BC的解析式为y=√3x−2,−m2+4√33m=√3x−2,x=−√33m2+43m+2√33,∴EN=−√33m2+13m+2√33,∴S△EBC=−√36m2+16m+√33,∴S四边形OBCE =S△OBE+S△EBC=−√32m2+32m+√33=−√32(m−√32)2+17√324,∵0≤m≤2√33,∴当m=√32时,四边形OBCE的面积有最大值,最大值是17√324,当m=√32时,y=−(√32)2+4√33⋅√32=54,∴E(√32,54),四边形OBCE的面积有最大值,最大值是17√324.【解析】【分析】(1)由两抛物线解析式可分别用a和b表示出A、B两点的坐标,利用B为OA的中点可得到a和b之间的关系式;(2)由抛物线解析式可先求得C点坐标,过C作CD⊥x轴于点D,可证得△OCD∽△CAD,由相似三角形的性质可得到关于a的方程,可求得OA和CD的长,可求得△OAC的面积;(3)设出E点坐标,则可表示出△EOB的面积,过点E作x轴的平行线交直线BC于点N,可先求得BC的解析式,则可表示出EN的长,进一步可表示出△EBC的面积,则可表示出四边形OBCE的面积,利用二次函数的性质可求得其最大值,及E点的坐标.本题为二次函数的综合应用,涉及待定系数法、相似三角形的判定和性质、轴对称的性质、三角形的面积、二次函数的性质及方程思想等知识.在(1)中分别表示出A、B的坐标是解题的关键,在(2)中求得C点坐标,利用相似三角形的性质求得a的值是解题的关键,在(3)中用E点坐标分别表示出△OBE和△EBC的面积是解题的关键.。
最新江苏省苏州市中考数学二模试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案写在答题卡相对应的位置上.)1.计算的结果是()A.±3 B.3 C.3 D.2.下列计算正确的是()A.(a7)2=a9B.x3•x3=x9C.x6÷x3=x3D.2y2﹣6y2=﹣43.从2名男生和3名女生中随机抽取1名2015年苏州世乒赛志愿者,恰好抽到女生的概率是()A.B.C.D.4.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:决赛成绩/分95 90 85 80人数 4 6 8 2那么20名学生决赛成绩的众数和中位数分别是()A.85,90 B.85,87.5 C.90,85 D.95,905.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形6.已知是方程组的解,则a+b的值是()A.﹣1 B.2 C.3 D.47.已知圆锥的底面半径为4cm,母线长为5cm,则这个圆锥的侧面积是()A.20πcm2B.20cm2C.40πcm2D.40cm28.如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线AC的长是()A.1 B.C.2 D.29.在直角坐标系中,一直线a向下平移3个单位后所得直线b经过点A(0,3),将直线b绕点A顺时针旋转75°后所得直线经过点B(﹣,0),则直线a的函数关系式为()A.y=﹣x B.y=﹣x+6 C.y=﹣x+3 D.y=﹣x+610.如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接AE,则sin∠AED=()A.B. C.D.二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上11.的相反数是.12.函数y=中,自变量x的取值范围是.13.2014年的一份调查报告显示,苏州城市人口(常驻人口加流动人口)跨入千万行列,达到10460000人,数字10460000用科学记数法表示为.14.某校规定:学生的数学学期综合成绩是由平时、期中和期末三项成绩按3:3:4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他本学期数学学期综合成绩是分.15.如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是°.16.如图,在平面直角坐标系中,四边形OABC是平行四边形,O(0,0),A(1,﹣2),B(3,1),反比例函数y=的图象过C点,则k的值为.17.如图,在Rt△ABC中,∠A=30°,点D是斜边AB的中点,点G是Rt△ABC的重心,GE ⊥AC于点E.若BC=6cm,则GE= cm.18.如图,已知点D是Rt△ABC的斜边BC上的一点,tanB=,BC=(k+1)BD,CE⊥AD,则= (用含k的代数式表示).三、解答题:本大题共11小题,共76分,把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.计算:+(π﹣)0﹣|﹣2|+()﹣1.20.解不等式组.21.先化简,再求值:(+)÷,其中x=﹣1.22.解方程:.23.已知矩形ABCD,现将矩形沿对角线BD折叠,得到如图所示的图形.(1)求证:△ABE≌△C′DE;(2)若∠ABE=28°,求∠BDC′的度数.24.如图,自来水厂A和村庄B在小河l的两侧,现要在A,B间铺设一条输水管道.为了搞好工程预算,需测算出A,B间的距离.一小船在点P处测得A在正北方向,B位于南偏东24.5°方向,前行1200m,到达点Q处,测得A位于北偏西49°方向,B位于南偏西41°方向.(1)线段BQ与PQ是否相等?请说明理由;(2)求A,B间的距离.(参考数据cos41°≈0.75)25.小明、小亮、小芳和两个陌生人甲、乙同在如图所示的地下车库等电梯,已知两个陌生人到1至4层的任意一层出电梯,并设甲在a层出电梯,乙在b层出电梯.(1)小明想求出甲、乙二人在同一层楼出电梯的概率;(2)小亮和小芳打赌说:“若甲、乙在同一层或相邻楼层出电梯,则小亮胜,否则小芳胜”.该游戏是否公平?若公平,说明理由;若不公平,请修改游戏规则,使游戏公平.26.如图,在平面直角坐标系xOy中,直线y=2x+n与x轴、y轴分别交于点A、B,与双曲线y=在第一象限内交于点C(1,m).(1)求m和n的值;(2)过x轴上的点D(a,0)作平行于x轴的直线l(a>1),分别与直线AB和双曲线y=交于点P、Q,且PQ=2QD,求△APQ的面积.27.如图,⊙O的半径为10,点C为的中点,过点C作弦CD∥OA,交OB于E.(1)当∠D=44°时,∠AOB= °;(2)若已知AB=16,求弦CD的长;(3)当AB的长为多少时,△OED为直角三角形?请写出解答过程.28.如图所示,在△ABC中,BC=40,AB=50,AC=30,D、E、F分别是AC、AB、BC的中点,点P从点D出发沿折线DE﹣EF﹣FC﹣CD以7个单位长度/秒的速度匀速运动;点Q从点B出发沿BA方向以4个单位长度/秒的速度匀速运动,过Q点作射线QKWAB,交折线BC﹣CA于点G.点P、Q运动的时间是t秒(t>0).(1)△ABC的形状是(直接填写结论);(2)当点P运动到折线EF﹣FC上,且点P又恰好落在射线QK上时,求t的值;(3)射线QK能否把四边形CDEF分成周长相等的两部分?若能,求出t的值;若不能,说明理由.29.如图,已知抛物线y=x2+(b+1)x+与x轴交于点A、B(点A位于点B的右侧),与y 轴负半轴交于点C,顶点为D.(1)点B的坐标为,点C的坐标为;(用含b的代数式表示)(2)当△ABD时等腰直角三角形时①在抛物线上找一点P,使得∠PAO=∠OAC,求出符合条件的P点坐标;②若点Q(x,y)是x轴下方的抛物线上一点,记△QCA的面积为S,试确定使得S的值为整数的Q点的个数.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案写在答题卡相对应的位置上.)1.计算的结果是()A.±3 B.3 C.3 D.【考点】立方根.【专题】计算题.【分析】原式利用立方根定义计算即可得到结果.【解答】解:==3,故选B【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.2.下列计算正确的是()A.(a7)2=a9B.x3•x3=x9C.x6÷x3=x3D.2y2﹣6y2=﹣4【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据幂的乘方,可判断A,根据同底数幂的乘法,可判断B,根据同底数幂的除法,可判断C,根据合并同类项,可判断D.【解答】解:A、底数不变指数相乘,故A错误;B、底数不变指数相加,故B错误;C、底数不变指数相减,故C正确;D、系数相加字母部分不变,故D错误;故选:C.【点评】本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减.3.从2名男生和3名女生中随机抽取1名2015年苏州世乒赛志愿者,恰好抽到女生的概率是()A.B.C.D.【考点】概率公式.【分析】根据女生人数除以学生总数即为所求概率,即可得出答案.【解答】解:∵2名男生和3名女生,∴抽取1名,恰好是女生的概率为.故选:B.【点评】此题主要考查了求概率问题;用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的关键.4.某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:决赛成绩/分95 90 85 80人数 4 6 8 2那么20名学生决赛成绩的众数和中位数分别是()A.85,90 B.85,87.5 C.90,85 D.95,90【考点】众数;中位数.【分析】根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【解答】解:85分的有8人,人数最多,故众数为85分;处于中间位置的数为第10、11两个数,为85分,90分,中位数为87.5分.故选B.【点评】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形【考点】多边形内角与外角.【分析】首先求得外角的度数,然后利用360除以外角的度数即可求解.【解答】解:外角的度数是:180﹣108=72°,则这个多边形的边数是:360÷72=5.故选C.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理6.已知是方程组的解,则a+b的值是()A.﹣1 B.2 C.3 D.4【考点】二元一次方程的解.【专题】计算题.【分析】把x与y的值代入方程组求出a+b的值即可.【解答】解:把代入方程组得:,①+②得:3(a+b)=6,则a+b=2,故选B【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.7.已知圆锥的底面半径为4cm,母线长为5cm,则这个圆锥的侧面积是()A.20πcm2B.20cm2C.40πcm2D.40cm2【考点】圆锥的计算.【专题】计算题.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×4×5÷2=20π.故选:A.【点评】本题考查了圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.8.如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线AC的长是()A.1 B.C.2 D.2【考点】菱形的性质.【专题】计算题.【分析】连结AC交BD于O,如图,根据菱形的性质得AC⊥BD,OA=OC,AD=AB=2,则可判断△ADB为等边三角形,根据等边三角形的性质得OA=AB=,所以AC=2OA=2.【解答】解:连结AC交BD于O,如图,∵四边形ABCD为菱形,∴AC⊥BD,OA=OC,AD=AB=2,而∠DAB=60°,∴△ADB为等边三角形,∴OA=AB=,∴AC=2OA=2.故选D.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了等边三角形的判定与性质.9.在直角坐标系中,一直线a向下平移3个单位后所得直线b经过点A(0,3),将直线b绕点A顺时针旋转75°后所得直线经过点B(﹣,0),则直线a的函数关系式为()A.y=﹣x B.y=﹣x+6 C.y=﹣x+3 D.y=﹣x+6【考点】一次函数图象与几何变换.【分析】根据题意画出图象,进而利用旋转的性质得出C点坐标,进而得出其解析式,再求出平移前的解式即可.【解答】解:如图所示:由题意可得:∠BAC=75°,∵A(0,3),B(﹣,0),∴BO=,AO=3,∴tan∠BAO=,则∠BAO=30°,∴∠OAC=45°,则AO=CO=3,故C(3,0),∴设直线b的解析式为:y=kx+3,则0=3k+3,解得:k=﹣1,则直线b的解析式为:y=﹣x+3,∵一直线a向下平移3个单位后所得直线b,∴直线a的函数关系式为:y=﹣x+6.故选:B.【点评】本题考查了一次函数图象与几何变换,解决本题的关键是得到直线b的解析式.10.如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接AE,则sin∠AED=()A.B. C.D.【考点】勾股定理;等腰直角三角形;正方形的性质;锐角三角函数的定义.【分析】过A点作AG⊥ED,根据等腰直角三角形的性质得出AG和EG的长度,再根据勾股定理得出AE的长度,最后利用三角函数解答即可.【解答】解:过A点作AG⊥ED,如图:设正方形ABCD的边长为a,∵等腰直角△CDE,DE=CE,∴DE=a,∠CDE=45°,∴△AGD也是等腰直角三角形,∴AG=GD=a,∴AE==a,∴sin∠AED==,故选C.【点评】此题考查正方形的性质,关键是根据等腰直角三角形的性质和勾股定理得出边的长度,利用三角函数计算.二、填空题:本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上11.的相反数是.【考点】相反数.【分析】由a的相反数是﹣a,可知求一个数的相反数只需在它的前面添上负号.【解答】解:的相反数是﹣()=.【点评】要掌握相反数的概念.相反数的定义:只有符号相反的两个数互为相反数.12.函数y=中,自变量x的取值范围是x≤3 .【考点】函数自变量的取值范围.【专题】计算题.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,3﹣x≥0,解得x≤3.故答案为:x≤3.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.2014年的一份调查报告显示,苏州城市人口(常驻人口加流动人口)跨入千万行列,达到10460000人,数字10460000用科学记数法表示为 1.046×107.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将10460000用科学记数法表示为1.046×107.故答案为:1.046×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.某校规定:学生的数学学期综合成绩是由平时、期中和期末三项成绩按3:3:4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他本学期数学学期综合成绩是88 分.【考点】加权平均数.【分析】按3:3:4的比例算出本学期数学学期综合成绩即可.【解答】解:本学期数学学期综合成绩=90×30%+90×30%+85×40%=88(分).故答案为:88.【点评】本题考查了加权成绩的计算,平时成绩:期中考试成绩:期末考试成绩=3:3:4的含义就是分别占总数的30%、30%、40%.15.如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是35 °.【考点】切线的性质;圆周角定理.【专题】几何图形问题.【分析】首先连接OC,由BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°,可求得∠BOC的度数,又由圆周角定理,即可求得答案.【解答】解:连接OC,∵BD,CD分别是过⊙O上点B,C的切线,∴OC⊥CD,OB⊥BD,∴∠OCD=∠OBD=90°,∵∠BDC=110°,∴∠BOC=360°﹣∠OCD﹣∠BDC﹣∠OBD=70°,∴∠A=∠BOC=35°.故答案为:35.【点评】此题考查了切线的性质以及圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.16.如图,在平面直角坐标系中,四边形OABC是平行四边形,O(0,0),A(1,﹣2),B(3,1),反比例函数y=的图象过C点,则k的值为 6 .【考点】反比例函数图象上点的坐标特征;平行四边形的性质.【分析】设C(x,y),再由平行四边形的对角线互相平分即可得出结论.【解答】解:设C(x,y),∵O(0,0),A(1,﹣2),B(3,1),∴=,=,解得x=2,y=3,∴C(2,3),∴k=2×3=6.故答案为:6.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.17.如图,在Rt△ABC中,∠A=30°,点D是斜边AB的中点,点G是Rt△ABC的重心,GE ⊥AC于点E.若BC=6cm,则GE= 2 cm.【考点】三角形的重心;直角三角形斜边上的中线.【分析】根据在直角三角形中,30°所对的直角边是斜边的一半得到AB=2BC=12cm,根据直角三角形斜边上的中线是斜边的一半CD=AB=6cm,根据重心的性质得到CG=CD=4cm,根据30°所对的直角边是斜边的一半得到答案.【解答】解:在Rt△ABC中,∠A=30°,∴AB=2BC=12cm,在Rt△ABC中,点D是斜边AB的中点,∴CD=AB=6cm,∵点G是Rt△ABC的重心,∴CG=CD=4cm,∵CD=AD,∴∠DCA=∠A=30°,∴GE=CG=2cm,故答案为:2.【点评】本题考查的是三角形的重心的性质和直角三角形的性质,掌握重心到顶点的距离是它到对边中点的距离的2倍是解题的关键,注意在直角三角形中,30°所对的直角边是斜边的一半、直角三角形斜边上的中线是斜边的一半.18.如图,已知点D是Rt△ABC的斜边BC上的一点,tanB=,BC=(k+1)BD,CE⊥AD,则= (用含k的代数式表示).【考点】相似三角形的判定与性质.【分析】根据题意结合平行线的性质得出==,进而利用锐角三角函数关系得出tan∠ACE=tan∠DAF==,进而得出答案.【解答】解:过点D作DF⊥AB于点F,∵∠CAB=90°,DF⊥AB,∴AC∥DF,∴=,∵BC=(k+1)BD,∴==,∴AF=k•BF∵tanB=,∴=,∴DF=FB,∴===,∵CE⊥AD,∴tan∠ACE=,∵∠CAE+∠ACE=90°,∠CAE+∠DAB=90°,∴∠ACE=∠DAF,∴tan∠ACE=tan∠DAF===.故答案为:.【点评】此题主要考查了平行线分线段成比例定理以及锐角三角函数关系等知识,正确得出tan∠ACE=tan∠DAF==是解题关键.三、解答题:本大题共11小题,共76分,把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔.19.计算:+(π﹣)0﹣|﹣2|+()﹣1.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】原式第一项利用算术平方根定义计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用负整数指数幂法则计算即可得到结果.【解答】解:原式=3+1﹣2+3=5.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.解不等式组.【考点】解一元一次不等式组.【分析】本题可根据不等式组分别求出x的取值,然后画出数轴,数轴上相交的点的集合就是该不等式的解集.若没有交点,则不等式无解.【解答】解:由①得:去括号得,x﹣3x+6≤4,移项、合并同类项得,﹣2x≤﹣2,化系数为1得,x≥1.由②得:去分母得,1+2x>3x﹣3,移项、合并同类项得,﹣x>﹣4,化系数为1得,x<4∴原不等式组的解集为:1≤x<4.【点评】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x同时<某一个数,那么解集为x<较小的那个数.21.先化简,再求值:(+)÷,其中x=﹣1.【考点】分式的化简求值.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将x的值代入计算即可求出值.【解答】解:原式=•=•=,当x=﹣1时,原式=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.解方程:.【考点】解分式方程.【专题】计算题.【分析】观察可得最简公分母是(x+1)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘(x+1)(x﹣1),得x(x+1)+1=x2﹣1,解得x=﹣2.检验:把x=﹣2代入(x+1)(x﹣1)=3≠0.∴原方程的解为:x=﹣2.【点评】本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.23.已知矩形ABCD,现将矩形沿对角线BD折叠,得到如图所示的图形.(1)求证:△ABE≌△C′DE;(2)若∠ABE=28°,求∠BDC′的度数.【考点】翻折变换(折叠问题).【分析】(1)先看两三角形中已知的条件有哪些:一组直角(∠A,∠C'),一组对顶角(∠AEB,∠CED),AB=C'D,因此就构成了两三角形全等的条件(AAS);(2)根据(1)可知∠ABE=∠EDC′,∠C′=90°,得到∠DEC′的度数,易证∠BDE=∠EBD,从而求出∠BDC′的度数.【解答】证明:(1)由题意知,∠A=∠C=∠C′=90°,AB=CD=C′D,在△ABE和△C′DE中∴△ABE≌△C′DE.(2)∴△ABE≌△C′DE,∴EB=ED,∠ABE=∠EDC′=28°,∵∠C′=90°,∴∠C′ED=62°,∴∠BDE=∠EBD=31°,∴∠BDC′=90°﹣∠EBD=59°.【点评】本题考查了全等三角形的判定和性质,通过全等三角形来得出简单的线段相等是解题的关键.24.如图,自来水厂A和村庄B在小河l的两侧,现要在A,B间铺设一条输水管道.为了搞好工程预算,需测算出A,B间的距离.一小船在点P处测得A在正北方向,B位于南偏东24.5°方向,前行1200m,到达点Q处,测得A位于北偏西49°方向,B位于南偏西41°方向.(1)线段BQ与PQ是否相等?请说明理由;(2)求A,B间的距离.(参考数据cos41°≈0.75)【考点】解直角三角形的应用-方向角问题.【分析】(1)首先由已知求出∠PBQ和∠BPQ的度数进行比较得出线段BQ与PQ是否相等;(2)先由已知求出∠PQA,再由直角三角形PQA求出AQ,由(1)得出BQ=PQ=1200,又由已知得∠AQB=90°,所以根据勾股定理求出A,B间的距离.【解答】解:(1)线段BQ与PQ相等.证明:∵∠PQB=90°﹣41°=49°,∠BPQ=90°﹣24.5°=65.5°,∴∠PBQ=180°﹣49°﹣65.5°=65.5°,∴∠BPQ=∠PBQ,∴BQ=PQ;(2)∠AQB=180°﹣49°﹣41°=90°,∠PQA=90°﹣49°=41°,∴AQ===1600,BQ=PQ=1200,∴AB2=AQ2+BQ2=16002+12002,∴AB=2000,答:A、B的距离为2000m.【点评】此题考查的知识点是解直角三角形的应用,解题的关键是通过角的计算得出BQ=PQ,再由直角三角形先求出AQ,根据勾股定理求出AB.25.小明、小亮、小芳和两个陌生人甲、乙同在如图所示的地下车库等电梯,已知两个陌生人到1至4层的任意一层出电梯,并设甲在a层出电梯,乙在b层出电梯.(1)小明想求出甲、乙二人在同一层楼出电梯的概率;(2)小亮和小芳打赌说:“若甲、乙在同一层或相邻楼层出电梯,则小亮胜,否则小芳胜”.该游戏是否公平?若公平,说明理由;若不公平,请修改游戏规则,使游戏公平.【考点】游戏公平性;列表法与树状图法.【专题】计算题.【分析】(1)列表得出所有等可能的情况数,找出甲乙在同一个楼层的情况数,即可求出所求的概率;(2)分别求出两人获胜的概率比较得到公平与否,修改规则即可.【解答】解:(1)列表如下:1 2 3 4甲乙1 (1,1)(2,1)(3,1)(4,1)2 (1,2)(2,2)(3,2)(4,2)3 (1,3)(2,3)(3,3)(4,3)4 (1,4)(2,4)(3,4)(4,4)一共出现16种等可能结果,其中出现在同一层楼梯的有4种结果,则P(甲、乙在同一层楼梯)==;(2)由(1)列知:甲、乙住在同层或相邻楼层的有10种结果故P(小亮胜)=P(同层或相邻楼层)==,P(小芳胜)=1﹣=,∵>,∴游戏不公平,修改规则:若甲、乙同住一层或相邻楼层,则小亮得3分;小芳得5分.【点评】此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.26.如图,在平面直角坐标系xOy中,直线y=2x+n与x轴、y轴分别交于点A、B,与双曲线y=在第一象限内交于点C(1,m).(1)求m和n的值;(2)过x轴上的点D(a,0)作平行于x轴的直线l(a>1),分别与直线AB和双曲线y=交于点P、Q,且PQ=2QD,求△APQ的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)由直线y=2x+n与x轴、y轴分别交于点A、B,与双曲线y=在第一象限内交于点C(1,m).把C(1,m)代入y=,得m=4,把C(1,4)代入y=2x+n中得n=2;(2)在y=2x+2中,令y=0,则x=﹣1,求得A(﹣1,0),求出P(a,2a+2),Q(a,),根据PQ=2QD,列方程2a+2﹣=2×,解得a=2,a=﹣3,即可得到结果.【解答】解:(1)∵直线y=2x+n与x轴、y轴分别交于点A、B,与双曲线y=在第一象限内交于点C(1,m).∴把C(1,m)代入y=,得m=4,∴C(1,4),把C(1,4)代入y=2x+n中得n=2,∴m和n的值分别为:4,2;(2)在y=2x+2中,令y=0,则x=﹣1,∴A(﹣1,0),∵D(a,0),l∥y轴,∴P(a,2a+2),Q(a,),∵PQ=2QD,∴2a+2﹣=2×,解得:a=﹣2,a=3,∵点P,Q在第一象限,∴a=3,∴PQ=4,∴S△APQ==6.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.27.如图,⊙O的半径为10,点C为的中点,过点C作弦CD∥OA,交OB于E.(1)当∠D=44°时,∠AOB= 88 °;(2)若已知AB=16,求弦CD的长;(3)当AB的长为多少时,△OED为直角三角形?请写出解答过程.【考点】圆的综合题.【分析】(1)如图,由题意可知∠1=∠2=∠3,∠AOB=2∠3,即可解决问题.(2)如图构造RT△CDF,利用△CDF∽△OKA即可求出CD.(3)当∠AOB=90°,可以推出△OED是RT△,再利用勾股定理求AB.【解答】解:(1)∵OD=OC,∴∠1=∠2,∵AO∥CD,∠2=44°,∴∠3=∠1=∠2=44°,∵点C为的中点,∴∠3=∠BOC,∠AOB=2∠3=88°,故答案为88°.(2)延长CO交⊙O于F,连接DF.∵点C为的中点,∴OC⊥AB,垂足为K,∵CF是直径,∴∠FDC=∠AKO=90°,∵∠1=∠3,∴△OKA∽△CDF,∴,∵AO=10,AK=AB=8,∴OK==6,∴,∴CD=12.(3)当∠AOB=90°,由(1)可知∠3=∠BOC=∠1=45°∴∠OEC=90°,∴OE⊥DE,∴△ODE是RT△,∴AB==10.【点评】本题考查了垂径定理、直径的性质、相似三角形的判定和性质、平行线的性质、勾股定理等知识,寻找相似三角形利用相似三角形性质求线段是常用的数学方法.28.如图所示,在△ABC中,BC=40,AB=50,AC=30,D、E、F分别是AC、AB、BC的中点,点P从点D出发沿折线DE﹣EF﹣FC﹣CD以7个单位长度/秒的速度匀速运动;点Q从点B出发沿BA方向以4个单位长度/秒的速度匀速运动,过Q点作射线QKWAB,交折线BC﹣CA于点G.点P、Q运动的时间是t秒(t>0).(1)△ABC的形状是直角三角形(直接填写结论);(2)当点P运动到折线EF﹣FC上,且点P又恰好落在射线QK上时,求t的值;(3)射线QK能否把四边形CDEF分成周长相等的两部分?若能,求出t的值;若不能,说明理由.【考点】相似形综合题.【分析】(1)由勾股定理可以判定)△ABC的形状是直角三角形.(2))①当点P在EF上()时根据△PQE∽△BCA,根据相似三角形的对应边的比相等,可以求出t的值;②当点P在FC上(5≤t≤)时,PB=PF+BF就可以得到;(3)连接DF,过点F作FH⊥AB于点H,由四边形CDEF为矩形,QK把矩形CDEF分为周长相等的两部分,根据△HBF∽△CBA,对应边的比相等,就可以求得t的值;【解答】解:(1)∵在△ABC中,BC=40,AB=50,AC=30,∴AB2=BC2+AC2,∴△ABC的形状是直角三角形.(2)①当点P在EF上()时,如图1,QB=4t,DE+EP=7t由△PQE∽△BCA,得∴t=.②当点P在FC上(5≤t≤)时,如图2,已知QB=4t,从而∴PB=5t,由PF=7t﹣35,BF=20,得5t=7t﹣35+20.解得t=.(3)射线QK能把四边形CDEF分成周长相等的两部分.如图3,连接DF,过点P作PH⊥AB于点H,∵D,F是AC,BC的中点,∴DE∥BC,EF∥AC,四边形CDEF为矩形∴QK过DF的中点O时,QK把矩形CDEF分为周长相等的两部分,此时QH=OF=12.5.由BF=20,△HBF∽△CBA,得HB=16.故t===.【点评】本题主要运用了相似三角形性质,对应边的比相等,正确找出题目中的相似三角形是解题的关键.在本题中还要学会分类讨论的思想的应用.29.如图,已知抛物线y=x2+(b+1)x+与x轴交于点A、B(点A位于点B的右侧),与y 轴负半轴交于点C,顶点为D.(1)点B的坐标为(﹣1,0),点C的坐标为(0,);(用含b的代数式表示)(2)当△ABD时等腰直角三角形时①在抛物线上找一点P,使得∠PAO=∠OAC,求出符合条件的P点坐标;②若点Q(x,y)是x轴下方的抛物线上一点,记△QCA的面积为S,试确定使得S的值为整数的Q点的个数.【考点】二次函数综合题.【专题】综合题.【分析】(1)计算出自变量为0时的函数值即可得到C点坐标,且b<0,再根据抛物线与x轴的交点问题,通过解x2+(b+1)x+=0即可得到B点坐标;(2)①如图1,作DH⊥AB于H,根据等腰直角三角形的性质得DH=AB,由于AB=﹣b+1,顶点D的纵坐标为,则﹣=(﹣b+1),解得b1=1(舍去),b2=﹣5,于是得到抛物线解析式为y=x2﹣x﹣,A(5,0);设PA交y轴于点E,如图1,利用∠PAO=∠OAC,OA⊥CE,则OE=OC=,所以E(,0),再利用待定系数法得到直线AE的解析式为y=﹣x+,然后通过解方程组即可得到P点坐标;②分类讨论:当0<t<5时,作GF∥y轴交AC于F,如图2,先利用待定系数得到直线AC的解析式为y=x﹣,根据二次函数和一次函数图象上点的坐标特征,设Q(t,t2﹣t﹣),F(t,t﹣),则FQ=﹣t2+t,根据三角形面积公式得到S=S△FQC+S△FQA=•(﹣t2+t)•5=﹣t2+t,配成顶点式得到S=﹣(t﹣)2+,根据二次函数的性质得当t=时,S有最大值,。
2020年江苏省苏州市中考数学二模试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.直线l 与半径为r 的⊙O 相交,且点0到直线l 的距离为 5,则r 的取值是( )A . r>5B .r=5C . r<5D . r ≤ 5 2. 如图,△ABC 为等腰直角三角形,∠A=90°,AB=AC=2,⊙A 与BC 相切,则图中阴影部分的面积为( )A .12π-B .13π-C .15π-D .14π-3.由表格中信息可知,若使2y ax bx c =++,则下列 y 与x 之间的函数关系式正确的是( ) x- 1 0 1 ax1 ax 2+bx+c8 3 A .243y x x =-+ B .234y x x -=+ C .233y x x =-- D .248y x x =-+4.把长为8cm 的矩形按虚线对折,按图中的虚线剪出一个直角梯形,打开得到一个等腰梯形,剪掉部分的面积为6cm 2,则打开后梯形的周长是( )A .(10+213)cmB .(10+13)cmC .22cmD .18cm5.下列所给的边长相同的正多边形的组合中,不能镶嵌平面的是( )A .正三角形与正方形组合B .正三角形与正六边形组合C .正方形与正六边形组合D .正三角形、正方形、正六边形组合6.校七年级有 13名同学参加百米竞赛,预赛成绩各不相同,要取前 6名参加决赛,小梅已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )A . 中位数B .众数C .平均数D .方差7.下列说法正确的是( )A .足球在草地上滚动,可看作足球在作平移变换B .我们可以把“火车在一段笔直的铁轨上行驶了一段距离”看作“火车沿着铁轨方向作平移变换”C .小明第一次乘观光电梯,随着电梯的上升,他高兴地对同伴说:太棒了,•我现在比大楼还高呢,我长高了D .在图形平移变换过程中,图形上可能会有不动点8.下列说法中,正确的个数有( )①延长直线AB ;②取线段AB 的中点C ;③以0为圆心作弧;④已知∠α,作∠α的余角的一半.A .0个B .1个C .2个D .3个 9.如图所示,如果直线m 是多边形ABCDE 的对称轴,其中∠A=130°,∠B=110°,那么∠BCD 的度数为( )A .30°B .10°C .50°D .60° 10.关于单项式3222x y z -的系数、次数,下列说法中,正确的是( )A .系数为-2,次数为 8B .系数为-8,次数为 5C .系数为-23,次数为 4D .系数为-2,次数为 711.设m 是9 的平方根, 3(3)n =,则m 与n 的关系是( )A .m n =±B .m n =C .m n =-D .||||m n ≠ 12.近似数4.80所表示的准确数n 的范围应是( )A .4.795≤n<4.805B .4.800≤n<4.805C .4.795<n ≤44.805D .4.795≤n ≤4.80513.用科学记数法表示430000是( )A .43×104B . 4.3×l05C .4.3×104D .4.3×10614.如图是某镇中学七年级(3)班60名同学参加兴趣活动小组的扇形统计图.其中.S 1、S 2、S 3、S 4分别表示四个扇形的面积,如果S 1:S 2:S 3:S 4=4:3:2:1,那么参加数学活动小组的同学有( )A .24人B .18人C .12人D .6人二、填空题15.已知⊙O的直径为 12 cm,如果圆心 0到直线l的距离为 5.5 cm,那么直线l与⊙O有公共点.16.已知关于y的方程260y my+-=的一个根是-2,则m= .17.如图,梯形AOCD中,AD∥0C,AD=3,点;A到x轴的距离为4,到y 轴的距离为3,则点D的坐标为.18.一列列车自 2004年全国铁路第 5次大提速后,速度提高了26千米/ 时,现在该列车从甲站到乙站所用的时间比原来减少了 1 小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x米,则根据题意,可列出方程为 .19.甲、乙两绳共长 17米,如果甲绳去掉15,乙绳增加1米,则两绳等长,设甲、乙两绳长分别为x、y,则可得方程组 .20.如图,△ABC经过旋转变换得到△AB′C′,若∠CAC′=32°,则∠BAB′= .21.a3·a3+(a3)2=________.22.填一填:+ (-5) = +3;(-14)+ =-3;37+ =-1.23.方程x2-2x-4=0的根是.三、解答题24.如图,Rt△ABC 中,∠C= 90°, AC= 3 , tanA =43,⊙C 的半径为 2.4.求证:⊙C与AB 相切.25.如图所示,在矩形ABCD中,AB=5cm,BC=4cm,动点P以1cm/s的速度从A点出发,•经点D,C到点B,设△ABP的面积为s(cm2),点P运动的时间为t(s).(1)求当点P在线段AD上时,s与t之间的函数关系式;(2)求当点P在线段BC上时,s与t之间的函数关系式;(3)在同一坐标系中画出点P在整个运动过程中s与t之间函数关系的图像.26.写出下列假命题的一个反例:(1)有两个角是锐角的三角形是锐角三角形.(2)相等的角是对顶角.27.已知直线y=2x-1.(1)求已知直线与x轴、y轴交点A、B的坐标;(2)若直线y=kx+b与已知直线关于x轴对称,求其解析式,并在同一坐标系内画出两条直线的图象.28.已知:如图,∠AOB=∠AOC ,∠1=∠2.试说明:(1)△ABC是等腰三角形;(2)AO⊥BC.29.如图,AD=12DB,E是BC的中点,BE=15AC=2 cm,求线段DE的长.30.为了了解某校七年级学生的视力情况,抽测了一批同学的视力,检测结果如下表:视力情况差中良优合计人数(人)7203百分比(%)14100【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.答案A2.C3.A4.A5.C6.A7.B8.C9.D10.B11.A12.A13.B14.B二、填空题15.两16.-117.(6,4)18.312312126x x -=+19. 171(1)15x y x y +=⎧⎪⎨-=+⎪⎩20. 32°21.2a 622.8,11,107- 23.51±三、解答题24.作 CD ⊥AB 于D ,由 AC=3,4tan 3A =,可求得 BC=4,5AB == 34 2.45CD r ⨯===,∴⊙C 与 AB 相切.25.解:(1)s=52t;(2)26525+-=ts;(3)略.26.(1)如直角三角形有两个锐角;(2)两直线平行,同位角相等(不唯一) 27.(1)A(12,0),B(0,-l);(2)y=-2x+1,图象略28.(1)证明:△AOB≌△AOC,得AB=AC,∴△ABC是等腰三角形;(2)由(1)得,∠OAB=∠OAC,∴AO⊥BC.29.6 cm30.表中依次填:20,50;40,40,6。
2021年江苏省苏州市中考数学第二次联合测评试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下列命题中正确的是()A.垂直于直径的直线是圆的切线B.经过切点的直线是圆的切线C.经过直径的一端的直线是圆的切线D.圆心到直线的距离等于半径,则该直线与圆相切2.如图,一个小球从A点沿制定的轨道下落,在每个交叉口都有向左或向右两种机会均等的结果,小球最终到达 H 点的概率是()A.12B.14C.16D.183.在△ABC 中,∠C=∠Rt,若 tanA =34,则cosB 的值是()A.45B.34C.35D.434.抛物线y=x2+6x+8与y轴交点坐标()A.(0,8)B.(0,-8)C.(0,6)D.(-2,0)(-4,0)5.如图,AB是⊙O的直径,点C在圆上,若∠CAB=α,则∠B等于()A.90°-αB.90°+αC.100°-αD.100°+α6.如图,扇形 OAB 的圆心角为 90°,分别以 OA、OB为直径在扇形内作半圆,P和Q 分别表示两个阴影部分的面积,那么 P 和Q 的大小关系是()A .P=QB .P>QC .P<QD . 无法确定 7.如图,在菱形ABCD 中,∠ADC=120°,则BD :AC 等于( )A .3:2B .3:1C .1:2D .1:38.在平面直角坐标系中,若点P (m-2,m )在第二象限.则m 的取值范围为( )A . 0<m<2B .m>0C .m<2D .m>2 9.一组数据中有a 个1x ,b 个2x ,c 个3x ,那么这组数据的平均数为( ) A .1233x x x ++ B .3a b c ++ C .1233ax bx cx ++ D .123ax bx cx a b c ++++ 10.如图所示,已知△ABC ≌△DCB ,那么下列结论中正确的是( )A .∠ABC=∠CDB ,∠BAC=∠DCB ,∠ACB=∠DBCB .∠ABC=∠DCB ,∠BAC=∠CDB ,∠ACB=∠ABDC .∠ABC=∠DCB ,∠BAC=∠CDB ,∠ACB=∠DBCD .∠ABC=∠DBC ,∠BAC=∠CDB ,∠ACB=∠ACD11.温度上升了3-℃后,又下降2℃,这一过程的温度变化是( )A .上升1℃B .上升5℃C .下降1℃D .下降5℃12.若两个角互为补角,则这两个角( )A .都是锐角B .都是钝角C .一个是锐角,另一个是钝角D .以上结论都不全对13.如果单项式m n xy z -和45n a b 都是五次单项式,那么m 、n 的值分别为( )A .m=2,n=3B .m=3,n=2C . m=4 , n=1D .m=3,n=114.如图所示,CD 是一个平面镜,光线从A 点射出经CD 上的E 点反射后照射到B 点,设入射角为a(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为C ,D .若AC=3,BD=6,CD=12,则tan a的值为( )A . 34B .43C .54D .53 二、填空题15.某口袋里有红色、蓝色玻璃球共 60 个. 小明通过多次摸球实验后,发现模到红球的频率为 15%,则可估计口袋中红色玻璃球的数目是 .16.在△ABC 中,∠C= 90°,如果∠A=10°,AC=10,那么BC= (保留 4 个有效数字).17. 如图,在△ABC 中,D 为 AC 边的中点,AE ∥BC ,ED 交AB 于G ,交 BC 延长线于F ,若 BG :GA = 3:1,BC= 10,则 AE 的长为 .18.已知:如图,AB 、CD 是⊙O 的直径,D 是AE 的中点,AE 与CD 交于点 F ,OF=3,则BE 的长为 .19.如图,在□ABCD 中,对角线AC ,BD 相交于点O ,已知△BOC 与△ABO 的周长之差为4cm ,□ABCD 的周长为24cm ,那么AB= cm.20.在ΔABC 中, ∠C=90°,BD 平分∠ABC,交AC 于D,若AB=5,CD=2, 则ΔABD 的面积是 .21.计算:21()(12)4x x x -+÷-= .22.55°18′的角的余角等于 ,34°56′的角的补角等于 .23.关于x 的方程 3x-c=0 的解是 2-c ,则c= . 24.写出三个有理数,使它们都同时满足:①是负数;②是整数;③能被2、3、5整除. 它们是 . 三、解答题25.如图,已知直线1y x m =+与x 轴、y 轴分别交于点A 、B ,与双曲线2k y x=(x <0)分别交于点C 、D ,且C 点的坐标为(1-,2).(1)分别求出直线AB 及双曲线的解析式;(2)求出点D 的坐标;(3)利用图象直接写出:当x 在什么范围内取值时,1y >2y .26.已知二次函数y=-x2+4x.(1)用配方法把该函数化为y=a(x-h)2+k(其中a、h、k都是常数且a≠0)的形式,并指出函数图象的对称轴和顶点坐标;(2)求这个函数图象与x轴的交点坐标.27.如图,A、D、F、B在同一直线上,AD=BF,AE=BC, 且 AE∥BC.求证:(1)△AEF≌△BCD;(2) EF∥CD.28.阅读下列解法,并回答问题:如图,∠1 = 75°,∠2 = 105°,说明 AB∥CD,以下几种说明方法正确吗?如果正确,请说出利用了平行线的哪一种判定方法,如果不正确,请给予纠正.解法1:∵∠1 +∠3 = 180°,∠1 = 75°,∴∠3= l05°,又∵∠2=105°,∴∠2 =∠3,∴.AB∥CD.解法2:∵∠2+∠4 = 180°,∠2 = 105°,∴∠4= 75°,又∵∠1= 75°,∴∠1 = ∠4,∴AB∥CD.解法 3:∵∠ 2 =∠5,∠2= 105°,∴∠5 =105°,又∵∠1 = 75°,∴∠1 +∠5 =180°,∴.AB∥CD.29.若3a b +2a b - ab 的值.30. 观察下列计算过程:2113131144222-=-==⨯; 2118241199333-=-==⨯; 2111535111616444-=-==⨯; 你能得出什么结论?用得到的结论计算:22221111(1)(1)(1)(1)2320062007----.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.B3.C4.A5.A6.A7.D8.A9.D10.C11.DD13.D14.A二、填空题15.9个16.1.76317.518.619.420.521.1142x -22.34°42′,l45°4′23.3224.答案不唯一,如:-30,-60,-90三、解答题25.(1)3+=x y ,x y 2-=;(2)(-2,1);(3)-2<x<-126.(1)4)2(2+--=x y ,对称轴直线2=x ,顶点坐标(2,4)(2))0,4(),0,0(.(1)因为AE ∥BC,所以∠A=∠B.又因AD=BF,所以AF=AD+DF=BF+FD=BD 又因AE=BC,所以△AEF ≌△BCD.(2)因为△AEF ≌△BCD,所以∠EFA=∠CDB.所以EF ∥CD.28.解法都是正确的,解法l 利用了同位角相等来判定两直线平行,解法2得用了内错角相等来判定两直线平行,解法3利用了同旁内角互补来证明两直线平行29.22()()144a b a b ab +--==30. 21111n n n n n -+-=⨯,10042007。
江苏省苏州市2020年数学中考二模试卷一、选择题 1. 的相反数是( )A . -2B . 2C .D . 2. 下列运算正确的是( )A . a +a =aB . a •a =aC . (-2a )=-8aD . a ÷a =a 3. 随着高铁的发展,预计2020年济南西客站客流量将达到2150万人,数字2150用科学记数法表示为( )A . 0.215×10B . 2.15×10C . 2.15×10D . 21.5×104. 下列说法中正确的是( )A . 掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为B . “对角线相等且相互垂直平分的四边形是正方形”这一事件是必然事件C . “同位角相等”这一事件是不可能事件D . “钝角三角形三条高所在直线的交点在三角形外部”这一事件是随机事件5. 设点A(x , y )和点B(x , y )是反比例函数y= 图象上的两点,当x <x <0时,y >y , 则一次函数y=-2x+k 的图象不经过的象限是( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限6. 如图是某几何体的三视图及相关数据,则该几何体的侧面积是( ) A . B . C . D .7. 如图,在⊙O 的内接四边形ABCD 中,AB 是直径,∠BCD=120°,过D 点的切线PD 与直线AB交于点P ,则∠ADP 的度数为( )A . 40°B . 35°C . 30°D . 45°8. 如图,轮船从B 处以每小时60海里的速度沿南偏东20°方向匀速航行,在B 处观测灯塔A 位于南偏东50°方向上,轮船航行40分钟到达C 处,在C 处观测灯塔A 位于北偏东10°方向上,则C 处与灯塔A 的距离是( )A . 20海里B . 40海里C . 海里D . 海里9. 如图,在矩形ABCD 中,AB =8,BC =12,点E 是BC 的中点,连接AE ,将△ABE 沿AE 折叠,点B 落在点F 处,连235236236842434211221212接FC ,则tan ∠ECF = ( ) A . B . C . D .10. 在数轴上截取从0到3的对应线段AB ,实数m 对应AB 上的点M ,如图1;将AB 折成正三角形,使点A 、B 重合于点P ,如图2;建立平面直角坐标系,平移此三角形,使它关于y 轴对称,且点P 的坐标为(0,2),PM 的延长线与x 轴交于点N (n ,0),如图3,当m= 时,n 的值为( )A .B .C .D .二、填空题11. 函数 中,自变量x 的取值范围是________.12. 分解因式:a ﹣2a+a=________.13. 已知, 是二元一次方程组 的解,则代数式 的值为________.14. 若函数y=mx +2x+1的图象与x 轴只有一个公共点,则常数m 的值是________.15. 如图,在△ABC 中,BC=6,以点A 为圆心,2为半径的☉A 与BC 相切于点D,交AB 于点E,交AC 于点F,点P 是优弧上的一点,且∠EPF=50°,则图中阴影部分的面积是________.16. 把二次函数y=x +bx+c 的图象向下平移1个单位长度,再向左平移2个单位长度后,得到的抛物线的顶点坐标为(﹣1,0),则b+c 的值为________.17. 如图,已知点A 、B 在双曲线y= (x >0)上,AC ⊥x 轴于点C ,BD ⊥y 轴于点D ,AC 与BD 交于点P ,P 是AC 的中点,若△ABP 的面积为3,则k=________.18. 如图,AB 是半⊙O 的直径,点C 在半⊙O 上,AB=5cm ,AC=4cm.D 是上的一个动点,连接AD ,过点C作CE ⊥AD 于E ,连接BE.在点D 移动的过程中,BE 的最小值为________.三、解答题3222219. 计算:(-3)-+|-2|20.先化简,再求值:,其中,a= +1.21. 解不等式组 22. 在端午节来临之际,某商店订购了A 型和B 型两种粽子.A 型粽子28元/千克,B 型粽子24元/千克.若B 型粽子的数量比A 型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.23. 已知锐角△ABC ,∠ABC =45°,AD ⊥BC 于D ,BE ⊥AC 于E ,交AD 于F.(1) 求证:△BDF ≌△ADC ;(2) 若BD =4,DC =3,求线段BE 的长度.24. 某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级(2)班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图:八年级(2)班参加球类活动人数情况统计表项目篮球足球乒乓球排球羽毛球人数a 6576八年级(2)班学生参加球类活动人数情况扇形统计图根据图中提供的信息,解答下列问题:(1) a =,b =.(2) 该校八年级学生共有600人,则该年级参加足球活动的人数约人;(3) 该班参加乒乓球活动的5位同学中,有3位男同学(A ,B ,C)和2位女同学(D ,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.25. 如图,点A 、B 分别在y 轴和x 轴上,BC ⊥AB (点C和点O 在直线AB 的两侧),点C 的坐标为(4,n)过点C 的反比例函数y= (x >0)的图象交边AC 于点D(n+ ,3).(1) 求反比例函数的表达式;(2) 求点B 的坐标.26. 如图,钝角△ABC 中,AB =AC ,BC =2,O 是边AB 上一点,以O 为圆心,OB 为半径作⊙O ,交边AB 于点D ,交边BC 于点E ,过E 作⊙O 的切线交边AC 于点F.2(1) 求证:EF ⊥AC.(2) 连结DF ,若∠ABC =30°,且DF ∥BC ,求⊙O 的半径长.27. 如图,C 为∠AOB 的边OA 上一点,OC=6,N 为边OB 上异于点O 的一动点,P 是线段CN 上一点,过点P 分别作PQ ∥OA 交OB 于点 Q ,PM ∥OB 交OA 于点M.(1) 若∠AOB=45°,OM=4,OQ=,求证:CN ⊥OB ;(2) 当点N 在边OB 上运动时,四边形OMPQ 始终保持为菱形.①问: 的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由;②设菱形OMPQ 的面积为S , △NOC 的面积为S ,求 的取值范围.28. 如图1,抛物线与轴交于点 ,与y 轴交于点 ,在轴上有一动点,过点E 作x 轴的垂线交直线于点N ,交抛物线于点P ,过点P 作于点M.(1) 求a的值和直线的函数表达式;(2)设 的周长为 , 的周长为,若,求m的值;(3) 如图2,在(2)条件下,将线段绕点O 逆时针旋转得到,旋转角为,连接 、 ,求 的最小值.参考答案1.2.3.4.5.6.128.9.10.11.12.13.14.15.16.17.18.19.20.21.22.24.25.26.27.28.。
2020年江苏省中考数学二模试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.主视图、左视图、俯视图都是圆的几何体是( )A . 圆锥B . 圆柱C . 球D .空心圆柱2.已钝角三角形三边长分别为 a 、b 、c (a>b> c ),外接圆半径和内切圆半径分别为 R 、r , 则能盖住这个三角形的圆形纸片的最小半径是( )A .RB .rC .2aD .2c 3.如图,一个小球从A 点沿制定的轨道下落,在每个交叉口都有向左或向右两种机会均等的结果,小球最终到达 H 点的概率是( )A .12B .14C .16D .18 4.己如图,点 D .E 、F 分别是△ABC (AB>AC )各边的中点,下列说法中,错误的是( ) A . AD 平分∠BAC B .EF=12BCC . EF 与 AD 互相平分 D .△DFE 是△ABC 的位似图形5.已知 y 与x 成反比例,当 x 增加 20% 时,y 将 ( )A .约减少20%B .约增加20%C .约增加80%D .约减少 80% 6.已知Rt △ABC 斜边上的中线是2,则这个三角形两直角边的平方和是 ( ) A .2B .4C .8D .16 7.一组数据共40个,分成5组,第1~4组的频数分别是10,5,7,6,第5组的频率是( )A .0.15B .0.20C .0.25D .0.308.现有2008年奥运会福娃卡片20张,其中贝贝 6张、晶晶 5 张、欢欢4张、迎迎3张、妮妮2张,每张卡片大小、质地均匀相同,将有福娃的一面朝下反扣在桌子上,从中随机抽取一张,抽到晶晶的概率( )A .110B .310C .14D .159.在3-,227,9-,π,2.121121112111122中,无理数有( ) A .1个 B .2个 C .3个 D .4个10.若a a ±=-时,a 是( ) A . 全体实数B . 正实数C .负实数D .零 二、填空题11.“五一”黄金周期间,梁先生驾驶汽车从甲地经过乙地到丙地游玩.甲地到乙地有2条公路,乙地到丙地有3条公路.每一条公路的长度如下图所示(单位:km).梁先生任选..一条从甲地到丙地的路线,这条路线正好是最短路线的概率是 .12.若a:2=b:3,则ba a += . 13.如图,△ABC 是⊙O 的内接三角形,∠B =55°,P 点在AC 上移动(点P 不与A 、C 两点重合),则α的变化范围是 .14.如图所示,⊙O 表示一个圆形工件,AB=15cm ,OM= 8cm ,并且MB :MA=1:4, 则工件半径的长为 cm .解答题15.心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:分)之间满 足函数关系y=-0.1x 2+2.6x +43(0≤x ≤30),且y 值越大,表示接受能力越强.则当x 满 足 ,学生的接受能力逐渐增强.16.若某数的一个平方根是54,则这个数的另一个平方根是 .17.有6个数.它们的平均数是l2,若再添一个数5,则这7个数的平均数是 .18.汽车以每小时60 km 的速度行驶5h ,中途停驶2h ,后又以每小时80 km 行驶3 h ,则汽车平均每小时行驶 km .19. Rt △ARC 中,∠C=90°,若CD 是AB 边的中线,且CD=4cm ,则AB= cm ,AD= BD= cm.20.如图,∠1 = 101°,当∠2 = 时,a ∥b .21.如图,BD 是ABC ∠的平分线,DE AB ⊥于E ,236cm ABC S =△,18cm AB =,12cm BC =,则DE =__________cm .22.下列图形中,轴对称图形有 个.23.已知ax=by+2008的一个解是⎩⎨⎧-==11y x ,则a+b= . 三、解答题24.某商店中的一盒什锦糖是由甲、乙、丙三种糖果混合成的,小明购得这种糖果 80 颗,通过多次摸糖试验后,发现摸到甲、乙、丙三种糖果的频率依次是 35、35和 30,试估计小明所购得的糖中甲、乙、丙三种糖果的数目.25.如图,MN ∥PQ ,同旁内角的平分线AB ,BC 和AD ,CD 相交于点B ,D .(1)猜想AC 和BD 之间的关系;(2)试证明你的猜想.26.某校为了解全校2000名学生的课外阅读情况,在全校范围内随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,将结果绘制成频数分布直方图(如图所示).(1)这50名学生在这一天课外阅读所用时间的众数是多少?(2)这50名学生在这一天平均每人的课外阅读所用时间是多少?(3)请你根据以上调查,估计全校学生中在这一天课外阅读所用时间在1.0 h 以上(含1.0 h)的有多少人?27.光明中学的甲、乙两支篮球队在集训期内进行了五场比赛,将比赛成进行统计后,绘制成如图所示的统计图. 已知甲队五场比赛成绩的平均分90x =分,方差241.2s =平方分. 甲、乙两球队比赛成绩折线统计图(1)请你计算乙队五场比赛成绩的平均分x 乙;(2)就这五场比赛,计算乙队成绩的方差;(3)如果从甲、乙两队中选派一支球队参加市篮球锦标赛,根据上述统计情况,试从平均分、 折线的走势、方差三个方面分别进行简要分析,你认为选派哪支球队参赛更能取得好成 绩?28.为了了解学生的身高情况,抽测了某校50名17岁男生的身高,并将其身高情况绘制成统计图如图所示.回答下面的问题:(1)观察图形,50名17岁男生身高的众数、中位数分别是多少?(2)用计算器计算出这50名学生的平均身高(精确到0.Ol m).29.某高校共有 5 个同规格的大餐厅和 2 个同规格的小餐厅,经过测试:同时开放 1 个大餐厅,2 个小餐厅,可供 1680 名学生就餐;同时开放 2 个大餐厅, 1 个小餐厅,可供2280 名学生就餐.(1)求 1 个大餐厅,1个小餐厅分别可供多少名学生就餐;(2)若 7 个餐厅同时开放,能否供全校的5300 名学生就餐?请说明理由.30.某中学为了了解该校学生的课余活动情况,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制了如下两幅不完整的统计图(图1,图2),请你根据统计图中提供的信息解答下列问题:(1)在这次研究中,一共调查了多少名学生?(2)“其他”在扇形统计图中所占的圆心角是多少度?(3)补全条形统计图.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.B4.A5.A6.D7.D8.C9.B10.D二、填空题11.61 12. 52 13. 0°<α<110°14.1015.0≤x ≤1316.5417. 1118.5419.8.420.79°21.2.422.323.2008三、解答题24.甲:80×35%=28(颗)乙:80×35%=28(颗)丙:80×3O =24(颗25.(1)互相平分且相等;(2)证矩形ABCD26.(1)1.0 h;(2)1.05 h;(3)1400人27.(1)90分 (2)111. 6平方分 (3)从平均分看,两队的平均分相同,实力大体相当;从折线的走势看,甲队比赛成绩呈上升趋势,而乙队比赛成绩呈下降趋势,所以适合选甲队参赛;从方差看,甲队比赛成绩比乙队比赛成绩波动小,甲队成绩教稳定. 所以,选派甲队参赛更脂取得好成绩28.(1)众数:1.70m,中位数:1.70 m;(2)1.68m29.( 1) 1 个大餐厅可供 960 名学生就餐, 1 个小餐厅可供360 人就餐;(2)5300 人30.解 (1) 20÷20%=100 (人)(2)“娱乐”人数=100×40%=40(人)“其他”人数=100-30-20-40=10 (人)“其他”在扇形统计图中所占的圆心角=360°×10100=36°(3)略。
2020年江苏省苏州市中考数学二调试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图所示放置的正三棱柱的三视图是( )A .B .C .D .2.在△ABC 中,已知∠C=90°,BC=3,AC=4,则它的内切圆半径是( ) A .23 B .1 C .2 D .323.某商店举办有奖销售活动,购物满100元者发对奖券一张.在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个.若某人购物刚好满100元,那么他中一等奖的概率是( ) A .1001 B .10001C .100001D .100001114.1a -a 的取值范围是( ) A .a ≤1B .a ≥1C .a>1D .a<15.如图,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点.•当点P 在BC 上从点B 向点C 移动而点R 不动时,那么下列结论成立的是( ) A .线段EF 的长逐渐增大 B .线段EF 的长逐渐减少C .线段EF 的长不变D .线段EF 的长不能确定6. 用配方法解下列方程时,配方有错误的是( ) A .22990x x --=化为2(1)100x -= B .2890x x ++=化为2(4)25x += C .22740t t --=化为2781()416t -=D .23420y y --=化为2210()39y -=7.点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为( ) A .()4,3- B .()3,4--C .()3,4-D .()3,4-8.在全等三角形的判定方法中,一般三角形不具有,而直角三形形具有的判定方法是( ) A .SSSB .SASC .ASAD .HL9.下列甩纸折叠成的图案中,轴对称图形的个数是( )A .4个B .3个C .2个D .1个 10.一个数的相反数比本身大,那么这个数必定是( )A .正数B .负数C .整数D .0二、填空题11.如图所示,在 Rt △ABC 中,∠C= 90°,AC= 6 ,BC= 8 ,那么sinA = .cosA = ,tanB = .12.如果一扇形的半径为15,弧长为4π,则此扇形的面积是 。
一、选择题本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案填在答题卷相应的位置上.1.下列四个实数中,无理数是B.1C. 2-D.2.x的取值范围是A.3x≥x> D.3x≠ B.3x≤ C. 33.据统计,2019年末我市常住人口约为151 900 0人,将151 900 0用科学计数法表示为A. 1519 ×103B. 15.19×105C. 1. 519×106D. 0.1519×1074.如图,//∠等AB CD,点E在AC上,若110∠=︒,则AEDDA∠=︒,36于A. 70°B. 106°C. 110°D. 146°5.如图,四边形ABCD内接于⊙O,点C是BD的中点,50∠=︒,则A∠的度数为CBDA.20°B.25°C.30°D.35°6.若一次函数3-,则关于=+(k为常数且0y kxk≠)的图像经过点(2,0)k x-+=的解为x的方程(5)30A.5x=x=-B.3x= D.5x=-C. 37.九年级(1)班25名女同学进行排球垫球,每人只测一次,测试结果统计如下表:这25名女同学排球垫球次数的众数和中位数分别是A. 24,26B. 36,23. 5 D. 24,23. 5 D. 24,248.如图,四边形ABCD是矩形,BDC∠的平分线交AB延长线于点E,若4AD=,10AE=,则AB的长为A. 4.2B. 4.5C. 5.2D. 5.59.一艘轮船在A 处测得灯塔S 在船的南偏东60°方向,轮船继续向正东航行30海里后到达B 处,这时测得灯塔S 75°方向,则灯塔S 离观测点B A. 15)-海里、15海里 B. -海里、15海里C. 海里、海里D.15)-海里、10.如图,ABC ∆中,90ACB ∠=︒,AC BC =,点D 在AB 的延长线上,且BD AB =,连接DC 并延长,作AE CD ⊥于E ,若4AE =,则BCD 的面积为 A. 8 B. 10 C. D.16二、填空题 本大题共8小题,每小题3分,共24分.把答案直接填在答题卷相应的位置上. 11.计算:23()a =. 12.因式分解:29x -=.13.关于x 的一元二次方程260x x c -+=有两个相等的实数根,则c 的值是.14.若45a b +=,23a b -+=,则a b +的值为.15.以小正方形的中心为位似中心,以1:3的比例放大得到一个大正方形,从而得到了一个如图所示的飞镖游戏板.若小明同学向该游戏板投掷飞镖一次(假设飞镖落在游戏板上),则镖落在阴影部分的概率是.16.如图,在四边形ABCD 中,//AB CD ,2AB =,4AD =,以点A 为圆心,AB 为半径的圆与CD 相切于点E ,交AD 于点F .用扇形ABF 围成一个圆锥的侧面,则这个圆锥底面圆的半径为.17.甲、乙两列火车分别从A 、B 两地出发相向而行,他们距B 地的路程s ( km)与甲行驶的时间t (h)的函数关系如图所示,那么乙火车的速度是km/ h.18.如图,ABC ∆中,13AB AC ==,24BC =,点D 在BC 上(BD AD >),将ACD 沿AD 翻折,得到AED ,AE 交BC 于点F .当DE BC ⊥时,tan CBE ∠的值为.三、解答题 本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明. 19.(本题满分5分)计算:12012sin 45()(3)2π-︒+-+-.20.(本题满分5分)解不等式组:51314113x x x x +>-⎧⎪-⎨-≤⎪⎩21.(本题满分6分)先化简,再求值:224(2)442x x xx x x x --÷--+++,其中2x =-.22.(本题满分6分)如图,在四边形ABCD中,90AD BC,∠=︒,//A=,CE BD⊥,垂足为E.BC BD(1)求证:ABD ECB∆≅∆;(2)若4AD=,3CE=,求CD的长.23.(本题满分8分)初三(1)班针对“垃圾分类”知晓情况对全班学生进行专题调查活动,对“垃圾分类”的知晓情况分为A、B、C、D四类.其中,A类表示“非常了解",B类表示“比较了解”,C 类表示“基本了解",D类表示“不太了解”,每名学生可根据自己的情况任选其中一类,班长根据调查结果进行了统计,并绘制成了不完整的条形统计图和扇形统计图.“垃圾分类”知晓情况各类别人数条形统计图“垃圾分类”知晓情况各类别人数扇形统计图根据以上信息解决下列问题:(1)初三(1)班参加这次调查的学生有人,扇形统计图中类别C所对应扇形的圆心角度数为°;(2)求出类别B的学生数,并补全条形统计图;(3)类别A的4名学生中有2名男生和2名女生,现从这4名学生中随机选取2名学生参加学校“垃圾分类”知识竞赛,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率.24.(本题满分8分)某公司销售甲、乙两种品牌的投影仪,这两种投影仪的进价和售价如下表所示:该公司计划购进两种投影仪若干套,共需66000元,全部销售后可获毛利润9000元.(1)该公司计划购进甲、乙两种品牌的投影仪各多少套?(2)通过市场调研,该公司决定在原计划的基础上,减少甲种投影仪的购进数量,增加乙种投影仪的购进数量,已知乙种投影仪增加的数量是甲种投影仪减少的数量的2倍。
江苏省最新中考数学仿真训练班级_______姓名________一、选择题(本大题共8小题,每小题3分,共24分)1.计算﹣2﹣1的结果是( )A.﹣3 B.﹣2 C.﹣1 D.22.下列运算正确的是( )A.a3+a3=a6 B.3(a+3)=3a+3 C.(ab)3=a3b3D.a6÷a3=a23.据报载,2014年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为( )A.2.5×108B.25×106C.0.25×108D.2.5×1074.下面四个几何体中,主视图与其它几何体的主视图不同的是( ) A.B.C.D.5.如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?( )A.24°B.30°C.32°D.36°6.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是( )A.我B.中C.国D.梦7.在自变量的允许值范围内,下列函数中,y随x增大而增大的是( )A.B.y=﹣x+5 C.D.8.已知M=a﹣1,N=a2﹣a(a为任意实数),则M,N的大小关系为( )A.M>N B.M=N C.M<N D.不能确定二、填空题(本大题共10小题,每小题3分,共30分)9.函数y=中自变量x的取值范围是__________.10.分解因式:4x2﹣9=__________.11.在Rt△ABC中,∠C=90°,AB=5,AC=4,则sinA的值为__________.12.数据﹣2,﹣1,0,1,2的方差是__________.13.已知平面直角坐标系xOy中,点A、B的坐标分别为(1,0),(1,3),以A、B、P为顶点的三角形与△ABO全等,写出一个符合条件的点P的坐标:__________.14.已知扇形的圆心角为120°,半径为6,则扇形的弧长是__________.15.如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为等腰三角形的概率是__________.16.如图所示,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为__________.17.如图,Rt△AOB的一条直角边OB在x轴上,双曲线y=(x>0)经过斜边OA的中点C,与另一直角边交于点D,若S△OCD=6,则S△OBD的值为__________.18.如图,PA,PB切⊙O于A、B两点,CD切⊙O于E点,⊙O的半径是r,△PCD周长为4r,则tan∠APB=__________.三、解答题(本大题共10小题,共96分)19.(本小题8分)(1)计算:﹣﹣(2)化简:(a2﹣a)÷.20.(本小题8分)△ABC在平面直角坐标系xOy中的位置如图所示.(1)作△ABC关于点C成中心对称的△A1B1C1.(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.(3)在x轴上求一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)21.(本小题8分)为了推动阳光体育运动的广泛开展,实验中学准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为__________人,图①中的m的值为__________;(2)本次调查获取的样本数据的众数是__________,中位数是__________;(3)根据样本数据,若学校计划购买300双运动鞋,建议购买35号运动鞋多少双?22.(本小题8分)有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定,转动两个转盘各一次,指向大的数字获胜.现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?23.(本小题12分)如图,在矩形ABCD 中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ是什么样的特殊四边形?请说明理由.24.(本小题10分)2015年12月16日,南京大报恩寺遗址公园正式对外开放.某校数学兴趣小组想测量大报恩塔的高度.如图,成员小明利用测角仪在B处测得塔顶的仰角α=63.5°,然后沿着正对该塔的方向前进了13.1 m到达E处,再次测得塔顶的仰角β=71.6°.测角仪BD的高度为1.4 m,那么该塔AC的高度是多少?(参考数据:sin63.5°≈0.90,cos63.5°≈0.45,tan63.5°≈2.00,sin71.6°≈0.95,cos71.6°≈0.30,tan71.6°≈3.00)25.(本小题10分)如图1,已知AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,∠M=∠D,(1)判断BC与MD的位置关系,并说明理由;(2)若AE=8,BE=2,求线段CD的长;(3)如图2,若MD恰好经过圆心O,求∠D的度数.26.(本小题10分)如图1所示,在A,B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地.两车同时出发,匀速行驶.图2是客车、货车离C站的路程y1,y2(千米)与行驶时间x(小时)之间的函数关系图象.(1)填空:A,B两地相距_______千米;(2)求两小时后,货车离C站的路程y2与行驶时间x之间的函数关系式;(3)客、货两车何时相遇?27.(本小题12分)在等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN过点A且MN∥BC,过点B为一锐角顶点作Rt△BDE,∠BDE=90°,且点D在直线MN上(不与点A重合),如图(1),DE与AC交于点P,易证:BD=DP.(无需写证明过程)(1)在图(2)中,DE与CA延长线交于点P,BD=DP是否成立?如果成立,请给予证明;如果不成立,请说明理由.(2)在图(3)中,DE与AC延长线交于点P,BD与DP是否相等?请直接写出你的结论,无需证明.(1)(2)28.(本小题12分)综合与探究:如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,A、C两点的坐标分别为(4,0),(﹣2,3),抛物线W经过O、A、C三点,D是抛物线W的顶点.(1)求抛物线W的解析式及顶点D的坐标;(2)将抛物线W和▱OABC一起先向右平移4个单位后,再向下平移m(0<m<3)个单位,得到抛物线W′和▱O′A′B′C′,在向下平移的过程中,设▱O′A′B′C′与▱OABC的重叠部分的面积为S,试探究:当m为何值时S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W′的顶点为F,若点M是x轴上的动点,点N时抛物线W′上的动点,试判断是否存在这样的点M和点N,使得以D、F、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.九年级数学仿真训练答案题号 1 2 3 4 5 6 7 8答案 A C D C C D D C二、填空题9、x≥;10、(2x﹣3)(2x+3);11、; 12、 2 ;13、(0,3)或(2,3)或(2,0);14、4π;15、__________ ____; 16、___1或5__________;17、_ _4______ _____; 18、_________________.三、解答题:本大题共10小题,共96分19.(1)-1(2)a20.(3)如图所示:作出A1关于x轴的对称点A′,连接A′C2,交x轴于点P,可得P点坐标为:(,0).21.(1)40,15;(2)35,36;(3)35号.22.选A23.略24.24.(本题8分)解:延长DF,交AC于点G.················1分设AG=xm.由题意知:DF=13.1 m,DB=FE=GC=1.4 m.在Rt △ADG 中,tan ∠ADG =AG DG, ∴DG =AG tan α=x tan63.5°≈x2. ··························· 3在Rt △AFG 中,tan ∠AFG =AGFG,∴ FG =AG tan β=x tan71.6°≈x3. (5)∵ DF =DG -FG ,∴x 2-x3=13.1. ································ 6解得x =78.6. ································· 7∴AG =78.6 m . ∵AC =AG +GC ,∴AC =78.6+1.4=80(m ).答:该塔AC 的高度约80m .25.(1)略 (2)8;(3)30° 26.(1)填空:A ,B 两地相距:360+80=440千米; (2)y 2=40x ﹣80(x ≥2);(3)4.4小时. 27.如图(1),过点D 作DF ⊥MN,交AB 于点F,(第6题(1))则△ADF 为等腰直角三角形, ∴DA=DF.∵∠1+∠FDP=90°,∠FDP+∠2=90°, ∴∠1=∠2.在△BDF 与△PDA 中,∴△BDF≌△PDA(ASA).∴BD=DP.(1)BD=DP成立.如图(2),过点D作DF⊥MN,交AB的延长线于点F,(第6题(2))则△ADF为等腰直角三角形,∴DA=DF.∵∠1+∠ADB=90°,∠ADB+∠2=90°,∴∠1=∠2.在△BDF与△PDA中,∴△BDF≌△PDA(ASA).∴BD=DP.(2)BD=DP.如图(3),过点D作DF⊥MN,交AB的延长线于点F,(第6题(3))则△ADF为等腰直角三角形,∴DA=DF.在△BDF与△PDA中,∴△BDF≌△PDA(ASA).∴BD=DP.28.解:(1)设抛物线W的解析式为y=ax2+bx+c,∵抛物线W经过O(0,0)、A(4,0)、C(﹣2,3)三点,∴,解得:∴抛物线W的解析式为y=x2﹣x.∵y=x2﹣x=(x﹣2)2﹣1,∴顶点D的坐标为(2,﹣1).(2)由▱OABC得,CB∥OA,CB=OA=4.又∵C点坐标为(﹣2,3),∴B点的坐标为(2,3).如答图2,过点B作BE⊥x轴于点E,由平移可知,点C′在BE上,且BC′=m.∴BE=3,OE=2,∴EA=OA﹣OE=2.∵C′B′∥x轴,∴△BC′G∽△BEA,∴,即,∴C′G=m.由平移知,▱O′A′B′C′与▱OABC的重叠部分四边形C′HAG是平行四边形.∴S=C′G•C′E=m(3﹣m)=﹣(x﹣)2+,∴当m=时,S有最大值为.(3)答:存在.在(2)的条件下,抛物线W向右平移4个单位,再向下平移个单位,得到抛物线W′,∵D(2,﹣1),∴F(6,﹣);∴抛物线W′的解析式为:y=(x﹣6)2﹣.设M(t,0),以D、F、M、N为顶点的四边形是平行四边形,①若点N在x轴下方,如答题3所示:&知识就是力量&过点D作DP∥y轴,过点F作FP⊥DP于点P,∵D(2,﹣1),F(6,﹣),∴DP=,FP=4;过点N作DQ⊥x轴于点Q,由四边形FDMN为平行四边形,易证△DFP≌△NMQ,∴MQ=FP=4,NQ=DP=,∴N(4+t,﹣),将点N坐标代入抛物线W′的解析式y=(x﹣6)2﹣,得:(t﹣2)2﹣=﹣,解得:t=0或t=4,∴点M的坐标为(0,0)或(4,0);②若点N在x轴上方,(请自行作图)与①同理,得N(4﹣t,)将点N坐标代入抛物线W′的解析式y=(x﹣6)2﹣,得:(t﹣10)2﹣=,解得:t=6或t=14,∴点M的坐标为(6,0)或(14,0).。
2021年江苏省苏州市中考数学第二次模拟考试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.如图,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A .82米B .163米C .52米D .70米2.下列命题属于真命题的个数有( )①三角形的两边之和大于第三边,两边之差小于第三边; ②两条直线被第三条直线所截,同位角相等: ③相等的角是对顶角;④有两角和其中一角的对边对应相等的两个三角形是全等三角形. A .1个B .2个C .3个D .4个3.如果等腰三角形的一个外角等于100°,那么它的顶角等于( ) A .100° B .80° C .80°或40° D .80°或20°4.如图,ABC △中,B C ∠∠,的平分线相交于点O ,过O 作DE BC ∥,若5BD EC +=,则DE 等于( )A .7B .6C .5D .45.在海上,灯塔位于一艘船的北偏东40°方向,那么这艘船位于这个灯塔的 ( ) A .南偏西50°方向 B .南偏西40°方向 C .北偏东50°方向 D .北偏东40°方向6.编织一副手套收费3.5元,则加工费y (元)与加工件数x (副)之间的函数解析式为( ) A .y=3.5+xB .y=3.5-xC .y=3.5xD . 3.5y x=7.如图,在边长为a 的正方形上剪去一个边长为b 的小正方形(a b >),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是( ) A .22()()a b a b a b -=-+ B .222()2a b a ab b +=++ C .222()2a b a ab b -=-+ D .2()a ab a a b -=-8.用小数表示2310-⨯的结果是( ) A .-0.03 B . -0.003 C . 0.03 D . 0.003 9.如图,0是正六边形ABCDE 的中心,下列图形可由△OBC 平移得到的是( )A .△OAFB .△OABC .△OCDD .△OEF10.如果2(1)()23x x a x x -+=+-,那么 a 的值是( ) A .3B .-2C .2D .311.下列物体的形状,类似于圆柱的个数是( ) ①篮球②书本③标枪头④罐头 ⑤水管 A .1个B .2个C .3个D .4个12.刚刚喜迁新居的小华同学为估计今年六月份(30天)的家庭用电量,在六月上旬连续7天同一时刻观察电表显示的度数并记录如下: 日 期 1号 2号 3号 4号 5号 6号 7号 电表显示数(度)24273135424548你预计小华同学家六月份用电总量约是( ) A .1080度B .124度C .103度D .120度13.已知||3x =,7y =,且0xy <,则x y +的值等于( ) A . 10B . 4C .10±D .4±二、填空题14.如图,已知正方形ABCD 的边长为2.如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′点处,那么tan BAD ∠′等于__________.15. 掷一枚质地均匀的小正方体,它的六个面上分别标有数宇 1、2、3、4、5、6,则朝上一面的数字是小于 6 的概率是 .16.已知:如图,AB 、CD 是⊙O 的直径,D 是AE 的中点,AE 与CD 交于点 F ,OF=3,则BE 的长为 .17.如图所示的抛物线是二次函数2231y ax x a =-+-的图象,那么a 的值是 . 18.如图,菱形ABCD 的两条对角线分别长6和8,点P 是对角线AC 上的一个动点,点M 、N 分别是边AB 、BC 的中点,则PM+PN 的最小值是_____________.19.如图,在矩形ABCD 中,CE ⊥BD ,∠DCE :∠ECB=3:1,那么∠ACB= 度.20. 用换元法解方程222(21)410x x -+-=,设221y x =-,则原方程化为关于y 的一元二次方程是 .21.如图,已知ΔABC ≌ΔADE ,则图中与∠BAD 相等的角是 .22.如图所示,已知AC 和BD 相交于0,A0=C0,∠A=∠C ,说出BO=D0的理由.解:∵AC 和BD 相交于0, ∴∠AOB= ( ). 在△AOB 和△COD 中, ∠AOB= (已证), = (已知), ∴△AOB ≌△COD( ).∴BO=D0( ). 解答题23.已知∠A=40°,则∠A 的余角是 .24.若249x mx -+是完全平方式,则m 的值是 .25.按键的顺序是31.823.7.请列出算式: .三、解答题26.已知二次函数22(2)y x =-+.(1)说出抛物线22(2)y x =-+可以由怎样的抛物线2y ax =通过怎样的平移得到? (2)试说说函数22(2)y x =-+有哪些性质?比一比,谁的速度快.27.如图所示,∠B 与哪个角是内错角?∠C 与哪个角是内错角?∠C 与哪个角是同旁内角?它们分别是由哪两条直线被哪一条直线截得的?28.(1)如图,已知∠AOB=Rt ∠,∠BOC=40°,0M 平分∠AOC ,ON 平分∠BOC ,求∠MON 的度数;(2)如果(1)中∠AOB=α,其他条件不变,求∠MON 的度数; (3)你能从(1)、(2)的结果中发现什么规律?29.分解因式: (1)2216ax ay -;(2)222x xy y -+-; (3)2221a ab b -+-; (4)2()10()25x y x y +-++ .30.某超市出售的一种饼干的单价是7.89元/袋,一种蛋卷的单价是8.99元 /罐,小明购买蛋卷的罐数比购买饼干的袋数的一半少1.(1)设购买饼干的袋数为n ,请用代数式表示购买饼干和蛋卷的总价; (2)若6n =,总价为多少?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.B3.D4.C5.B6.C7.A8.C9.A10.D11.B12.答案:D13.D二、填空题14.215.516.6617.1-18.519.67.520.2210++=21.y y∠CAE22.∠COD,对顶角相等,∠COD,A0,C0,∠A,∠C,ASA,全等三角形的对应边相等23.50°24.±25.12(-31.8)÷3.7=三、解答题26.y=向左平移 2 个单位得到.(1))是由2(2)性质有:顶点坐标 (—2,0),对称轴是直线x= -2,开口向下,图象有最高点等27.∠B与∠DAB成内错角,由DE、BC被AB所截;∠C与∠EAC成内错角,由DE、BC被AC 所截;∠C 与∠BAC 成同旁内角,由BA 、BC 被AC 所截;∠C 与∠B 成同旁内角,由AB 、AC 被BC 所截;∠C 与∠DAC 成同旁内角,由DE 、BC 被AC 所截28.(1)45°;(2)12α;(3)∠MON 的度数是∠AOB 度数的一半,即∠MON=12∠AOB29.(1)(4)(4)a x y x y +-; (2)2()x y --; (3)(1)(1)a b a b -+--; (4)2(5)x y +-30.(1)8.99(1)7.89(12.3858.99)2n n n -+=-(元) ; (2)12.385×6-8.99=65.32(元)。
2021年江苏省苏州市中考数学二调试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,同心圆中,大圆的弦 AB 交小圆于点 C、D,已知 AB = 4,CD= 2,圆心O到AB 的距离OE=1,则大、小两圆的半径之比为()A.3:2 B.3:2 C.5:2 D.5:32.如图,点O是两个同心圆的圆心,大圆半径OA、OB交小圆于点C、D,下列结论中正确的个数有()(1)⌒AB=⌒CD;(2 )AB= CD;(3)∠OCD=∠OABA.0 个B.1个C.2 个D.3 个3.如图,将一张等腰直角三角形纸片沿中位线DE剪开后,可以拼成的四边形是()A.矩形或等腰梯形B.矩形或平行四边形C.平行四边形或等腰梯形D.矩形或等腰梯形或平行四边形4.使代数式122xx-+有意义的x的取值范围是()A.2x≠-B.12x≤且2x≠-C.12x<且2x≠-D.12x≥且2x≠-5.某公司市场营销部的营销人员的个人收入与其每月的销售业绩满足一次函数关系.其图象如图所示.由图中给出的信息可知,营销人员的销售业绩为1.5万件时的收入是()A. 300元B.500元C.750元D.1050元6.若直角三角形的一条直角边长为 5,斜边上的中线长为 6.5,则另一条直角边长等于()A. 3 B.12 C. 7 D. 47.如图所示,已知∠1=∠2,AD=CB,AC,BD相交于点0,MN经过点O,则图中全等三角形的对数为()A.4对B.5对C.6对D.7对8.杭州湾跨海大桥全长 36千米,其中 36千米属于()A.计数B.测量C.标号D.排序9.如图是一位同学从照片上剪切下来的画面,“图上”太阳与海平线交于A﹑B两点,他测得“图上”圆的半径为10厘米,AB=16厘米,若从目前太阳所处位置到太阳完全跳出海面的时间为10分钟,则“图上”太阳升起的速度为()A.0.4厘米/分 B.0.6厘米/分C. 1.0厘米/分 D.1.6厘米/分二、填空题10.一斜坡的坡比为 1:2,斜面长为l5m,则斜面上最高点离地面的高度为 m.11.如图中的=x_________.12.如图所示,一人拿着一把刻有厘米刻度的小尺,他站在距电线杆 30m 的地方,把手臂向前伸直,小尺竖直看到尺上 12 cm 恰好遮住电线杆,已知臂长 60 cm,则电线杆的高为.13.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,应邀请个球队参加比赛.14.如图,将一副三角板折叠放在一起,使直角的顶点重合于点O,则AOC DOB∠+∠=.15.请列举一个生活中不确定的例子: .16.如图所示,已知DE∥BC,△ADE是△ABC经相似变换后的像,若图形缩小12,而BC=4,∠B=50°,则DE= ,∠D= .17.68°51′36"= °..18.图中有线段条,分别是线段、、、、、.图中共有射线条.19.爸爸和儿子的年龄分别是40岁和l3岁,请问几年后,爸爸的年龄是儿子年龄的2倍?设x 年后,爸爸的年龄是儿子年龄的2倍,可列出方程:,解答x= 年.20.甲的速度为5 km/h,乙的速度为3.5 km/h,两人同时同地出发,(1)若同向走了x(h),他们之间相距 km ;(2)若相向走了y(h),他们之间相距17 km,则y= h.三、解答题21.如图,A箱中装有2张相同的卡片,它们分别写有数字-1、-2;B箱中装有3张相同的卡片,它们分别写有数字1、-1、2.现从A箱、B箱中各随机地取出1张卡片,请你用画树形(状)图或列表的方法求:(1)两张卡片上的数字恰好相同的概率;(2)两张卡片上的数字恰好互为相反数的概率.22.某一电影院有1000个座位,门票每张 3元,可达客满,根据市场统计,若每张门票提高x元,将有 200x 张门票不能售出.(1)求提价后每场电影的票房收入 y(元)与票价提高量 x(元)之间的函数关系式及自变量x的取值范围;(2)为增加收入,电影院应做怎样的决策(提价还是降价?若提价,提价多少为宜?)23.如图所示,在4×4的菱形斜网格图中(每一个小菱形的边长为1,有一个角是60°),菱形ABCD的边长为2,E是AD的中点,按CE将菱形ABCD剪成①、②两部分,用这两部分可以分别拼成直角三角形、等腰梯形、矩形,要求所拼成图形的顶点均落在格点上.(1)在下面的菱形斜网格中画出示意图:(2)判断所拼成的三种图形的面积(s )、周长(l )的大小关系(用“=”、“>”或“<”连接): 面积关系是 ;周长关系是 .24.某服装商店出售一种优惠购物卡,花 200 元买这种卡后,凭卡可以在这家商店按 8 折购物,什么情况下买卡购物合算?25.已知不等式5(2)86(1)7x x -+<-+最小整数解为方程24x ax -=的的解,求a 的值.26.如图,已知AC=BD ,AD ⊥AC ,BD ⊥BC ,则AD=BC ,请说明理由.27.阅读下列题目的计算过程:23211x x x---+ =32(1)(1)(1)(1)(1)x x x x x x ---+-+- ① =32(1)x x --- ②=32x 2x --+ ③=1x -- ④(1)上述计算过程,从哪一步开始出现错误?请写出该步的代号: .(2)错误的原因是 .(3)本题目的正确结论是 .28.已知数轴上的点A 、B 、C ,它们所表示的数分别是+4,—6,x .(1)求线段AB 的长;(2)求线段AB 的中点D 所示的数;(3)若AC=5,求x 的值;(4)求线段OD (O 为原点)的长;29.有这样一道题:“计算322323323(232)(2)(3)x x y xy x xy y x x y y ----++-+-的值,其中12x =,1y =-.” 甲同学把“12x =”错抄成“12x =-”, 但他计算的结果也是正确的,你能说出这是什么原因?30. 已知 m 、n 互为相反数.(1)在如图的数轴上标出数n ;(2)在如图的数轴上补上原点 0,并标出数n.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.B3.D4.B5.D6.B7.C8.B9.D二、填空题10.11.12.6 cm13.714.180°15.略16.2,50°17.68.8618.6;线段CO 、CA 、CB 、OA 、OB 、AB ;819.40+x=2(13+x),1420.1.5x,2三、解答题21.(1)61;(2)31 22.(1)y=(3+x)(1000-200x),化简得22004003000y x x =-++, x 的取值范围是 0≤x ≤5.(2)22004003000y x x =-++2200(-2)3000x x =-+2200(1)3200x =--+ ∴当 x=1 时,票房收入最大.即提价 1 元为宜. 23.(1)如下图:(2) =S =S S 矩形直角三角形等腰梯形; l 直角三角形>l 等腰梯形 > l 矩形.超过1000元25.a=426.说明Rt △ACD ≌Rt △BDC27.(1) ②;(2)错用了解分式方程的去分母法则. (3)11x -- 28.(1)10;(2)-1;(3)9或-1;(4)1 29.化简得32y -,不含字母x ,所以其值与x 无关 30.略。
江苏省中考数学二模试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣3的相反数是()A.﹣3 B.3 C.D.2.(3分)北京时间2016年2月11日23点30分,科学家宣布:人类首次直接探测到了引力波,印证了爱因斯坦100年前的预言,引力波探测器LIGO的主要部分是两个互相垂直的长臂,每个臂长4000米,数据4000用科学记数法表示为()A.0.4×103B.0.4×104C.4×103D.4×1043.(3分)下列运算中,正确的是()A.=3 B.(a+b)2=a2+b2C.()2=(a≠0)D.a3•a4=a124.(3分)2015年1月份,无锡市某周的日最低气温统计如下表,则这七天中日最低气温的众数和中位数分别是()日期19202122232425最低气温/℃24534675.(3分)如图所示,AB∥CD,∠CAB=116°,∠E=40°,则∠D的度数是()A.24°B.26°C.34°D.22°6.(3分)已知反比例函数的图象经过点P(a,a),则这个函数的图象位于()A.第一、三象限B.第二、三象限C.第二、四象限D.第三、四象限7.(3分)五张标有2、6,3,4,1的卡片,除数字外,其它没有任何区别,现将它们背面朝上,从中任取一张,得到卡片的数字为偶数的概率是()A.B.C.D.8.(3分)因为sin30°=,sin210°=,所以sin210°=sin(180°+30°)=﹣sin30°;因为sin45°=,sin225°=,所以sin225°=sin(180°+45°)=﹣sin45°,由此猜想,推理知:一般地当α为锐角时有sin(180°+α)=﹣sinα,由此可知:sin240°=()A.B.C.D.9.(3分)菱形OABC在平面直角坐标系的位置如图所示,点B的坐标为(9,3),点D是AB的中点,点P在OB上,则△ADP的周长最小值为()A.3+3 B.3+3 C.3 D.310.(3分)如图,已知点A是第一象限内横坐标为的一个定点,AC⊥x轴于点M,交直线y=﹣x于点N,若点P是线段ON上的一个动点,以AP为一边作等边三角形APB(顺时针),取线段AB的中点H,当点P从点O运动到点N时,点H运动的路径长是()A.B.2 C.1 D.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)分解因式:x2﹣4= .12.(3分)若分式的值为0,则x的值等于.13.(3分)甲、乙两人进行射击测试,每人20次射击成绩的平均数都是8.5环,方差分别是:S甲2=3,S乙2=2.5,则射击成绩较稳定的是(填“甲”或“乙”).14.(3分)不等式组的最大整数解是.15.(3分)如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是.16.(3分)如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB′E,AB′与CD边交于点F,则B′F的长度为.17.(3分)已知当x=m和x=n时,多项式x2﹣4x+1的值相等,且m≠n,则当x=m+n ﹣3时多项式x2﹣4x+1的值为.18.(3分)如图,直线l1∥l2∥l3,等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为.三、解答题(本大题共10小题,共76分,把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推理步骤或文字说明).19.(5分)计算:﹣3tan30°﹣()﹣2.20.(5分)先化简,再求值:,其中a满足a2+3a=5.21.(6分)学校准备随机选出七、八两个年级各1名学生担任领操员.现已知这两个年级分别选送一男、一女共4名学生为备选人,请你利用树状图或列表求选出“一男一女”两名领操员的概率.22.(6分)如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.23.(8分)某校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.组别正确字数x人数A0≤x<810 B8≤x<1615 C16≤x<2524D24≤x<32mE 32≤x<40n(1)在统计表中,m= ,n= ,并补全条形统计图.(2)扇形统计图中“C组”所对应的圆心角的度数是.(3)若该校共有900名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.24.(8分)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名同学购票恰好用去750元,甲乙两种票各买了多少张?25.(8分)如图,一次函数y=kx﹣4(k≠0)的图象与y轴交于点A,与反比例函数y=(x>0)的图象交于点B(6,b).(1)b= ;k= .(2)点C是直线AB上的动点(与点A,B不重合),过点C且平行于y轴的直线l 交这个反比例函数的图象于点D,当点C的横坐标为3时,得△OCD,现将△OCD沿射线AB方向平移一定的距离(如图),得到△O′C′D′,若点O的对应点O′落在该反比例函数图象上,求点O′,D′的坐标.26.(10分)如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC 于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.27.(10分)如图1,在Rt△ABC中,AC=8cm,BC=6cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD﹣DE运动,到点E停止,点P在AD 上以5cm/s的速度运动,在DE上以1cm/s的速度运动,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN.设点P的运动时间为t(s).(1)当点P在线段DE上运动时,线段DP的长为cm.(用含t的代数式表示)(2)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式,并写出t的取值范围.(3)如图2,若点O在线段BC上,且CO=1,以点O为圆心,1cm长为半径作圆,当点P开始运动时,⊙O的半径以0.2cm/s的速度开始不断增大,当⊙O与正方形PQMN的边所在直线相切时,求此时的t值.28.(10分)如图1,抛物线y=ax2﹣6ax+6(a≠0)与x轴交于点A(8,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<8),过点E作x轴的垂线交直线AB 于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出直线AB和抛物线的函数表达式.(2)设△PMN的面积为S1,△AEN的面积为S2,若S1:S2=36:25,求m的值.(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B.①在x轴上找一点Q,使△OQE′∽△OE′A,并求出Q点的坐标.②求BE′+AE′的最小值.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣3的相反数是()A.﹣3 B.3 C.D.【解答】解:﹣3的相反数是3.故选:B.2.(3分)北京时间2016年2月11日23点30分,科学家宣布:人类首次直接探测到了引力波,印证了爱因斯坦100年前的预言,引力波探测器LIGO的主要部分是两个互相垂直的长臂,每个臂长4000米,数据4000用科学记数法表示为()A.0.4×103B.0.4×104C.4×103D.4×104【解答】解:4000=4×103,故选:C.3.(3分)下列运算中,正确的是()A.=3 B.(a+b)2=a2+b2C.()2=(a≠0)D.a3•a4=a12【解答】解:(﹣3)3=﹣27,负数没有平方根,故A错误;(a+b)2=a2+2ab+b2,故B错误;()2=,故C正确;a3•a4=a7,故D错误.故选:C.4.(3分)2015年1月份,无锡市某周的日最低气温统计如下表,则这七天中日最低气温的众数和中位数分别是()日期19202122232425最低气温/℃2453467【解答】解:将一周气温按从小到大的顺序排列为2,3,4,4,5,6,7,中位数为第四个数4;4出现了2次,故众数为4.故选:A.5.(3分)如图所示,AB∥CD,∠CAB=116°,∠E=40°,则∠D的度数是()A.24°B.26°C.34°D.22°【解答】解:∵AB∥CD,∠CAB=116°,∴∠ACD=180°﹣∠CAB=64°,∵∠E=40°,∴∠D=∠ACD﹣∠E=24°.故选:A.6.(3分)已知反比例函数的图象经过点P(a,a),则这个函数的图象位于()A.第一、三象限B.第二、三象限C.第二、四象限D.第三、四象限【解答】解:设反比例函数解析式为y=(k≠0),∵点P(a,a)在反比例函数图象上,∴k=a2.当a≠0时,k=a2>0,反比例函数图象在第一、三象限;当a=0时,点P为原点,不可能在反比例函数图象上,故无此种情况.故选:A.7.(3分)五张标有2、6,3,4,1的卡片,除数字外,其它没有任何区别,现将它们背面朝上,从中任取一张,得到卡片的数字为偶数的概率是()A.B.C.D.【解答】解:在2、6,3,4,1这5张卡片中,数字为偶数的有2、6、4这3张,∴得到卡片的数字为偶数的概率为,故选:C.8.(3分)因为sin30°=,sin210°=,所以sin210°=sin(180°+30°)=﹣sin30°;因为sin45°=,sin225°=,所以sin225°=sin(180°+45°)=﹣sin45°,由此猜想,推理知:一般地当α为锐角时有sin(180°+α)=﹣sinα,由此可知:sin240°=()A.B.C.D.【解答】解:∵当α为锐角时有sin(180°+α)=﹣sinα,∴sin240°=sin(180°+60°)=﹣sin60°=﹣.故选:C.9.(3分)菱形OABC在平面直角坐标系的位置如图所示,点B的坐标为(9,3),点D是AB的中点,点P在OB上,则△ADP的周长最小值为()A.3+3 B.3+3 C.3 D.3【解答】解:如图,连接CD交OB于P,连接PA,此时△AD P的周长最小.作BH⊥x轴于H.∵B(9,3),∴OH=9,BH=3,∵∠BHO=90°,∴OB==6,∴OB=2BH,∴∠BOH=30°,∠OBH=60°,∵四边形OABC为菱形,∴设OC=BC=x,∴CH=OH﹣OC=9﹣x,在Rt△BCH中,∠BHC=90°,∴BC2=CH2+BH2,∴x2=(9﹣x)2+27,∴x=6,∴A(3,3),B(9,3),C(6,0),∵D为AB中点,∴D(6,3),∴CD=3,AD=3,∴△ADP的周长的最小值=AD+CD=3+3,故选:B.10.(3分)如图,已知点A是第一象限内横坐标为的一个定点,AC⊥x轴于点M,交直线y=﹣x于点N,若点P是线段ON上的一个动点,以AP为一边作等边三角形APB(顺时针),取线段AB的中点H,当点P从点O运动到点N时,点H运动的路径长是()A.B.2 C.1 D.【解答】解:由上图可知,当P在O点时,△AOB1为正三角形,当P在N点时,△ANB2为正三角形,H1,H2分别为AB1与AB2的中点,∵P在直线ON上运动,∴B1B2的运动轨迹也为直线,∵△OAB1为正三角形,∴∠OAB1=∠1+∠2=60°,同理∠NAB2=∠2+∠3=60°,∴∠1=∠3,在△OAN与△B1AB2中,,∴△OAN≌△B1AB2,∴B1B2=ON,∴点A横坐标为,∵AN⊥x轴,∴M(,0),∵直线ON的解析式为:y=﹣x,∴∠MON=45°,∴N(,﹣),∴ON=2=B1B2,∵H1,H2分别为AB1与AB2的中点,∴H1H2=B1B2=1,故选:C.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)分解因式:x2﹣4= (x+2)(x﹣2).【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).12.(3分)若分式的值为0,则x的值等于 3 .【解答】解:由题意得:x﹣3=0,且x≠0,解得:x=3,故答案为:3.13.(3分)甲、乙两人进行射击测试,每人20次射击成绩的平均数都是8.5环,方差分别是:S甲2=3,S乙2=2.5,则射击成绩较稳定的是乙(填“甲”或“乙”).【解答】解:∵S甲2=3,S乙2=2.5,∴S甲2>S乙2,∴乙的射击成绩较稳定.故答案为:乙.14.(3分)不等式组的最大整数解是 2 .【解答】解:,由①得,x<3;由②得,x≥﹣1;∴不等式组的解为﹣1≤x<3,它所包含的整数为﹣1,0,1,2.∴它的最大整数解为2.故答案为2.15.(3分)如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是3π.【解答】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=3π,故答案为:3π.16.(3分)如图,在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,将△ABE沿AE所在直线翻折得△AB′E,AB′与CD边交于点F,则B′F的长度为2﹣.【解答】解:∵在边长为2的菱形ABCD中,∠B=45°,AE为BC边上的高,∴AE=,由折叠易得△ABB′为等腰直角三角形,∴S△ABB′=BA•AB′=2,S△ABE=1,∴CB′=2BE﹣BC=2﹣2,∵AB∥CD,∴∠FCB′=∠B=45°,又由折叠的性质知,∠B′=∠B=45°,∴CF=FB′=2﹣.故答案为:2﹣.17.(3分)已知当x=m和x=n时,多项式x2﹣4x+1的值相等,且m≠n,则当x=m+n ﹣3时多项式x2﹣4x+1的值为﹣2 .【解答】解:∵x=m和x=n时,多项式x2﹣4x+1的值相等,∴y=x2﹣4x+1的对称轴为直线x==﹣,解得m+n=4,∴x=m+n﹣3=4﹣3=1,x2﹣4x+1=12﹣4×1+1=﹣2.故答案为:﹣218.(3分)如图,直线l1∥l2∥l3,等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为.【解答】解:如图,作BF⊥l3,AE⊥l3,∵∠ACB=90°,∴∠BCF+∠ACE=90°,∵∠BCF+∠CBF=90°,∴∠ACE=∠CBF,在△ACE和△CBF中,,∴△ACE≌△CBF,∴CE=BF=3,CF=AE=4,∵l1与l2的距离为1,l2与l3的距离为3,∴AG=1,BG=EF=CF+CE=7∴AB==5,∵l2∥l3,∴=∴DG=CE=,∴BD=BG﹣DG=7﹣=,∴=.故答案为:.三、解答题(本大题共10小题,共76分,把解答过程写在答题卷相对应的位置上,解答时应写出必要的计算过程、推理步骤或文字说明).19.(5分)计算:﹣3tan30°﹣()﹣2.【解答】解:原式=2﹣3×﹣4=﹣4.20.(5分)先化简,再求值:,其中a满足a2+3a=5.【解答】解:原式=÷=÷=•=,当a2+3a=5时,原式=.21.(6分)学校准备随机选出七、八两个年级各1名学生担任领操员.现已知这两个年级分别选送一男、一女共4名学生为备选人,请你利用树状图或列表求选出“一男一女”两名领操员的概率.【解答】解:画树状图如下:由上面的树状图可知,一共有4种情况,一男一女所占的情况有2种,∴概率为=.22.(6分)如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:AD=AF;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.【解答】(1)证明:∵AF∥BC,∴∠EAF=∠EDB,∵E是AD的中点,∴AE=DE,在△AEF和△DEB中,,∴△AEF≌△DEB(ASA),∴AF=BD,∵在△ABC中,∠BAC=90°,AD是中线,∴AD=BD=DC=BC,∴AD=AF;(2)解:四边形ADCF是正方形.∵AF=BD=DC,AF∥BC,∴四边形ADCF是平行四边形,∵AB=AC,AD是中线,∴AD⊥BC,∵AD=AF,∴四边形ADCF是正方形.23.(8分)某校举行“汉字听写”比赛,每位学生听写汉字39个,比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的统计图的一部分.组正确字人别数x数A0≤x<810B8≤x<1615C16≤x<2425D24≤x<32mE32≤x<40n根据以上信息解决下列问题:(1)在统计表中,m= 30 ,n= 20 ,并补全条形统计图.(2)扇形统计图中“C组”所对应的圆心角的度数是90°.(3)若该校共有900名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.【解答】解:(1)抽查的总人数是:15÷15%=100(人),则m=100×30%=30,n=100×20%=20..故答案是:30,20;(2)扇形统计图中“C组”所对应的圆心角的度数是:360°×=90°.故答案是:90°;(3)“听写正确的个数少于24个”的人数有:10+15+25=50 (人).900×=450 (人).答:这所学校本次比赛听写不合格的学生人数约为450人.24.(8分)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名同学购票恰好用去750元,甲乙两种票各买了多少张?【解答】解:设甲、乙两种票各买x张,y张,根据题意,得:,解得:,答:甲、乙两种票各买20张,15张.25.(8分)如图,一次函数y=kx﹣4(k≠0)的图象与y轴交于点A,与反比例函数y=(x>0)的图象交于点B(6,b).(1)b= 2 ;k= 1 .(2)点C是直线AB上的动点(与点A,B不重合),过点C且平行于y轴的直线l 交这个反比例函数的图象于点D,当点C的横坐标为3时,得△OCD,现将△OCD沿射线AB方向平移一定的距离(如图),得到△O′C′D′,若点O的对应点O′落在该反比例函数图象上,求点O′,D′的坐标.【解答】解:(1)∵点B在反比例函数y=(x>0)的图象上,将B(6,b)代入y=,得b=2,∴B(6,2),∵点B在直线y=kx﹣4上,∴2=6k﹣4,解得k﹣1,故答案为:2,1.(2)∵点C的横坐标为3,把x=3代入y=x﹣4,得y=﹣1,∴C(3,﹣1),∵CD∥y轴,∴点D的横坐标为3,把x=3代入y=,可得y=4,∴D(3,4).由平移可得,△OCD≌△O'C'D',设O'(a,),则C'(a+3,﹣1),∵点C'在直线y=x﹣4上,∴﹣1=a+3﹣4,∴=a,∵a>0,∴a=2,∴O'(2,2),∴D'(2+3,2+4).26.(10分)如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC 于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线.(2)若BC=2,sin∠BCP=,求点B到AC的距离.(3)在第(2)的条件下,求△ACP的周长.【解答】解:(1)∵∠ABC=∠ACB且∠CAB=2∠BCP,在△ABC中,∠ABC+∠BAC+∠BCA=180°∴2∠BCP+2∠BCA=180°,∴∠BCP+∠BCA=90°,又C点在直径上,∴直线CP是⊙O的切线.(2)如右图,作BD⊥AC于点D,∵PC⊥AC∴BD∥PC∴∠PCB=∠DBC∵BC=2,sin∠BCP=,∴sin∠BCP=sin∠DBC===,解得:DC=2,∴由勾股定理得:BD=4,∴点B到AC的距离为4.(3)如右图,连接AN,∵AC为直径,∴∠ANC=90°,∴Rt△ACN中,AC==5,又CD=2,∴AD=AC﹣CD=5﹣2=3.∵BD∥CP,∴,∴CP=.在Rt△ACP中,AP==,AC+CP+AP=5++=20,∴△ACP的周长为20.27.(10分)如图1,在Rt△ABC中,AC=8cm,BC=6cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD﹣DE运动,到点E停止,点P在AD 上以5cm/s的速度运动,在DE上以1cm/s的速度运动,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN.设点P的运动时间为t(s).(1)当点P在线段DE上运动时,线段DP的长为(t﹣1)cm.(用含t的代数式表示)(2)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式,并写出t的取值范围.(3)如图2,若点O在线段BC上,且CO=1,以点O为圆心,1cm长为半径作圆,当点P开始运动时,⊙O的半径以0.2cm/s的速度开始不断增大,当⊙O与正方形PQMN的边所在直线相切时,求此时的t值.【解答】解:(1)由勾股定理可知AB==10.∵D、E分别为AB和BC的中点,∴DE=AC=4,AD=AB=5.∴点P在AD上的运动时间==1s,当点P在线段DE上运动时,DP段的运动时间为(t﹣1)s,∵DE段运动速度为1cm/s,∴DP=(t﹣1)cm,故答案为:t﹣1.(2)当正方形PQMN与△ABC重叠部分图形为五边形时,有一种情况,如下图所示.当正方形的边长大于DP时,重叠部分为五边形,∴3>t﹣1,t<4,DP>0,∴t﹣1>0,解得t>1.∴1<t<4.∵△DFN∽△ABC,∴===,∵DN=PN﹣PD,∴DN=3﹣(t﹣1)=4﹣t,∴=,∴FN=,∴FM=3﹣=,S=S梯形FMHD+S矩形DHQP,∴S=×(+3)×(4﹣t)+3(t﹣1)=﹣t2+3t+3(1<t<4).(3)①当圆与边PQ相切时,如下图,当圆与PQ相切时,r=PE,由(1)可知,PD=(t﹣1)cm,∴PE=DE﹣DP=4﹣(t﹣1)=(5﹣t)cm,∵r以0.2cm/s的速度不断增大,∴r=1+0.2t,∴1+0.2t=5﹣t,解得:t=s.②当圆与MN相切时,r=CM.由(1)可知,DP=(t﹣1)cm,则PE=CQ=(5﹣t)cm,MQ=3cm,∴MC=mq+cq=5﹣t+3=(8﹣t)cm,∴1+0.2t=8﹣t,解得:t=s.∵P到E点停止,∴t﹣1≤4,即t≤5,∴t=s(舍),综上所述,当t=s时,⊙O与正方形PQMN的边所在直线相切.28.(10分)如图1,抛物线y=ax2﹣6ax+6(a≠0)与x轴交于点A(8,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<8),过点E作x轴的垂线交直线AB 于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出直线AB和抛物线的函数表达式.(2)设△PMN的面积为S1,△AEN的面积为S2,若S1:S2=36:25,求m的值.(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B.①在x轴上找一点Q,使△OQE′∽△OE′A,并求出Q点的坐标.②求BE′+AE′的最小值.【解答】解:(1)把点A(8,0)代入抛物线y=ax2﹣6ax+6,得64a﹣48a+6=0,∴16a=﹣6,a=﹣,∴y=﹣x2+x+6与y轴交点,令x=0,得y=6,∴B(0,6).设AB为y=kx+b过A(8,0),B(0,6),∴,解得:,∴直线AB的解析式为y=﹣x+6.(2)∵E(m,0),∴N(m,﹣m+6),P(m,﹣m2+m+6).∵PE∥OB,∴△ANE∽△ABO,∴=,∴=,解得:AN=.∵PM⊥AB,∴∠PMN=∠NEA=90°.又∵∠PNM=∠ANE,∴△NMP∽△NEA.∵=,∴=,∴PM=AN=×=12﹣m.又∵PM=﹣m2+m+6﹣6+m=﹣m2+3m,∴12﹣m=﹣m2+3m,整理得:m2﹣12m+32=0,解得:m=4或m=8.∵0<m<8,∴m=4.(3)①在(2)的条件下,m=4,∴E(4,0),设Q(d,0).由旋转的性质可知OE′=OE=4,若△OQE′∽△OE′A.∴=.∵0°<α<90°,∴d>0,∴=,解得:d=2,∴Q(2,0).②由①可知,当Q为(2,0)时,△OQE′∽△OE′A,且相似比为===,∴AE′=QE′,∴BE′+AE′=BE′+QE′,∴当E′旋转到BQ所在直线上时,BE′+QE′最小,即为BQ长度,∵B(0,6),Q(2,0),∴BQ==2,∴BE′+AE′的最小值为2.。