2二次函数与一元二次方程导学案
- 格式:doc
- 大小:197.00 KB
- 文档页数:4
.3.1二次函数与一元二次方程班级 姓名 【学习目标】1.经历探索二次函数与一元二次方程关系的过程,体会方程与函数之间的联系;2.理解抛物线与x 轴公共点的个数与相应的一元二次方程根的对应关系;3.会求抛物线与坐标轴的交点坐标.【课前自习】1. 根据c bx ax y ++=2的图象和性质填表:函 数图 象a开口对称轴顶 点增 减 性 cbx ax y ++=2向上当x 时,y 随x的增大而减少. 当x 时,y 随x 的增大而 .0<a当x 时,y 随x的增大而减少. 当x 时,y 随x 的增大而 .2.二次函数的顶点式是 ,其中顶点坐标是 ,对称轴是 .3.解下列一元二次方程:①0322=--x x ②0962=+-x x ③0322=+-x x4.对于任何一个一元二次方程02=++c bx ax ,我们可以通过表达式 的值判断方程的根的情况如下:当 >0时,方程有 实数根; 当 =0时,方程有 实数根; 当 <0时,方程 实数根.xyOxyOxy( , )( , )Oxy( , )xy【课堂助学】一、探索归纳:1.观察二次函数的图象,写出它们与x 轴、y 轴的交点坐标: 函数 322--=x x y962+-=x x y322+-=x x y图象交 点与x 轴交点坐标是 与x 轴交点坐标是 与x 轴 与y 轴交点坐标是 与y 轴交点坐标是 与y 轴交点坐标是2.对比《课前自习》第3题各方程的解,你发现什么?3.归纳:⑴一元二次方程02=++c bx ax 的实数根就是对应的二次函数c bx ax y ++=2与x 轴交点的 .⑵二次函数与一元二次方程的关系如下:(一元二次方程的实数根记为21x x 、)二次函数c bx ax y ++=2与一元二次方程02=++c bx ax与x 轴有 个交点 ⇔ac b 42- 0,方程有 的实数根是 .与x 轴有 个交点 这个交点是 点⇔ac b 42- 0,方程有 的实数根是 .与x 轴有 个交点 ⇔ ac b 42- 0,方程 实数根. ⑶二次函数c bx ax y ++=2与y 轴交点坐标是 .练习.判断下列函数的图象与x 轴是否有公共点,有几个公共点,并说明理由. ⑴x x y -=2; ⑵962-+-=x x y ⑶11632++=x x y教师 评价家长 签字xyy=x -6x+9Oxyy=x -2x-3Oxyy=x -2x+3O二、典型例题:例1、已知二次函数342+-=x x y .求该抛物线的图象与坐标轴的交点坐标.归纳:⑴求抛物线c bx ax y ++=2与x 轴的交点坐标只要令 ,转化为求对应方程 的解;若对应方程的实数根为21x x 、,则抛物线与x 轴 的交点坐标是 ,特别当21x x =时,这个交点就是抛物线的 .⑵求抛物线c bx ax y ++=2与y 轴的交点坐标只要令 ,该交点坐标是 . 这也是求任意函数的图象与坐标轴交点坐标的一般方法.【课堂检测】1.抛物线22x x y --=与x 轴的交点坐标是 ,与y 轴的交点坐标是 .2.抛物线c bx ax y ++=2的图象都在x 轴的下方,则函数值y 的取值范围是 .3.抛物线c bx ax y ++=2与x 轴只有一个交点(-3,0),则它的顶点坐标是 .4. 若抛物线42++=bx x y 与x 轴只有1个交点,求b 的值.. 求抛物线822--=x x y 与x 轴的交点之间的距离.【拓展提升】利用下列平面直角坐标系求例①中抛物线342+-=x x y 与坐标轴的交点围成的 △ABC 的周长和面积.xyCBAy=x 2-4x+3抛物线上是否存在点D ,令△ABD 与△ABC 面积相等,如果有,请写出D 点坐标.【课外作业】1.判断下列函数的图象与x 轴是否有公共点,有几个公共点,并说明理由. ①252+-=x x y ②122-+-=x x y ③322-+-=x x y2.二次函数的图象与一元二次方程的根的关系如下:抛物线与x 轴有 个公共点⇔ac b 42- 0,方程有 实数根; 抛物线与x 轴有 个公共点⇔ac b 42- 0,方程有 实数根; 抛物线与x 轴有 个公共点⇔ac b 42- 0,方程 实数根. 3.抛物线c bx ax y ++=2的图象都在x 轴的上方,则函数值y 的取值范围是 . 4.若抛物线92+-=bx x y 与x 轴只有1个交点,则b = . .抛物线c bx ax y ++=2的顶点是(3,0),则它与x 轴有 个交点. 6.已知二次函数1032--=x x y .⑴求该抛物线的图象与坐标轴的交点坐标. ⑵求抛物线与x 轴的交点之间的距离.。
22.2 二次函数与一元二次方程【知识与技能】理解二次函数与一元二次方程之间的联系,掌握二次函数图象与x轴的位置关系可由对应的一元二次方程的根的判别式实行判别,理解用图象法确定一元二次方程的近似解的方法.【过程与方法】通过对实际问题情境的思考感受二次函数与对应的一元二次方程的联系,体会用函数的观点看一元二次方程的思想方法.【情感态度】进一步增强学生的数形结合思想方法,增强学生的综合解题水平.【教学重点】二次函数y=ax2+bx+c(a≠0)与一元二次方程ax2+bx+c=0之间的联系,利用二次函数的图象求一元二次方程的近似解.【教学难点】一元二次方程根的情况与二次函数图象与x轴位置关系的联系.一、情境导入,初步理解问题如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线.假设不考虑空气阻力,球的飞行高度h(m)与飞行时间t(s)之间具相关系:h=20t-5t2.考虑以下问题:(1)球的飞行高度能否达到15m?如能,需要飞行多长时间?(2)球的飞行高度能否达到20m?如能,需要飞行多长时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?【教学说明】教师可通过教材的引例,引用其递进式的问题链,让学生在相互交流过程中,自不过然地感受到引用方程思想来解决函数问题的思想方法.教师巡视,即时释疑解惑,并尽量予以肯定和鼓励,激发学生的学习兴趣.二、思考探究,获取新知通过对上述问题的思考,能够看出二次函数与一元二次方程之间存有着密切联系.例如,已知二次函数y=-x2+4x的值为3,求自变量x的值,能够看作解一元二次方程-x2+4x=3;反过来,解方程x2-4x+3=0又能够看作已知二次函数y=x2-4x+3的值为0,求自变量x的值.问题1画出函数y=x2-4x+3的图象,根据图象回答以下问题:(1)图象与x轴交点的坐标是什么?(2)当x取何值时,y=0?这里x的取值与方程x2-4x+3=0有什么关系?(3)你能从中得到什么启示?问题2以下函数的图象与x轴有公共点吗?假设有,公共点的横坐标是多少?当x取公共点的横坐标时,函数的值是多少?由此,你能得出相对应的一元二次方程的根吗?(1)y=x2+x-2; (2)y=x2-6x+9; (3)y=x2-x+1.问题3一般地,二次函数y=ax2+bx+c的图象和x轴交点的横坐标与一元二次方程ax2+bx+c=0的根有什么关系?【教学说明】让学生在合作交流过程中完成问题1,2,并对问题3形成一个初步理解,达到从感性理解到理性思考的飞跃,从而理解新知.教师应巡视,对学生的交流成果给予积极评价,最后教师应在黑板上实行归纳总结.【归纳结论】一般地,从二次函数y=ax2+bx+c的图象可知:(1)假设抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标为x0.那么当x=x0时,函数的值为0,所以x=x0就是方程ax2+bx+c=0的一个根;(2)二次函数y=ax2+bx+c的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点.这对应着一元二次方程ax2+bx+c=0的根的三种情况:没有实数根,有两个相等的实数根,有两个不相等的实数根.所以可通过方程的根的判别式Δ<0,Δ=0和Δ>0来判别抛物线与x轴的交点的个数(Δ=b2-4ac,其中a、b、c为抛物线表达式中二次项系数,一次项系数和常数项).【试一试】1.若抛物线y=x2-mx+1与x轴没有公共点,则m的取值范围是.2.求证:抛物线y=x2+ax+a-2与x轴总有两个交点.【教学说明】让学生分组完成两个小题,使他们能体验成功的喜悦,对尚有困难的学生,应给予指导.三、使用新知,深化理解1.画出函数y=x2-2x-3的图象,利用图象回答:(1)方程x2-2x-3=0的解是什么?(2)x取什么值时,函数值大于0?(3)x取什么值时,函数值小于0?2.利用函数图象求方程x2-2x-2=0的实数解.【教学说明】题1可让学生自主完成,教师予以巡视,并作指导;题2的处理建议师生共同完成,这里涉及到逼近求值思想,应作为指导.评讲此题的目的是让学生能进一步体验函数与方程的密切联系,但不要求学生掌握,只要理解即可.【答案】1.图象如下列图:(1)当x1=3,x2=-1.(2)当x<-1或x>3时函数值大于0.(3)当-1<x<3时,函数值小于0.2.解:作y=x2-2x-2的图象,它与x轴的公共点的横坐标大约是-0.7,2.7.所以方程x2-2x-2=0的实数根为x1≈-0.7,x2≈2.7.我们还能够通过持续缩小根所在的范围估计一元二次方程的根:观察函数y=x2-2x-2的图象能够发现,当自变量为2时的函数值小于0(点(2,-2)在x轴的下方),当自变量为3时的函数值大于0(点(3,1)在x轴的上方),因为抛物线y=x2-2x-2是一条连续持续的曲线,所以抛物线y=x2-2x-2在2<x<3这个段经过x轴,也就是说当自变量取2,3之间的某个值时,函数的值为0,即方程x2-2x-2=0在2,3之间有根.我们可通过取平均数的方法持续缩小根所在的范围.例如,取2,3的平均数2.5,用计算器算得自变量为2.5时的函数值为-0.75,与自变量为3时的函数值异号,所以这个根在2.5,3之间.再取2.5,3的平均数2.75,用计算器算得自变量为2.75时的函数值为0.0625,与自变量为2.5时的函数值异号,所以这个根在2.5,2.75之间.重复上述步骤,我们逐步得到:这个根在2.625,2.75之间,在2.6875,2.75之间……能够看到:根所在的范围越来越小,根所在范围的两端的值越来越接近根的值,因而能够作为根的近似值.例如,当要求根的近似值与根的准确值的差的绝对值小于0.1时,因为|2.6875-2.75|=0.0625<0.1,我们能够将2.6875作为根的近似值.四、师生互动,课堂小结1.抛物线y=ax2+bx+c与一元二次方程ax2+bx+c=0有何关联?你能不画出抛物线y=ax2+bx+c而理解此抛物线与x轴的交点情况吗?你是怎样做的?2.你能利用抛物线来确定相对应的方程的根的近似值吗?从中你有哪些体会?1.布置作业:教材习题22.2第1、2、3、4、6题.2.完成创优作业中本课时练习的“课时作业”部分.本课时教学首先通过具体情况让学生感受用方程思想方法来解决函数问题的思路,然后通过图象来探究一元二次方程的根和二次函数与x轴交点之间的关联.这样整个教学过程充分利用了学生已形成的方程、函数间的关系来类比引导挖掘、探索二次函数与一元二次方程的关系.此外,通过观察图象直观理解、解答练习以及实际观察分析都是必经的途径与方法,重在让学生自主体会.。
6.3 二次函数与一元二次方程(一)学习目标:通过本课的学习,掌握二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根的关系,感受数形结合的数学思想。
学习过程:一、知识回顾1、怎样利用根的判别式来判定一元二次方程根的情况?2、不解方程,判别根的情况。
⑴x2-3x+1=0 ⑵-x2+x-1=0 ⑶4y2+4y+1=0二、探索活动1、(1)二次函数y=x2-2x-3与一元二次方程x2―2x―3=0有怎样的关系?(P21) (2)结论:)2、观察二次函数y=x2-6x+9的图象和二次函数y=x2-2x+3的图象。
(P21(1)观察两个函数图象,它们与x轴的公共点个数有几个?(2)利用图象写出一元二次方程x2-6x+9=0和x2-2x+3=0的根的情况。
3、试总结二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根的关系:三、典型例题1、判断下列函数的图象与x轴是否有公共点,并说明理由。
(1)y=x2-x (2)y=-x2+6x-9 (3)y=3x2+6x+112、已知二次函数y=kx2-x-1的图象和x轴有交点,求k的取值范围。
四、巩固练习1、不画图象,你能说出函数y=-x2+x+6的图象与x轴的交点坐标吗?2、关于x的一元二次方程x2―x―n=0没有实数根,则抛物线y=x2-x-n顶点在哪一个象限内?五、小结:这节课我学会了________________________________________巩固练习1、二次函数y=x2-3x的图象与x轴两个交点的坐标是()A. (0, 0), (0, 3)B. (0, 0),(0,-3)C.(0,0),(-3,0)D.(0,0),(3,0)2、已知二次函数y=x2-2ax+(b+c)2,其中a、b、c是△ABC的边长,则函数图象与x轴()A.无交点B.有一个交点C.有两个交点D.交点个数无法确定3、已知抛物线y=ax2+bx+c(a>0)的对称轴为直线x=-1,与x轴的一个交点为(x1,0),且0<x1<1,下列结论:①9a-3b+c>0;②b<0;③a-2b+4c<0。
《22.2 二次函数与一元二次方程》教案【教学目标】1.通过探索,理解二次函数与一元二次方程之间的联系.2.能运用二次函数及其图象确定方程和不等式的解或解集.3.根据函数图象与x轴的交点情况确定未知字母的值或取值范围.【教学过程】一、情境导入如图,是二次函数y=ax2+bx+c图象的一部分,你能通过观察图象得到一元二次方程ax2+bx+c=0的解集吗?不等式ax2+bx+c<0的解集呢?二、合作探究探究点一:二次函数与一元二次方程【类型一】二次函数图象与x轴交点情况判断下列函数的图象与x只有一个交点的是( )A.y=x2+2x-3 B.y=x2+2x+3C.y=x2-2x+3 D.y=x2-2x+1解析:选项A中b2-4ac=22-4×1×(-3)=16>0,选项B中b2-4ac=22-4×1×3=-8<0,选项C中b2-4ac=(-2)2-4×1×3=-8<0,选项D中b2-4ac=(-2)2-4×1×1=0,所以选项D的函数图象与x轴只有一个交点,故选D.【类型二】利用二次函数图象与x轴交点坐标确定抛物线的对称轴如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为________.解析:∵点(1,0)与(3,0)是一对对称点,其对称中心是(2,0),∴对称轴的方程是x=2.方法总结:解答二次函数问题,若能利用抛物线的对称性,则可以简化计算过程.【类型三】利用函数图象与x轴交点情况确定字母取值范围若函数y=mx2+(m+2)x+12m+1的图象与x轴只有一个交点,那么m的值为( )A.0 B.0或2C.2或-2 D.0,2或-2解析:若m≠0,二次函数与x轴只有一个交点,则可根据一元二次方程的根的判别式为零来求解;若m=0,原函数是一次函数,图象与x轴也有一个交点.由(m+2)2-4m(12m+1)=0,解得m=2或-2,当m=0时原函数是一次函数,图象与x轴有一个交点,所以当m=0,2或-2时,图象与x轴只有一个交点.方法总结:二次函数y=ax2+bx+c,当b2-4ac>0时,图象与x轴有两个交点;当b2-4ac=0时,图象与x轴有一个交点;当b2-4ac<0时,图象与x 轴没有交点.【类型四】利用抛物线与x轴交点坐标确定一元二次方程的解小兰画了一个函数y=x2+ax+b的图象如图,则关于x的方程x2+ax +b=0的解是( )A.无解B.x=1C.x=-4D.x=-1或x=4解析:∵二次函数y=x2+ax+b的图象与x轴交于(-1,0)和(4,0),即当x=-1或4时,x2+ax+b=0,∴关于x的方程x2+ax+b=0的解为x1=-1,x=4,故选D.2方法总结:本题容易出错的地方是不知道二次函数的图象与一元二次方程的解的关系导致无法求解.探究点二:二次函数y=ax2+bx+c中的不等关系【类型一】利用抛物线解一元二次不等式抛物线y=ax2+bx+c(a<0)如图所示,则关于x的不等式ax2+bx+c >0的解集是( )A.x<2B.x>-3C.-3<x<1D.x<-3或x>1解析:观察图象,可知当-3<x<1时,抛物线在x轴上方,此时y>0,即ax2+bx+c>0,∴关于x的不等式ax2+bx+c>0的解集是-3<x<1.故选C.方法总结:抛物线y=ax2+bx+c在x轴上方部分的点的纵坐标都为正,所对应的x的所有值就是一元二次不等式ax2+bx+c>0的解集;在x轴下方部分的点的纵坐标均为负,所对应的x的所有值就是一元二次不等式ax2+bx+c<0的解集.【类型二】确定抛物线相应位置的自变量的取值范围二次函数y=ax2+bx+c(a≠0)的图象如图所示,则函数值y>0时,x 的取值范围是( )A.x<-1B.x>3C.-1<x<3D.x<-1或x>3解析:根据图象可知抛物线与x轴的一个交点为(-1,0)且其对称轴为x=1,则抛物线与x轴的另一个交点为(3,0).当y>0时,函数的图象在x轴的上方,由左边一段图象可知x<-1,由右边一段图象可知x>3.因此,x<-1或x >3.故选D.方法总结:利用数形结合思想来求解,抛物线与x轴的交点坐标是解题的关键.三、板书设计【教学反思】教学过程中,强调学生自主探索和合作交流,通过观察二次函数与x轴的交点个数,讨论一元二次方程的根的情况.体会知识间的相互转化和相互联系.《22.2 二次函数与一元二次方程》教学设计【教学目标】知识与技能1.总结出二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,表述何时方程有两个不等的实根、两个相等的实数和没有实根.2.会利用二次函数的图象求一元二次方程的近似解.过程与方法经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.情感态度价值观通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步体会数形结合思想.【教学重点和难点】重点:方程与函数之间的联系,会利用二次函数的图象求一元二次方程的近似解.难点:二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.【教学过程设计】(一)问题的提出与解决问题如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,球的飞行路线将是一条抛物线.如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h=20t—5t2考虑以下问题(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?(3)球的飞行高度能否达到20.5m?为什么?(4)球从飞出到落地要用多少时间?分析:由于球的飞行高度h与飞行时间t的关系是二次函数h=20t-5t2.所以可以将问题中h的值代入函数解析式,得到关于t的一元二次方程,如果方程有合乎实际的解,则说明球的飞行高度可以达到问题中h的值:否则,说明球的飞行高度不能达到问题中h的值.解:(1)解方程 15=20t—5t2. t2—4t+3=0. t1=1,t2=3.当球飞行1s和3s时,它的高度为15m.(2)解方程 20=20t-5t2. t2-4t+4=0. t1=t2=2.当球飞行2s时,它的高度为20m.(3)解方程 20.5=20t-5t2. t2-4t+4.1=0因为(-4)2-4×4.1<0.所以方程无解.球的飞行高度达不到20.5m.(4)解方程 0=20t-5t2. t2-4t=0. t1=0,t2=4.当球飞行0s和4s时,它的高度为0m,即0s时球从地面飞出.4s时球落回地面播放课件:函数的图像,画出二次函数h=20t-5t2的图象,观察图象,体会以上问题的答案.从上面可以看出.二次函数与一元二次方程关系密切.由学生小组讨论,总结出二次函数与一元二次方程的解有什么关系?例如:已知二次函数y=-x2+4x的值为3.求自变量x的值.可以解一元二次方程-x2+4x=3(即x2-4x+3=0) .反过来,解方程x2-4x+3=0又可以看作已知二次函数y=x2-4+3的值为0,求自变量x的值.一般地,我们可以利用二次函数y=ax2+bx+c深入讨论一元二次方程ax2+bx+c=0.(二)问题的讨论二次函数(1)y=x2+x-2;(2) y=x2-6x+9;(3) y=x2-x+0.的图象如图26.2-2所示.(1)以上二次函数的图象与x轴有公共点吗?如果有,公共点的横坐标是多少?(2)当x取公共点的横坐标时,函数的值是多少?由此,你能得出相应的一元二次方程的根吗?先画出以上二次函数的图象,由图像学生展开讨论,在老师的引导下回答以上的问题.可播放课件:函数的图像,输入a,b,c的值,划出对应的函数的图像,观察图像,说出函数对应方程的解.可以看出:(1)抛物线y=x2+x-2与x轴有两个公共点,它们的横坐标是-2,1.当x取公共点的横坐标时,函数的值是0.由此得出方程x2+x-2=0的根是-2,1.(2)抛物线y=x2-6x+9与x轴有一个公共点,这点的横坐标是3.当x=3时,函数的值是0.由此得出方程x2-6x+9=0有两个相等的实数根3.(3)抛物线y=x2-x+1与x轴没有公共点,由此可知,方程x2-x+1=0没有实数根.总结:一般地,如果二次函数y=2ax bx c++的图像与x轴相交,那么交点的横坐标就是一元二次方程2ax bx c++=0的根.(三)归纳一般地,从二次函数y=ax2+bx+c的图象可知,(1)如果抛物线y=ax2+bx+c与x轴有公共点,公共点的横坐标是x,那么当x=x0时,函数的值是0,因此x=x就是方程ax2+bx+c=0的一个根.(2)二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点.这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根.由上面的结论,我们可以利用二次函数的图象求一元二次方程的根.由于作图或观察可能存在误差,由图象求得的根,一般是近似的.(四)例题例利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).解:作y=x2-2x-2的图象(图26.2-3),它与x轴的公共点的横坐标大约是-0.7,2.7.所以方程x2-2x-2=0的实数根为x1≈-0.7,x2≈2.7.播放课件:函数的图象与求解一元二次方程的解,前一个课件用来画图,可根据图像估计出方程x2-2x-2=0实数根的近似解,后一个课件可以准确的求出方程的解,体会其中的差异.(五)小结总结本节的知识点.(六)作业:(七)板书设计《22.2 二次函数与一元二次方程(第一课时)》教案【教学目标】:1.知识与技能:通过探索,使学生理解二次函数与一元二次方程、一元二次不等式之间的联系.2.方法与过程:使学生能够运用二次函数及其图象、性质解决实际问题,提高学生用数学的意识.3.情感、态度与价值观:进一步培养学生综合解题能力,渗透数形结合思想.【教学重点】:使学生理解二次函数与一元二次方程、一元二次不等式之间的联系,能够运用二次函数及其图象、性质去解决实际问题是教学的重点.【教学难点】:进一步培养学生综合解题能力,渗透数形结合的思想是教学的难点.【教学过程】:一、引言在现实生活中,我们常常会遇到与二次函数及其图象有关的问题,如拱桥跨度、拱高计算等,利用二次函数的有关知识研究和解决这些问题,具有很现实的意义.本节课,请同学们共同研究,尝试解决以下几个问题二、探索问题问题1:某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水.连喷头在内,柱高为0.8m.水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示.根据设计图纸已知:如图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是y=-x2+2x+4 5 .(1)喷出的水流距水平面的最大高度是多少?(2)如果不计其他的因素,那么水池至少为多少时,才能使喷出的水流都落在水池内?问题2:画出函数y=x2-x-3/4的图象,根据图象回答下列问题.(1)图象与x轴交点的坐标是什么;(2)当x取何值时,y=0?这里x的取值与方程x2-x-34=0有什么关系?(3)你能从中得到什么启发?对于问题(2),教师组织学生分组讨论、交流,各组选派代表发表意见,全班交流,达成共识:从“形”的方面看,函数y=x2-x-34的图象与x轴交点的横坐标,即为方程x2-x-34=0的解;从“数”的方面看,当二次函数y=x2-x-34的函数值为0时,相应的自变量的值即为方程x2-x-34=0的解.更一般地,函数y=ax2+bx+c的图象与x轴交点的横坐标即为方程ax2+bx+c=0的解;当二次函数y=ax2+bx+c的函数值为0时,相应的自变量的值即为方程ax2+bx+c=0的解,这一结论反映了二次函数与一元二次方程的关系.三、课堂练习: P23练习1、2.五、小结:1.通过本节课的学习,你有什么收获?有什么困惑?2.若二次函数y=ax2+bx+c的图象与x轴无交点,试说明,元二次方程ax2+bx+c=0和一元二次不等式ax2+bx+c>0、ax2+bx+c<0的解的情况.六、作业:《22.2 二次函数与一元二次方程(第二课时)》教案【教学目标】:1.知识与能力:复习巩固用函数y=ax2+bx+c的图象求方程ax2+bx+c=0的解.2.方法与过程:让学生体验函数y=x2和y=bx+c的交点的横坐标是方程x2=bx+c的解的探索过程,掌握用函数y=x2和y=bx+c图象交点的方法求方程ax2=bx+c的解.3.情感、态度与价值观:提高学生综合解题能力,渗透数形结合思想.【教学重点】;用函数图象法求方程的解以及提高学生综合解题能力是教学的重点.【教学难点】:提高学生综合解题能力,渗透数形结合的思想是教学的难点.【教学过程】:一、复习巩固1.如何运用函数y=ax2+bx+c的图象求方程ax2+bx+c的解?2.完成以下两道题:(1)画出函数y=x2+x-1的图象,求方程x2+x-1=0的解.(精确到0.1)(2)画出函数y=2x2-3x-2的图象,求方程2x2-3x-2=0的解.二、探索问题已知抛物线y1=2x2-8x+k+8和直线y2=mx+1相交于点P(3,4m).(1)求这两个函数的关系式;(2)当x取何值时,抛物线与直线相交,并求交点坐标.解:(1)因为点P(3,4m)在直线y2=mx+1上,所以有4m=3m+1,解得m =1所以y1=x+1,P(3,4). 因为点P(3,4)在抛物线y1=2x2-8x+k+8上,所以有4=18-24+k +8 解得 k =2 所以y 1=2x 2-8x +10(2)依题意,得⎩⎪⎨⎪⎧y =x +1y =2x 2-8x +10 解这个方程组,得⎩⎪⎨⎪⎧x 1=3y 1=4 ,⎩⎪⎨⎪⎧x 2=1.5y2=2.5所以抛物线与直线的两个交点坐标分别是(3,4),(1.5,2.5).五、小结: 如何用画函数图象的方法求方程的解?六、作业:《22.2二次函数与一元二次方程》导学案【学习目标】:1.探索二次函数与一元二次方程、一元二次不等式之间的关系.2.掌握一元二次方程(组)的图象解法.【重点、难点】1.重点:探索二次函数与一元二次方程、一元二次不等式之间的关系.2.难点:掌握一元二次方程(组)的图象解法.【导学过程】:阅读教材P16 — 19 , 完成课前预习【课前预习】1:准备知识(1) 一元二次方程根的情况:(2)一次函数与一元一次方程的关系:2:探究1以40米/秒的速度将小球沿与地面成300角的方向击出时,球的飞行路线将是一条抛物线。
二次函数与一元二次方程教案教案标题:探索二次函数与一元二次方程教案目标:1. 了解二次函数与一元二次方程的定义和基本性质;2. 掌握解一元二次方程的方法;3. 掌握二次函数的图像特征和性质;4. 能够应用二次函数和一元二次方程解决实际问题。
教案步骤:一、引入(5分钟)1. 利用实例引出学生对于二次函数和一元二次方程的初步认识。
2. 引导学生思考二次函数与一元二次方程的联系,并提出学习的目标。
二、理论讲解(15分钟)1. 介绍二次函数的定义和一般形式,解释二次函数图像的特征。
2. 讲解一元二次方程的定义和一般形式,介绍解一元二次方程的方法。
三、解题演练(20分钟)1. 给学生提供一些简单的一元二次方程,引导学生运用所学方法解题。
2. 给学生提供一些简单的二次函数图像,要求学生根据图像特征写出函数的表达式。
四、拓展应用(15分钟)1. 提供一些实际问题,引导学生将问题转化为一元二次方程,并解答问题。
2. 提供一些实际问题,引导学生根据问题描述绘制对应的二次函数图像,并分析解决问题的方法。
五、总结归纳(10分钟)1. 学生总结二次函数与一元二次方程的基本性质和解题方法。
2. 教师对本节课的重点内容进行总结,并强调学生在课后的复习重点。
六、作业布置(5分钟)1. 布置一些练习题,要求学生巩固所学的知识和解题方法。
2. 鼓励学生积极思考,提出问题并准备下节课的讨论。
教案评估:1. 课堂参与度:观察学生在课堂上的积极参与程度;2. 练习题表现:检查学生对于二次函数和一元二次方程的掌握情况;3. 实际问题解决能力:评估学生运用所学知识解决实际问题的能力。
教案扩展:1. 可以引入二次函数的最值问题,进一步拓展学生对于二次函数的理解;2. 可以引入一元二次方程的根与系数之间的关系,加深学生对于一元二次方程的理解。
教案注意事项:1. 确保学生已经掌握一元一次方程的解法和基本概念,为学习二次函数和一元二次方程打下基础;2. 鼓励学生多做练习,加深对于二次函数和一元二次方程的理解;3. 教师要及时给予学生反馈,帮助他们纠正错误和提高解题能力。
九年级数学上册导学案1.二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如图所示.(1)每个图象与x轴有几个交点?(2)一元二次方程x2+2x=0,x2-2x+1=0有几个根?验证一下一元二次方程x2-2x+2=0有根吗?(3)二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?归纳:二次函数y=ax2+bx+c的图象和x轴交点有三种情况:①有两个交点,②有一个交点,③没有交点.2.当二次函数y=ax2+bx+c的图象和x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.当b2-4ac>0时,抛物线与x轴有两个交点,交点的横坐标是一元二次方程0=ax2+bx+c的两个根x1与x2;当b2-4ac=0时,抛物线与x轴有且只有一个公共点;当b2-4ac<0时,抛物线与x轴没有交点.3.求二次函数图象y=x2-3x+2与x轴的交点A,B的坐标.结论:方程x2-3x+2=0的解就是抛物线y=x2-3x+2与x轴的两个交点的横坐标.因此,抛物线与一元二次方程是有密切联系的.即:若一元二次方程ax2+bx+c=0的两个根是x1,x2,则抛物线y=ax2+bx+c与x轴的两个交点坐标分别是A(x1,0),B(x2,0).从上表可知,下列说法正确的个数是( )①(-2,0)为抛物线与x轴的一个交点; ②抛物线与y轴的交点为(0,-2);③抛物线的对称轴是x=1; ④在对称轴左侧,y随x的增大而增大.A.1B.2C.3D.44.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac-b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m≠-1),其中正确结论的个数是( )A.1B.2C.3D.45.若二次函数y=x2-2x+m的图象与x轴有两个交点,则m的取值范围是.6.已知二次函数y=ax2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.7.(1)请在坐标系中画出二次函数y=x2-2x的大致图象;(2)根据方程的根与函数图象的关系,将方程x2-2x=1的根在图上近似地表示出来(描点);(3)观察图象,直接写出方程x2-2x=1的根(精确到0.1).8.已知关于x的二次函数y=x2-(2k-1)x+k2+1的图象与x轴有2个交点.(1)求k 的取值范围;(2)若与x 轴交点的横坐标为x 1,x 2,且它们的倒数之和是-32,求k 的值.9.已知二次函数1)2(2++-+-=m x m x y ,(1)试说明:不论m 取任何实数,这个二次函数的图象必与x 轴有两个交点; (2)m 为何值时,这两个交点都在原点的左侧? (3)m 为何值时,这个二次函数的图象的对称轴是y 轴?10.已知二次函数62-+=x x y ,画出此抛物线的图象,根据图象回答下列问题.(1)方程062=-+x x 的解是什么?(2)x 取什么值时,函数值大于0?x 取什么值时,函数值小于0?。
备课时刻:2017、8、28 讲课时刻:2017、9、4备课人:郭艳玲(主备)母东文课型:新讲课 教具:多媒体课件 教法:启发式 学法:自主合作探讨二次函数与一元二次方程导学目标:1、明白得二次函数与一元二次方程的关系,把握方程与函数间的转化。
2、会利用数形结合的方式判定抛物线与x 轴的交点个数。
3、培育合作意识和探讨数学知识间联系的好适应,体验二次函数的应用。
导学重点:探讨一次函数图象与一元二次方程的关系,明白得抛物线与x 轴交点情形。
难点:函数→方程→x 轴交点,三者之间的关系的明白得与运用。
导学方式:先由学生自学讲义,经历自主探讨总结的进程,并独立完成自主学习部份,然后学习小组交流讨论,形成知能,最后完成当堂训练题。
导学进程:一、创设情境,引入新课二次函数的223y x x =--的图象如图所示。
依照图象回答:(1)x 为何值时, 0y =?(2)你能依照图象,求方程2230x x --=的根吗?(3)二次函数223y x x =--与方程2230x x --=之间有何关系呢?二、自主学习,固知提能1、二次函数与一元二次方程之间的关系【探讨】教材P43问题:如图,以40m/s 的速度将小球沿与地面成30°角的方向击出时,球的飞行线路将是一条抛物线。
若是不考虑空气阻力,球的飞行高度h (单位:m )与飞行时刻t (单位:s )之间具有关系:2205h t t =-。
考虑以下问题:(1)球的飞行高度可否达到15m ?如能,需要多少飞行时刻?(2)球的飞行高度可否达到20m ?如能,需要多少飞行时刻?(3)球的飞行高度可否达到20.5m ?什么缘故?(4)球从飞出到落地需要多少时刻?【归纳】二次函数与一元二次方程有如下关系:二次函数与一元二次方程之间有如下关系①函数2y ax bx c =++,当函数值y 为某一确信值m 时,对应自变量x 的值确实是方程2ax bx c m ++=的根.②专门是0y =时,对应自变量x 的值确实是方程20ax bx c ++=的根。
二次函数与一元二次方程【教学目标】1.知识与技能:理解二次函数与一元二次方程的关系,会判断抛物线与x轴的交点个数、掌握方程与函数间的转化。
2.过程与方法:逐步探索二次函数与一元二次方程之间的关系,函数图象与x轴的交点情况。
由特殊到一般,提高学生的分析、探索、归纳能力。
3.情感态度:培养合作的良好意识和大胆探索数学知识间联系的好习惯,体会到二次函数广泛意义。
【教学重点】探索一次函数图象与一元二次方程的关系,理解抛物线与x轴交点情况。
【教学难点】函数→方程→x轴交点,三者之间的关系的理解与运用。
【教学过程】一、问题导入。
如图,以40m/s的速度将小球沿与地面成30°角的方向击出时,小球的飞行路线将是一条抛物线。
如果不考虑空气阻力,小球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系。
考虑以下问题:(1)小球的飞行高度能否达到15m?如果能,需要多少飞行时间?(2)小球的飞行高度能否达到20m?如果能,需要多少飞行时间?(3)小球的飞行高度能否达到20.5m?为什么?(4)小球从飞出到落地需要多少时间?2205h t t=-二、探索新知。
1.从上面的问题可以看出,二次函数与一元二次方程有如下关系:函数,当函数值y为某一确定值m时,对应自变量x的值就是方程的根。
特别是y=0时,对应的自变量x的值就是方程的根。
以上关系,反过来也成立。
利用以上关系,可以解决两个方面问题。
其一,当y为某一确定值时,可通过解方程来求出相应的自变量x值;其二,可以利用函数图象来找出相应方程的根。
2.二次函数的图象与x轴的交点情况同一元二次方程的根的情况之间的关系。
观察图中的抛物线与x轴的交点情况,你能得出相应方程的根吗?方程的根是,。
方程的根是。
方程无实数根。
3.归纳总结。
一般地,从二次函数的图象可得如下结论:如果抛物线与x轴有公共点,公共点的横坐标是,那么当时,函数值是0,因此是方程的一个根。
二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。
课题: 22.2.2二次函数与一元二次不等式【学习目标】1. 正确理解一元二次不等式的概念,掌握一元二次不等式的解法;2. 理解一元二次不等式、一元二次函数及一元二次方程的关系,能借助二次函数的图象及一元二次方程解一元二次不等式.【学习重点】从实际情景中抽象出一元二次不等式模型,一元二次不等式的解法.【学习难点】理解二次函数与一元二次不等式解集的关系.【课前预习案】复习1:解下列不等式:①112x>-;②112x->;③1102x-+>.探究一:一元二次不等式的定义制作一个高为2m的长方体容器,底面矩形的长比宽少1m,并且长方体的容积大于12m3,问底面矩形的宽取值范围?一元二次不等式的定义:只含未知数,并且未知数最高次数为的不等式,称为一元二次不等式.探究二:解一元二次不等式解一元二次不等式:①x2-x-6>0 ②x2-x-6<0第一步:解一元二次方程x2-x-6=0第二步:画出二次函数y= x2-x-6的草图第三步:写出不等式的解集:归纳:方程的解即函数图象与x轴交点的横坐标,不等式的解集即函数图象在x轴上方或下方图象所对应x 的范围。
例1.解不等式 2x2-3x-2 > 0 .总结出:解一元二次不等式ax2+bx+c>0、ax2+bx+c<0 (a>0) (标准形)的步骤是:探究三.二次函数,一元二次方程,一元二次不等式的关系例2:解不等式4x2+1>4x 例3:解不等式- x2 + 2x – 3 >0练习:解下列一元二次不等式:(1)3x2-7x+2<0 (2)-6x2-x+2≤0【课末达标案】1、不等式(3x+1)(2x-1)≤0的解集是( ) A.x ≤-31或x ≥21 B.-31<x <21 C.x <-31或x >21 D-31≤x ≤21. 2、不等式(x+5)(3-2x)≥6的解集是( )A .x≤-1或x≥29 B.-1≤x≤29 C.x ≤-29或x ≥1 D.-29≤x≤1 3、不等式(21-x)(31 -x)>0的解集为( )A.31<x <21B.x >21C.x <31D.x <31或x >21 4、不等式3x 2-16x+16>0的解集是 . 5、在下列不等式中,无解的是( )A.2x 2-3x+2>0B.x 2+4x+4≤0C.4-4x-x 2<0D.-2+3x-2x 2>06、若函数y=ax 2+bx+c(a ≠0)图象的开口向下,且与x 轴的交点的坐标为x 1,x 2(x 1<x 2),则不等式ax 2+bx+c <0的解集为( )A.x 1<x <x 2 B .x 2<x <x 1 C .x <x 1或x >x 2 D .x <x 2或x >x 17、已知二次方程ax 2+bx+c=0的两个根是-2,3,a >0,那么ax 2+bx+c >0的解集是( ) A.x <-2或x >3 B.x <-3或x >2 C.-2<x <3 D .-3<x <2 8、解下列不等式(组):(1) 0532>+-x x (2)0122<--x x (3)01272<++x x(4)0652≤--x x (5)5x+2≥3x 2 (6)(x-2)(3x-5)>0(7) 2245x x ≥+ (8) 3x-x 2<0 (9)2522<-)(x(10)212x x <+ (11)01242<--x x (12)012532>-+x x(13)0442>-+-x x (14)2230x x --+≥ (15)0232≥-+xx【课后拓展案】基础达标: 解下列一元二次不等式:1.0652>++x x2.0672≥+-x x3.0122>-+x x4.2230x x --+≥5.0262≤+--x x6.0142562≤++x x7.0941202≤+-x x 8.(2)(3)6x x +-<应用提高: 10.不等式组⎩⎨⎧+>+<+1,159m x x x 的解集是x >2,则m 的取值范围是( ).(A)m≤2(B)m≥2(C)m≤1(D)m≥111.(1) 若不等式012>++mx x 的解集为全体实数,则m 的取值范围是_____________. (2) 不等式220mx mx +-<的解集为全体实数,则实数m 的取值范围为 .思维拓展:12、已知对于任意实数x ,22kx x k -+恒为正数,求实数k 的取值范围.。
2 二次函数与一元二次方程
第二课时
导学目标:1、加强对二次函数与一元二次方程之间关系的理解,会利用二次函数的图象求相应一元二次方程的近似解。
2、探求利用图象求一元二次方程根的过程,掌握数形结合的思想方法。
3、进一步对一元二次方程根的认识,加深对二次函数图象的意义理
解,体会它的实际意义。
导学重点:理解二次函数与一元二次方程之间的关系,利用二次函数的图象求一元二次方程的近似根。
导学方法:先自学课本,经历自主探究总结的过程,并独立完成自主学习部分,然后小组交流讨论,掌握数形结合、逐渐逼近的探求方法,最后完成
当堂训练题。
导学过程:
一、创设情境,引入新课
1.若二次函数2
=++与x轴的交点为(2,0)与(-3,0),则方程
y a x b x c
20
++=的根为
a x
b x c
2.如图是二次函数y=x2-2x-3的图象,你能看出哪些方程的根?
二、自主学习,固知提能
【探究】教材P18例题:利用二次函数y=x2-2x-2的图象,求方程x2-2x -2=0的实数根。
(精确到0.1)
分析:(1)用描点法画函数的图象,图象要求尽可能准确.
(2)确定抛物线与x轴的两个交点的位置,估计方程x2-2x-2=0两根的范围:
,
(3)填写下表: (可利用计算器)
(4) 时,0;时,y的值最接近于0。
【归纳】利用二次函数的图象求相应一元二次方程的近似解,步骤为:(1)作二次函数y=ax2+bx+c的图象,并由图象确定方程解的个数.
(2)由图象中的交点位置确定交点横坐标的范围.
(3)利用计算器估算方程的近似解.(通常保留一位小数,可解方程检验近似根是否正确)
【思考】利用二次函数y=-x2+2x-3的图象,求方程-x2+2x-3=-8的近似解.
三、合作探究,应用迁移
例1.根据下列表格中二次函数y=ax2+bx+c的自变量x与函数y的对应值.判断方程ax2+bx+c=0的一个解x的取值范围()
A.6<x<6.17 B.6.17<x<6.18 C.6.18<x<6.19 D.6.19<x<6.20
例2. 画出函数2
的图象,利用图象求4,6,8的平方根。
y x
四、课堂小结,构建体系
我们可以利用二次函数的图像求一元二次方程的近似根,一般步骤是:
五、当堂训练,巩固提高
1、抛物线y=2x2+5x-3在x轴上截得的线段长是.
2、已知二次函数c bx ax y ++=2的y 与x 的部分对应值如下表:则下列判断中正确的是( )
A .抛物线开口向上
B .抛物线与y 轴交于负半轴
C .当x =4时,y <0
D .方程02=++c bx ax 的正根在3与4之间
3. 当a ,二次函数224y ax x =+-的值总是负值.
4. 已知一元二次方程20(0)ax bx c a ++= >的两个实数根1x 、2x 满足
124x x +=和123x x =,那么二次函数2
(0)y ax bx c a =++ >的图象有可能是
( )
课后思考
1、已知函数()()()()
2
2113513x x y x x ⎧--⎪=⎨--⎪⎩≤>,则使y k =成立的x 值恰好有三个,则k 的值为( )
A .0
B .1
C .2
D .3
2、如图为抛物线2y ax bx c =++的图像,A 、B 、C 为抛物线与坐标轴的交点,且OA =OC =1,则下列关系中正确的是( )
A .a +b =-1
B . a -b =-1
C . b <2a
D . ac <0
3、已知二次函数2y ax bx c =++中,其函数y 与自变量x 之间的部分对应值如下表所示:
点A (1x ,1y )、B (2x ,2y )在函数的图象上,则当112,x <<234x <<时,
1y 与2y 的大小关系正确的是( )
A .12y y >
B . 12y y <
C . 12y y ≥
D . 12y y ≤ 4、已知抛物线223
4y x kx k =+-(k 为常数,且k >0).
(1)证明:此抛物线与x 轴总有两个交点;
(2)设抛物线与x 轴交于M 、N 两点,若这两点到原点的距离分别为OM 、ON ,且1123
ON
OM
-=,求k 的值.
五.课后反思:。