八年级数学上期中测试卷一2015.10.29
- 格式:doc
- 大小:111.50 KB
- 文档页数:4
2015初二上学期期中考试数学试卷(有答案)2014-2015学年山东省济南市章丘市党家中学八年级(上)期中数学试卷一、选择题:(每题3分,共45分) 1.的相反数是()A. B. C.�D.� 2.9的算术平方根是() A.±3 B. 3 C. D. 3.在(�2)0、、0、�、、、0.101001…(相邻两个1之间0的个数逐次加1)中,无理数的个数是()A. 2 B. 3 C. 4 D. 5 4.下列计算正确的是() A. B.÷ = C. =6 D. 5.估计58的立方根的大小在() A. 2与3之间 B. 3与4之间 C. 4与5之间 D. 5与6之间 6.如图,以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是() A. B. 1.4C. D. 7.三角形各边长度如下,其中不是直角三角形的是()A. 3,4,5 B. 6,8,10 C. 5,11,12 D. 8,15,17 8.一个长方形在平面直角坐标系中三个顶点的坐标为(�1,�1),(�1,2),(3,�1),则第四个顶点的坐标为() A.(2,2) B.(3,2) C.(3,3) D.(2,3) 9.若一次函数y=kx�4的图象经过点(�2,4),则k等于() A.�4 B. 4 C.�2 D. 2 10.直角三角形两边长分别是3、4,第三边是() A. 5 B. C. 5或 D.无法确定 11.下列各点中,在函数y=�2x+5的图象上的是() A.(0,�5) B.(2,9) C.(�2,�9) D.(4,�3) 12.一次函数y=kx+6,y随x的增大而减小,则这个一次函数的图象不经过() A.第一象限 B.第二象限 C.第三象限 D.第四象限 13.△ABC中,AB=13cm,AC=15cm,高AD=12,则BC的长为() A. 14 B. 4 C. 14或4 D.以上都不对 14.直线y=kx+b经过一、三、四象限,则直线y=bx�k的图象只能是图中的() A. B. C. D. 15.如图,已知点A(�1,0)和点B(1,2),在坐标轴上确定点P,使得△ABP为直角三角形,则满足这样条件的点P共有() A. 2个 B. 4个 C. 6个 D. 7个二.填空题(每小题3分,共18分) 16.在△ABC中,∠C=90°,AB=5,则AB2+AC2+BC2= . 17. = . 18.若点P(x,y)的坐标满足xy>0,则点P(x,y)在第象限. 19.已知y=(m�3) +m+1是一次函数,则m= . 20.若点P(�2,y)与Q(x,3)关于y轴对称,则x= ,y= . 21.函数y=(m�2)x中,已知x1>x2时,y1<y2,则m的范围是.三、解答题(共7个小题,共57分) 22.计算题:(1)(�)× ;(2)�4. 23.在△ABC中,已知∠B=90°,∠A,∠B,∠C的对边分别是a,b,c,且a=6,b=8.(1)求c的长.(2)求斜边上的高. 24.已知一次函数y=(m�4)x+3�m,当m为何值时,(1)y随x值增大而减小;(2)直线过原点;(3)直线与直线y=�2x平行;(4)直线与x轴交于点(2,0)(5)直线与y轴交于点(0,�1) 25.如图,四边形AOCB是直角梯形,AB∥OC,OA=10,AB=9,∠OCB=45°,求点A,B,C的坐标及直角梯形AOCB的面积. 26.作出函数y= x�4的图象,并回答下面的问题:(1)求它的图象与x轴、y轴的交点.(2)求图象与坐标轴围成的三角形的面积. 27.如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=10cm,BC=6cm,你能求出CE的长吗? 28.直线y=kx+2与两坐标轴所围成的三角形面积为4,求直线解析式.若k>0时直线与x轴交点为A与y轴交点为B解答下列问题:(1)在x轴上是否存在一点P,使S△PAB=3?若存在,请求出P点坐标,若不存在,请说明理由.(2)求直线AB上是否存在一点E,使点E到x轴的距离等于1.5,若存在求出点E的坐标,若不存在,请说明理由.(3)在x轴上是否存在一点G,使S△BOG= S△AOB?若存在,请求出G点坐标,若不存在,请说明理由.2014-2015学年山东省济南市章丘市党家中学八年级(上)期中数学试卷参考答案与试题解析一、选择题:(每题3分,共45分)1.的相反数是() A. B. C.� D.�考点:实数的性质.分析:由于互为相反数的两个数和为0,由此即可求解.解答:解:的相反数为:�.故选:C.点评:此题主要考查了求无理数的相反数,无理数的相反数和有理数的相反数的意义相同,无理数的相反数是各地中考的重点. 2.9的算术平方根是() A.±3 B. 3 C. D.考点:算术平方根.分析:根据开方运算,可得算术平方根.解答:解:9的算术平方根是3,故选:B.点评:本题考查了算术平方根,注意一个正数只有一个算术平方根. 3.在(�2)0、、0、�、、、0.101001…(相邻两个1之间0的个数逐次加1)中,无理数的个数是() A. 2 B. 3 C. 4 D. 5考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:无理数有:,,0.101001…(相邻两个1之间0的个数逐次加1)共3个.故选B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 4.下列计算正确的是() A. B.÷ = C. =6 D.考点:实数的运算.专题:计算题.分析:根据同类二次根式的定义对A进行判断;根据二次根式的除法对B进行判断;根据积的乘方对C进行判断;计算根号内的平方和即可对D进行判断.解答:解:A、和不是同类二次根式,不能合并,所以A选项错误; B、÷ = = ,所以B选项正确; C、(2 )2=4×3=12,所以C选项错误; D、= ,所以D选项错误.故选B.点评:本题考查了实数的运算:先进行乘方或开方运算,再进行乘除运算,然后进行加减运算. 5.估计58的立方根的大小在() A. 2与3之间B. 3与4之间 C. 4与5之间 D. 5与6之间考点:估算无理数的大小.分析:应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围即可求解.解答:解:∵33=27,43=64,∴3<<4.故选B.点评:此题主要考查了估算无理数的能力,现实生活中经常需要估算,“夹逼法”是估算的一般方法,也是常用方法. 6.如图,以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点A处,则点A表示的数是() A. B. 1.4 C. D.考点:实数与数轴;勾股定理.分析:先根据勾股定理求出正方形的对角线长,再根据两点间的距离公式即可求出A点的坐标.解答:解:数轴上正方形的对角线长为: = ,由图中可知0 和A之间的距离为.∴点A表示的数是.故选D.点评:本题考查的是勾股定理及两点间的距离公式,解答此题时要注意,确定点A的符号后,点A所表示的数是距离原点的距离. 7.三角形各边长度如下,其中不是直角三角形的是() A. 3,4,5 B. 6,8,10 C. 5,11,12 D. 8,15,17考点:勾股定理的逆定理.专题:应用题.分析:分别把选项中的三边平方后,根据勾股定理逆定理即可判断能否构成直角三角形.解答:解:A、∵32+42=52,∴5,4,3能构成直角三角形; B、∵62+82=102,∴6,8,10能构成直角三角形; C、∵52+112≠122,∴5,11,12不能构成直角三角形; D、∵82+52=172,∴8,15,17能构成直角三角形.故选C.点评:主要考查了利用勾股定理逆定理判定直角三角形的方法.在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断. 8.一个长方形在平面直角坐标系中三个顶点的坐标为(�1,�1),(�1,2),(3,�1),则第四个顶点的坐标为() A.(2,2) B.(3,2) C.(3,3) D.(2,3)考点:坐标与图形性质;矩形的性质.分析:本题可在画出图后,根据矩形的性质,得知第四个顶点的横坐标应为3,纵坐标应为2.解答:解:如图可知第四个顶点为:即:(3,2).故选:B.点评:本题考查学生的动手能力,画出图后可很快得到答案. 9.若一次函数y=kx�4的图象经过点(�2,4),则k等于() A.�4 B. 4 C.�2 D. 2考点:待定系数法求一次函数解析式.专题:计算题.分析:将点(�2,4)代入函数解析式可得出关于k的方程,解出即可得出k 的值.解答:解:将点(�2,4)代入得:4=�2k�4,解得:k=�4.故选A.点评:本题考查待定系数求函数的解析式,属于基础性,注意在代入点的坐标时要细心求解. 10.直角三角形两边长分别是3、4,第三边是() A. 5 B. C. 5或 D.无法确定考点:勾股定理.分析:此题要考虑两种情况:当第三边是斜边时;当第三边是直角边时.解答:解:当第三边是斜边时,则第三边= =5;当第三边是直角边时,则第三边= = .故选C.点评:熟练运用勾股定理,注意此题的两种情况. 11.下列各点中,在函数y=�2x+5的图象上的是() A.(0,�5) B.(2,9)C.(�2,�9) D.(4,�3)考点:一次函数图象上点的坐标特征.分析:把选项中的各点代入解析式,通过等式左右两边是否相等来判断点是否在函数图象上.解答:解:∵一次函数y=�2x+5图象上的点都在函数图象上,∴函数图象上的点都满足函数的解析式y=�2x+5; A、当x=0时,y=5≠�5,即点(0,�5)不在该函数图象上;故本选项错误; B、当x=2时,y=1≠9,即点(2,9)不在该函数图象上;故本选项错误;C、当x=�2时,y=9≠�9,即点(�2,�9)不在该函数图象上;故本选项错误;D、当x=4时,y=�3,即点(4,�3)在该函数图象上;故本选项正确;故选D.点评:本题考查了一次函数图象上点的坐标特征.用到的知识点是:在这条直线上的各点的坐标一定适合这条直线的解析式. 12.一次函数y=kx+6,y随x的增大而减小,则这个一次函数的图象不经过() A.第一象限 B.第二象限 C.第三象限 D.第四象限考点:一次函数图象与系数的关系.分析:先根据一次函数的性质判断出k的取值范围,再根据一次函数的图象与系数的关系即可得出结论.解答:解:∵一次函数y=kx+6,y随x的增大而减小,∴k <0,∵b=6>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故选C.点评:本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,k<0,b>0时函数的图象在一、二、四象限是解答此题的关键. 13.△ABC中,AB=13cm,AC=15cm,高AD=12,则BC的长为() A. 14 B. 4 C. 14或4 D.以上都不对考点:勾股定理.专题:分类讨论.分析:分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD,CD,再由图形求出BC,在锐角三角形中,BC=BD+CD,在钝角三角形中,BC=CD�BD.解答:解:(1)如图,锐角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2�AD2=132�122=25,则BD=5,在Rt△ABD中AC=15,AD=12,由勾股定理得 CD2=AC2�AD2=152�122=81,则CD=9,故BC=BD+DC=9+5=14;(2)钝角△ABC中,AB=13,AC=15,BC边上高AD=12,在Rt△ABD中AB=13,AD=12,由勾股定理得BD2=AB2�AD2=132�122=25,则BD=5,在Rt△ACD中AC=15,AD=12,由勾股定理得 CD2=AC2�AD2=152�122=81,则CD=9,故BC的长为DC�BD=9�5=4.故选:C.点评:本题考查了勾股定理,把三角形边的问题转化到直角三角形中用勾股定理解答. 14.直线y=kx+b经过一、三、四象限,则直线y=bx�k的图象只能是图中的() A. B. C. D.考点:一次函数的图象.分析:根据直线y=kx+b经过第一、三、四象限可以确定k、b的符号,则易求�b的符号,由�b,k的符号来求直线y=bx�k所经过的象限.解答:解:∵直线y=kx+b经过第一、三、四象限,∴k>0,b<0,∴�k<0,∴直线y=bx�k 经过第二、三、四象限.故选C.点评:本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交. 15.如图,已知点A(�1,0)和点B(1,2),在坐标轴上确定点P,使得△ABP为直角三角形,则满足这样条件的点P共有() A. 2个 B. 4个 C. 6个 D. 7个考点:直角三角形的性质;坐标与图形性质.专题:压轴题.分析:当∠PBA=90°时,即点P的位置有2个;当∠BPA=90°时,点P的位置有3个;当∠BAP=90°时,在y轴上共有1个交点.解答:解:①以A为直角顶点,可过A作直线垂直于AB,与坐标轴交于一点,这一点符合点P的要求;②以B为直角顶点,可过B作直线垂直于AB,与坐标轴交于两点,这两点也符合P点的要求;③以P为直角顶点,可以AB为直径画圆,与坐标轴共有3个交点.所以满足条件的点P共有6个.故选C.点评:主要考查了坐标与图形的性质和直角三角形的判定.要把所有的情况都考虑进去,不要漏掉某种情况.二.填空题(每小题3分,共18分) 16.在△ABC中,∠C=90°,AB=5,则AB2+AC 2+BC2= 50 .考点:勾股定理.分析:根据勾股定理可得AB2=AC2+BC2,然后代入数据计算即可得解.解答:解:∵∠C=90°,∴AB2=AC2+BC2,∴AB2+AC2+BC2=2AB2=2×52=2×25=50.故答案为:50.点评:本题考查了勾股定理,是基础题,熟记定理是解题的关键. 17. = 4 .考点:算术平方根.分析:根据二次根式的性质,可得答案.解答:解:原式= =4,故答案为:4.点评:本题好查了算术平方根, =a (a≥0)是解题关键. 18.若点P(x,y)的坐标满足xy>0,则点P(x,y)在第一、三象限.考点:点的坐标.专题:计算题.分析:根据xy>0,可判断xy的符号,即可确定点P所在的象限.解答:解:∵xy>0,∴xy 为同号即为同正或同负,∴点P(x,y)在第一或第三象限.故答案为:一、三.点评:本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(�,+);第三象限(�,�);第四象限(+,�). 19.已知y=(m�3) +m+1是一次函数,则m= �3 .考点:一次函数的定义.分析:根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,可得答案.解答:解;由y=(m�3) +m+1是一次函数,得,解得m=�3,m=3(不符合题意的要舍去).故答案为:�3.点评:本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1. 20.若点P(�2,y)与Q(x,3)关于y轴对称,则x= 2 ,y= 3 .考点:关于x轴、y轴对称的点的坐标.分析:让纵坐标相等,横坐标互为相反数列式求值即可.解答:解:∵P(�2,y)与Q(x,3)关于y轴对称,∴�2+x=0,y=3,解得x=2,y=3.点评:用到的知识点为:两点关于y轴对称,纵坐标相等,横坐标互为相反数. 21.函数y=(m�2)x中,已知x1>x2时,y1<y2,则m 的范围是m<2 .考点:一次函数图象上点的坐标特征.专题:计算题.分析:根据一次函数的性质得到m�2<0,然后解不等式即可.解答:解:∵x1>x2时,y1<y2,∴m�2<0,∴m<2.故答案为m<2.点评:本题考查了一次函数图象上点的坐标特征:一次函数图象上的点满足其解析式.也考查了一次函数的性质.三、解答题(共7个小题,共57分) 22.计算题:(1)(�)× ;(2)�4.考点:二次根式的混合运算.分析:(1)利用二次根式的乘法法则即可求解;(2)首先把二次根式化简,然后计算二次根式的除法,求解即可.解答:解:(1)原式= �=9�12 =�3;(2)原式= �4 = �4 = .点评:本题考查的是二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算. 23.在△ABC中,已知∠B=90°,∠A,∠B,∠C的对边分别是a,b,c,且a=6,b=8.(1)求c的长.(2)求斜边上的高.考点:勾股定理.分析:(1)直接根据勾股定理即可得出结论;(2)设斜边上的高为h,再根据三角形的面积公式即可得出结论.解答:解:(1)∵在△ABC中,已知∠B=90°,∠A,∠B,∠C的对边分别是a,b,c,且a=6,b=8,∴c= =2 ;(2)设斜边上的高为h,则8h=6×2 ,解得h= .点评:本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键. 24.已知一次函数y=(m�4)x+3�m,当m为何值时,(1)y随x值增大而减小;(2)直线过原点;(3)直线与直线y=�2x平行;(4)直线与x 轴交于点(2,0)(5)直线与y轴交于点(0,�1)考点:一次函数图象与系数的关系;两条直线相交或平行问题.分析:(1)根据一次函数的性质得出m�4<0,解不等式即可;(2)把原点的坐标(0,0)代入y=(m�4)x+3�m,得到关于m的方程,解方程即可;(3)根据两条直线平行的条件得出m�4=�2,3�m≠0,求出即可;(4)把点(2,0)代入y=(m�4)x+3�m,得到关于m 的方程,解方程即可;(5)把点(0,�1)代入y=(m�4)x+3�m,得到关于m的方程,解方程即可.解答:解:(1)由题意,得m�4<0,解得m<4;(2)把原点的坐标(0,0)代入y=(m�4)x+3�m,得3�m=0,解得m=3;(3)由题意,得m�4=�2,3�m≠0,解得m=2;(4)把点(2,0)代入y=(m�4)x+3�m,得2(m�4)+3�m=0,解得m=5;(5)把点(0,�1)代入y=(m�4)x+3�m,得3�m=�1,解得m=4.点评:本题考查了一次函数的性质,一次函数图象上点的坐标特征,两条直线平行的条件,是基础知识,需熟练掌握. 25.如图,四边形AOCB是直角梯形,AB∥OC,OA=10,AB=9,∠OCB=45°,求点A,B,C的坐标及直角梯形AOCB的面积.考点:直角梯形.分析:根据题意首先求出CO的长,进而得出A,B,C的坐标,进而求出梯形面积.解答:解:过点B作BD⊥CO于点D,∵∠OCB=45°,AB∥OC,OA=10,AB=9,∴BD=CD=10,OD=9,∴CO=OD+DC=9+10=19,故A点坐标为:(0,10), B点坐标为:(9,10), C点坐标为:(19,0),直角梯形AOCB的面积为:(AB+OC)×OA= ×(9+19)×10=140.点评:此题主要考查了直角梯形的性质以及等腰直角三角形的性质,得出CO的长是解题关键. 26.作出函数y= x�4的图象,并回答下面的问题:(1)求它的图象与x 轴、y轴的交点.(2)求图象与坐标轴围成的三角形的面积.考点:一次函数的图象;一次函数图象上点的坐标特征.分析:(1)分别把x=0和y=0代入函数的解析式,即可求出答案;(2)求出OA和OB,根据三角形的面积公式求出即可.解答:解:(1)如图所示:把x=0代入y= x�4得:y=�4,把y=0代入y= x�4得:0= x�4,解得:x=3,所以与x轴的交点为(3,0),与y轴的交点为(0,�4);( 2)∵OA=3,OB=4,∴S△AOB= ×OA×OB= ×3×4=6,即图象与坐标轴围成的三角形的面积是6.点评:本题考查了一次函数的图象和性质的应用,解此题的关键是求出函数的图象和两坐标轴的交点坐标. 27.如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=10cm,BC=6cm,你能求出CE的长吗?考点:翻折变换(折叠问题).分析:连接BE,设CE=x,由折叠可知,AE=BE=10�x,把问题转化到Rt△BCE中,使用勾股定理.解答:解:连接BE,设CE=x ∵将直角三角形的纸片折叠,A与B重合,折痕为DE ∴DE是AB的垂直平分线∴AE=BE=10�x 在Rt△BCE 中 BE2=CE2+BC2 即(10�x)2=x2+62 解之得x= ,即CE= cm.点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应线段相等. 28.直线y=kx+2与两坐标轴所围成的三角形面积为4,求直线解析式.若k>0时直线与x轴交点为A与y轴交点为B解答下列问题:(1)在x轴上是否存在一点P,使S△PAB=3?若存在,请求出P点坐标,若不存在,请说明理由.(2)求直线AB上是否存在一点E,使点E到x轴的距离等于1.5,若存在求出点E的坐标,若不存在,请说明理由.(3)在x轴上是否存在一点G,使S△BOG= S△AO B?若存在,请求出G点坐标,若不存在,请说明理由.考点:一次函数综合题.专题:综合题.分析:当k>0时,设直线与x轴交点为A,与y轴交点为B,如图1,则有OB=2,然后由S△AOB=4可得OA,从而可得点A的坐标,代入y=kx+2就可求出该直线的解析式;当k<0时,设直线与x轴交点为C,与y轴交点为B,如图2,则有OB=2,然后由S△COB=4可得OC,从而可得点C的坐标,代入y=kx+2就可求出该直线的解析式.(1)由条件可求出AP的长,就可得到点P的坐标;(2)由条件可得到点E的纵坐标,代入y=kx+2,就可得到点E的横坐标,从而解决问题;(3)由条件可求出OG的长,从而可得到点G的坐标.解答:解:当k>0时,设直线与x 轴交点为A,与y轴交点为B,如图1,则点B的坐标为(0,2),OB=2,S△AOB= OA•OB=4,解得:OA=4,∴点A的坐标为(�4,0),∴�4k+2=0,解得:k= ,∴直线的解析式为y= x+2.当k<0时,设直线与x轴交点为C,与y轴交点为B,如图2,则点B的坐标为实用精品文献资料分享(0,2),OB=2,S△COB= OC•OB=4,解得:OC=4,∴点C的坐标为(4,0),∴4k+2=0,解得:k=�,∴直线的解析式为y=�x+2.综上所述:所求直线解析式为y= x+2或y=� x+2.(1)若在x轴上存在一点P,使S△PAB=3,则S△PAB= AP•OB= AP×2=AP=3,∵点A的坐标为(�4,0),∴点P的坐标为(�1,0)或(�7,0).(2)若直线AB上存在一点E,使点E到x轴的距离等于1.5,则|yE|=1.5,∴yE=±1.5.当yE=1.5时, xE+2=1.5,解得:xE=�1,此时点E的坐标为(�1,1.5).当yE=�1.5时, xE+2=�1.5,解得:xE=�7,此时点E的坐标为(�7,�1.5).综上所述:点E 的坐标为(�1,1.5)或(�7,�1.5).(3)若在x轴上存在一点G,使S△BOG= S△AOB,则有OG×2= ×4,解得:OG=2,∴点G的坐标为(�2,0)或(2,0).点评:本题主要考查了直线上点的坐标特征、用待定系数法求直线的解析式、线段长度与坐标之间的关系、三角形的面积等知识,需要注意的是:线段的长度确定,所对应的点的坐标可能并不唯一,要考虑全面.。
班级: ____ 年级 班 姓名 考号 ___◆◆◆◆◆◆◆◆◆◆◆◆ ◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆ ◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆ ◆◆◆◆◆◆◆◆◆◆◆八年级数学上学期期中试题一、选择题(每小题4分,共48分)1.如图所示,图中不是轴对称图形的是( )A B C D 2.下列图形具有稳定性的是( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形 3.以下列各组线段为边,能组成三角形的是( )A. 2 cm ,3 cm ,5 cmB. 3 cm ,3 cm ,6 cmC. 5 cm ,8 cm ,2 cmD. 4 cm ,5 cm ,6 cm 4.已知等腰三角形的两边长分别为3和6,则它的周长等于( ) A. 12 B. 12或15 C. 15 D. 15或18 5、多边形每一个外角为300 ,则这多边形的边数是( )(A )5 (B )6 (C ) 10 (D ) 126.如图,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,测得15=OA 米,10=OB 米,A 、B 间的距离不可能是 ( )米 A . 20 B .10 C . 15 D . 57.如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°,则3∠的度数等于( )A .50° B .30° C .20° D .15°8.如图,△ABC 中,AB=AC ,∠A=36°,AB 的垂直平分线DE 交AC 于D ,交AB 于E ,则∠BDC 的度数为( )A.72°B.36°C.60°D.82°9.已知等腰三角形一腰上的高线与另一腰的夹角为50°,那么这个等腰三角形的顶角等于( ) A.15°或75° B.140° C. 40° D. 140°或40° 10.点M (—1,2)关于y 轴对称的点的坐标为( )A.(-1,-2)B.(1,2)C.(1,-2)D.(2,-1)11.如图9所示,在△ABC 中,已知点D ,E ,F 分别是BC ,AD ,CE 的中点.且ABC S △=4平方厘米,则BEF S △的值为 ( )1 23图1010 C A D BE 图9 图4NMDC BA A 、2平方厘米B 、1平方厘米C 、12平方厘米 D 、14平方厘米12.如图10所示,△ABC 中,∠C =90°,点D 在AB 上,BC=BD ,DE ⊥AB 交AC 于点E .△ABC 的周长为12,△ADE 的周长为6.则BC 的长为( ) A 、3 B 、4 C 、5 D 、6 二、填空题(每题4分,共24分)13.小明上午在理发店理发时,从镜子内看到背后墙上普通时钟的时针与分针的位置如图所示,此时时间是_____.14. 已知:AD 平分∠BAC ,AC=AB+BD ,∠B=56°求证:∠C= 15.如图,直线l ∥m ,将含有45°角的三角形板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2的度数为__________.16.△ABC 中,∠A=1000,BI 、CI 分别平分∠ABC ,∠ACB ,则∠BIC= 若BN 、CN 分别平分∠ABC ,∠ACB 的外角平分线,则∠N=17.如图4, 已知AB =AC , ∠A =40°, AB 的垂直平分线MN 交AC 于点D ,则∠DBC = _______度.18. 如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 .三、解答题(共78分)18.(6分)如图,点E 、F 在BC 上,BE=FC ,AB=DC ,∠B=∠C .求证:∠A=∠D .CD BA P2P 1N MO PBA(第15题图)19.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)(7分)(1)画出格点△ABC (顶点均在格点上)关于直线DE 对称的△A 1B 1C 1;(2)在DE 上画出点P ,使PC PB +1最小;(3)在DE 上画出点Q ,使QC QA +最小。
2015年上期八年级数学第一学月检测试卷时间:120分钟 满分:100分一、选择题(每题3分,共10题,总分30分)1、已知,在△ABC 中,∠C=90°,∠A=20°则∠B 的度数是( ) A 、 20° B. 70° C. 80° D. 60°2、如图,一棵树在一次强台风中,从离地面5m 处折断,倒下的部分与地面成30°角, 则这棵树在折断前的高度是( ) A. 10m B. 15m C. 5m D. 20m3、如图,Rt △ABC 中,∠ACB=90°,AB=10, CD 是AB 边上的中线,则CD 的长是( ) A. 20 B. 10 C. 5 D. 15 4、下列三边的长不能成为直角三角形三边的是( )A 、3、4、5B 、5、12、13C 、6、8、10D 、3、3、5 5、根据下列条件,不能判定四边形是平行四边形的是( )A .一组对边平行且相等的四边形B .两组对边分别相等的四边形C .对角线相等的四边形D .对角线互相平分的四边形第2题图 第3题图 第6题图 6、如图,过正五边形ABCDE 的顶点A 作直线l∥BE,则∠1的度数为( ) A.30° B. 36° C. 38° D. 45° 7、顺次连接菱形各边中点得到的四边形一定是( )A .菱形B .正方形C .矩形D .平行四边形8、菱形ABCD 中,若对角线AC=8cm ,BD=6cm,则菱形ABCD 的周长是 A.25 B. 20 C.15 D. 109、一个三角形的一边上的中线等于这边的一半,那么这个三角形是( ) A 、锐角三角形 B 、等腰三角形 C 、等边三角形 D 、直角三角形 10、 下列图形中,既是轴对称图形又是中心对称图形的有( )A. 4个B. 3个C. 2个D. 1个二、 选择题(每题3分,共6题,总分18题)11、已知平行四边形周长为28cm ,相邻两边的差是4cm 则较长边的长为( ) 12、 一个多边形的内角和是外角和的2倍,则这个多边形的边数为( )13、如图,在△ABC 中,E 、F 分别是AB 、AC 的中点,若△AEF 的面积=2cm ,则四边形EBCF的面积是() 14、 如图,在菱形ABCD 中,BD 为对角线,E 、F 分别是DC 、DB 的中点,若EF=6,则菱形ABCD 的周长是( )菱形的两对角线长分别为6和8,则菱形的周长为面积为( ) 15、 如图,在△ABC 中,∠C=90°,AD 平分∠CAB ,AD=10cm ,AC=8cm ,那么D 点到直线AB 的距离是( )cm . 16、 如图,矩形ABCD 的对角线AC 和BD 相交点O ,过点O 的直线分别交AD和BC 于点E 、F ,AB=2, BC=3,则图中阴影部分的面积为( )(13题图) (14题图) (15题图) (16题图) 17、矩形的短边长与对角线长的差为2,长边长为4,则矩形的面积为( ) 18形纸片ABCD 中,AD=4cm ,AB=10cm ,按如图1方式折叠,使点B 与点D 重合, 折痕为EF ,则DE=( )cm三、解答题(共46分19、ABC 中,已知AC=10,CD=6,AD=8,AB=17.求BD 的长。
2015学年第一学期八年级数学期中考试答案及评分标准一、填空:(每题2分,共30分) 1、23x ≥-; 2、27; 31; 45、3-a ;6、9020m m <≠且; 7、±2; 8、120,2x x ==-; 9、(3)(3)x y x y -+--;10、9+; 11、如果两个三角形是全等三角形,那么它们的对应角相等; 12、10%; 13、15; 14、- 15、40;二、选择题:(每题3分,共12分)16、D 17、D 18、C 19、B 三 、简答题:(每题5分,共20分)38(0)82'61'2'21.mm m m mm>===4'1'20==、222121223.36101201'32(1)2'3112'331133xx x x x x x xx -+=-+=-==+=+∴=+=-+原方程的解是:2121222.2(3)3(3)129803'992'449944x x x x x x x x x ---=-+===∴==原方程的解是:(..)3'1'1'124.'ABC ABD ABC ABD s s s CBA DA AC BD B EA EB M AB EM A AD C B BA BB A ≅∴∠==∠⊥∴==∴=∴⎧⎪⎨⎪⎩在和中是的中点21212684203056844830 12 1(684)2402'176001252'2 AB x x x x x x AB x x x x x x =-=<=-=>-=-+====25.解:设的长为米1'当时,,当时,,不符合题意舍去。
1'所以,是原方程的解。
答:的长是米。
1'(2)CD=15或CD=5……每个2分22222(5)215(3)(3)2311'2'2(53)(31)1'1'2106311'1'2-+++-=+=-=+=解:26.1'1',1'1801'1'1801'1'AD G DG AD CG AD DG ADB GDC BD DC ABD GCDAB CG ABD GCD AB CGBAC ACG ABE ACF BAC EAF ACG EAF EAF F G E AC ==⎧⎪∠=∠⎨⎪=⎩≅∴=∠=∠∴∴∠+∠=︒∴∠∠︒∴∠+∠=︒∴∠=∠∴≅∴=27.证:延长至点,使,联结和是等腰直角三角形EAB =FAC =90,AF =AC 21'AG EF AD∴=11'60,601201'1'60,601'1'1'AE DB EF BCEAF ABC AFE ACB AEF DBE EFC ED ECD ECB DEB D ECF ECB DEB ECF DBE EFC DB EF AE EFAE DB =∴∠=∠=︒∠=∠=︒∴∴∠=∠=︒=∴∠=∠∠=︒-∠∠=︒-∠∴∠=∠∴≅∴==∴=28、()填空:证:是等边三角形。
八年级(上)期中数学试卷一、单项选择题(本题共10分,每小题3分,共30分)1.在实数,,0.1414,,﹣,0.1010010001…,,0,,,中,有几个无理数()A.3个B.4个C.5个D.6个2.下列运算正确的是()A.=+B.()2=3 C.3a﹣a=3 D.(a2)3=a53.在下列各组数据中,不能作为直角三角形的三边边长的是()A.3,4,6 B.7,24,25 C.6,8,10 D.9,12,154.在平面直角坐标系中,点P的横坐标是﹣3,且点P到x轴的距离为5,则点P的坐标是()A.(5,﹣3)或(﹣5,﹣3)B.(﹣3,5)或(﹣3,﹣5)C.(﹣3,5)D.(﹣3,﹣3)5.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.6.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D 重合,折痕为MN,则线段BN的长为()A.B.C.4 D.57.△ABC的三边长分别为a,b,c,下列条件:①∠A=∠B﹣∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b﹣c);④a:b:c=5:12:13,其中能判断△ABC是直角三角形的个数有()A.1个B.2个C.3个D.4个8.直线y=kx+b不经过第四象限,则()A.k>0,b>0 B.k<0,b>0 C.k≥0,b≥0 D.k<0,b≥09.如图,在平面直角坐标系中,边长为1的正方形ABCD中,AD边的中点处有一动点P,动点P沿P→D→C→B→A→P运动一周,则P点的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是()A.B.C.D.10.按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()A.14 B.16 C.8+5D.14+11.如图,直角三角形三边上的半圆面积从小到大依次记为S1、S2、S3,则S1、S2、S3之间的关系是()A.S l+S2>S3 B.S l+S2<S3 C.S1+S2=S3 D.S12+S22=S32二.填空题(本题共8个小题,每个小题3分,共24分)12.的平方根是.13.已知直角三角形的两边的长分别是3和4,则第三边长为.14.点P(2,3)关于x轴的对称点的坐标为.15.的绝对值是,相反数是,倒数是.16.已知函数是正比例函数,且图象在第二、四象限内,则m的值是.17.函数中自变量x的取值范围是.18.实数a在数轴上的位置如图,化简+a=.19.没有上盖的圆柱盒高为10cm,底面周长为32cm,点A距离下底面3cm.一只位于圆柱盒外表面点A处的蚂蚁想爬到盒内表面对侧中点B处.则蚂蚁需要爬行的最短路程的长为cm.三、计算题(共4道题,每题4分,共16分)20.计算:(1)﹣5(2)+﹣(3)(+)(﹣)﹣(﹣2)2(4)(﹣3)0﹣+|1﹣|+.四、解答题(本题共6小题,共50分)21.已知5既是(2x﹣1)的算术平方根,又是(3x﹣7y+2)的立方根,求x2+y2的平方根.22.如图所示的一块地,AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块地的面积.23.如图,在平面直角坐标系中,一次函数y=kx+5的图象经过点A(1,4),点B是一次函数y=kx+5的图象与x轴的交点.(1)求点B的坐标.(2)求△AOB的面积.24.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点A的坐标为(1,4)点B的坐标为(2,0)点C的坐标为(4,0).(1)在下图的直角坐标系中画出A,B,C三点,并作出△ABC关于x轴对称的△A1B1C1,求出A1,B1,C1坐标;(2)在y轴上是否存在点D,使得△COD为等腰直角三角形?若存在,请求出D的坐标.25.某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:方案一:从包装盒加工厂直接购买,购买所需的费y1与包装盒数x满足如图1所示的函数关系.方案二:租赁机器自己加工,所需费用y2(包括租赁机器的费用和生产包装盒的费用)与包装盒数x满足如图2所示的函数关系.根据图象回答下列问题:(1)方案一中每个包装盒的价格是多少元?(2)方案二中租赁机器的费用是多少元?生产一个包装盒的费用是多少元?(3)请分别求出y1、y2与x的函数关系式.(4)如果你是决策者,你认为应该选择哪种方案更省钱?并说明理由.26.观察下列等式:①;②;③;…回答下列问题:(1)仿照上列等式,写出第n个等式:;(2)利用你观察到的规律,化简:;(3)计算:….参考答案与试题解析一、单项选择题(本题共10分,每小题3分,共30分)1.在实数,,0.1414,,﹣,0.1010010001…,,0,,,中,有几个无理数()A.3个B.4个C.5个D.6个考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:无理数有:,,0.1010010001…,1﹣,共有4个.故选B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列运算正确的是()A.=+B.()2=3 C.3a﹣a=3 D.(a2)3=a5考点:二次根式的性质与化简;合并同类项;幂的乘方与积的乘方;二次根式的乘除法.分析:本题运用二次根式的乘方,合关同类项及幂的乘方的法则进行计算.解答:解:A、=,故A错误;B、()2=3,故B正确;C、3a﹣a=2a.故C错误;D、(a2)3=a6,故D错误.故选:B.点评:本题主要考查了二次根式的乘方,合关同类项及幂的乘方,熟记法则是解题的关键.3.在下列各组数据中,不能作为直角三角形的三边边长的是()A.3,4,6 B.7,24,25 C.6,8,10 D.9,12,15考点:勾股数.分析:根据勾股定理的逆定理,只需验证两较小边的平方和是否等于最长边的平方即可.解答:解:A、32+42≠62,故A符合题意;B、72+242=252,故B不符合题意;C、62+82=102,故C不符合题意;D、92+122=152,故D不符合题意.故选:A.点评:本题考查了勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.4.在平面直角坐标系中,点P的横坐标是﹣3,且点P到x轴的距离为5,则点P的坐标是()A.(5,﹣3)或(﹣5,﹣3)B.(﹣3,5)或(﹣3,﹣5)C.(﹣3,5)D.(﹣3,﹣3)考点:点的坐标.分析:根据点到x轴的距离为点的纵坐标的绝对值可得:P的纵坐标绝对值是5,进而得到纵坐标,再判断点A的坐标.解答:解:∵点P的横坐标是﹣3,∴设点P的坐标是(﹣3,a),∵点P到x轴的距离为5,∴|a|=5,∴a=±5,∴点P的坐标是(﹣3,5),故选:B,点评:此题主要考查了点的坐标的几何意义,注意:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值.5.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.考点:勾股定理;点到直线的距离;三角形的面积.专题:计算题.分析:根据题意画出相应的图形,如图所示,在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,然后过C作CD垂直于AB,由直角三角形的面积可以由两直角边乘积的一半来求,也可以由斜边AB乘以斜边上的高CD除以2来求,两者相等,将AC,AB及BC的长代入求出CD的长,即为C到AB的距离.解答:解:根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:AB==15,过C作CD⊥AB,交AB于点D,又S△ABC=AC•BC=AB•CD,∴CD===,则点C到AB的距离是.故选A点评:此题考查了勾股定理,点到直线的距离,以及三角形面积的求法,熟练掌握勾股定理是解本题的关键.6.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D 重合,折痕为MN,则线段BN的长为()A.B.C.4 D.5考点:翻折变换(折叠问题).专题:几何图形问题.分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,根据中点的定义可得BD=3,在Rt△BDN中,根据勾股定理可得关于x的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BDN中,x2+32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.7.△ABC的三边长分别为a,b,c,下列条件:①∠A=∠B﹣∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b﹣c);④a:b:c=5:12:13,其中能判断△ABC是直角三角形的个数有()A.1个B.2个C.3个D.4个考点:勾股定理的逆定理;三角形内角和定理.分析:直角三角形的定义或勾股定理的逆定理是判定直角三角形的方法之一.解答:解;①∠A=∠B﹣∠C,∠A+∠B+∠C=180°,解得∠B=90°,故①是直角三角形;②∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,解得∠A=45°,∠B=60°,∠C=75°,故②不是直角三角形;③∵a2=(b+c)(b﹣c),∴a2+c2=b2,符合勾股定理的逆定理,故③是直角三角形;④∵a:b:c=5:12:13,∴a2+b2=c2,符合勾股定理的逆定理,故④是直角三角形.能判断△ABC是直角三角形的个数有3个;故选:C.点评:本题考查了利用直角三角形的定义和勾股定理的逆定理来判定一个三角形是不是直角三角形,是判定直角三角形的常见方法.8.直线y=kx+b不经过第四象限,则()A.k>0,b>0 B.k<0,b>0 C.k≥0,b≥0 D.k<0,b≥0考点:一次函数图象与系数的关系.专题:数形结合.分析:分类讨论:当k=0,y=b,则b≥0时,直线y=b不过第四象限;当k≠0时,直接根据一次函数图象与系数的关系求解.解答:解:当k=0,y=b,则b≥0时,直线y=b不过第四象限;当k≠0时,直线y=kx+b不经过第四象限,即直线过第一、二、三象限且与y轴的交点不在x轴的下方,则k>0,b≥0,综合所述,k≥0,b≥0.故选:C.点评:本题考查了一次函数图象与系数的关系:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).9.如图,在平面直角坐标系中,边长为1的正方形ABCD中,AD边的中点处有一动点P,动点P沿P→D→C→B→A→P运动一周,则P点的纵坐标y与点P走过的路程s之间的函数关系用图象表示大致是()A.B.C.D.考点:动点问题的函数图象.专题:数形结合.分析:将动点P的运动过程划分为PD、DC、CB、BA、AP共5个阶段,分别进行分析,最后得出结论.解答:解:动点P运动过程中:①当0≤s≤时,动点P在线段PD上运动,此时y=2保持不变;②当<s≤时,动点P在线段DC上运动,此时y由2到1逐渐减少;③当<s≤时,动点P在线段CB上运动,此时y=1保持不变;④当<s≤时,动点P在线段BA上运动,此时y由1到2逐渐增大;⑤当<s≤4时,动点P在线段AP上运动,此时y=2保持不变.结合函数图象,只有D选项符合要求.故选:D.点评:本题考查了动点运动过程中的函数图象.把运动过程分解,进行分类讨论是解题的关键.10.按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是()A.14 B.16 C.8+5D.14+考点:实数的运算.专题:图表型.分析:将n的值代入计算框图,判断即可得到结果.解答:解:当n=时,n(n+1)=×(+1)=2+<15;当n=2+时,n(n+1)=(2+)×(3+)=6+5+2=8+5>15,则输出结果为8+5.故选:C.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.11.如图,直角三角形三边上的半圆面积从小到大依次记为S1、S2、S3,则S1、S2、S3之间的关系是()A.S l+S2>S3 B.S l+S2<S3 C.S1+S2=S3 D.S12+S22=S32考点:勾股定理.专题:压轴题.分析:依据半圆的面积公式,以及勾股定理即可解决.解答:解:设直角三角形三边分别为a,b,c,则三个半圆的半径分别为,,由勾股定理得a2+b2=c2,即()2+()2=()2两边同时乘以π得π()2+π()2=π()2即S1、S2、S3之间的关系是S1+S2=S3故选C.点评:根据勾股定理,然后变形,得出三个半圆之间的关系.二.填空题(本题共8个小题,每个小题3分,共24分)12.的平方根是±.考点:算术平方根;平方根.分析:先求出,再根据平方根的定义解答.解答:解:∵=5,∴的平方根是±.故答案为:±.点评:本题考查了算术平方根,平方根的定义,是基础题,熟记概念是解题的关键.13.已知直角三角形的两边的长分别是3和4,则第三边长为5或.考点:勾股定理.专题:分类讨论.分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①3是直角边,4是斜边;②3、4均为直角边;可根据勾股定理求出上述两种情况下,第三边的长.解答:解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为:=;②长为3、4的边都是直角边时:第三边的长为:=5;综上,第三边的长为:5或.故答案为:5或.点评:此题主要考查的是勾股定理的应用,要注意的是由于已知的两边是直角边还是斜边并不明确,所以一定要分类讨论,以免漏解.14.点P(2,3)关于x轴的对称点的坐标为(2,﹣3).考点:关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y)得出即可.解答:解:∵点P(2,3)∴关于x轴的对称点的坐标为:(2,﹣3).故答案为:(2,﹣3).点评:此题主要考查了关于x轴、y轴对称点的性质,正确记忆坐标规律是解题关键.15.的绝对值是﹣2,相反数是2﹣,倒数是+2.考点:实数的性质.分析:分别根据绝对值、相反数、倒数的概念即可求解.解答:解:∵>2,∴>0,∴||=﹣2;﹣()=2﹣,即的相反数是2﹣;==+2.故答案是:﹣2;2﹣;+2.点评:本题考查了实数的性质.掌握实数的绝对值、相反数、倒数的定义,注意区分概念,不要混淆.16.已知函数是正比例函数,且图象在第二、四象限内,则m的值是﹣2.考点:正比例函数的定义.分析:当一次函数的图象经过二、四象限可得其比例系数为负数,据此求解.解答:解:∵函数是正比例函数,∴m2﹣3=1且m+1≠0,解得m=±2.又∵函数图象经过第二、四象限,∴m+1<0,解得m<﹣1,∴m=﹣2.故答案是:﹣2.点评:此题主要考查了正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.17.函数中自变量x的取值范围是x≥﹣5.考点:函数自变量的取值范围;二次根式有意义的条件.分析:根据二次根式的性质,被开方数大于等于0可知:x+5≥0,解不等式求x的范围.解答:解:根据题意得:x+5≥0,解得x≥﹣5.点评:本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.18.实数a在数轴上的位置如图,化简+a=1.考点:二次根式的性质与化简;实数与数轴.分析:根据二次根式的性质,可化简二次根式,根据整式的加法,可得答案.解答:解:+a=1﹣a+a=1,故答案为:1.点评:本题考查了实数的性质与化简,=a(a≥0)是解题关键.19.没有上盖的圆柱盒高为10cm,底面周长为32cm,点A距离下底面3cm.一只位于圆柱盒外表面点A处的蚂蚁想爬到盒内表面对侧中点B处.则蚂蚁需要爬行的最短路程的长为20cm.考点:平面展开-最短路径问题.分析:将圆柱侧面展开,得到长方形MNQP,作点B关于PQ的对称点B′,构造直角三角形ACB′,根据勾股定理求出AB′=20cm,即是所求.解答:解:如图,点B与点B′关于PQ对称,可得AC=16cm,B′C=12cm,则最短路程为AB′==20cm.故答案为:20.点评:本题考查平面展开最短路径问题,关键知道圆柱展开图是长方形,根据两点之间线段最短可求出解,注意是从圆柱盒外爬到盒内,审准题也是关键.三、计算题(共4道题,每题4分,共16分)20.计算:(1)﹣5(2)+﹣(3)(+)(﹣)﹣(﹣2)2(4)(﹣3)0﹣+|1﹣|+.考点:二次根式的混合运算;零指数幂.专题:计算题.分析:(1)先把分子中各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算;(2)先把各二次根式化为最简二次根式,然后合并即可;(3)利用平方差公式和完全平方公式计算;(4)根据零指数幂的意义和分母有理化得到原式=1﹣3+﹣1+﹣,然后合并即可.解答:解:(1)原式=﹣5=5﹣5=0;(2)原式=+2﹣10=﹣;(3)原式=5﹣2﹣(3﹣4+8)=3﹣11+4=﹣8+4;(4)原式=1﹣3+﹣1+﹣=﹣3.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂和负整数指数幂.四、解答题(本题共6小题,共50分)21.已知5既是(2x﹣1)的算术平方根,又是(3x﹣7y+2)的立方根,求x2+y2的平方根.考点:立方根;平方根.分析:根据算术平方根和立方根的定义得出方程,求出x、y的值,求出x2+y2的值,最后根据平方根定义求出即可.解答:解:∵5既是(2x﹣1)的算术平方根,又是(3x﹣7y+2)的立方根,∴2x﹣1=25,3x﹣7y+2=125,解得:x=13,y=﹣14,∴x2+y2=365,∴x2+y2的平方根是±.点评:本题考查了算术平方根,平方根,立方根的应用,主要考查学生的理解能力和计算能力,解此题的关键是求出x、y的值.22.如图所示的一块地,AD=12m,CD=9m,∠ADC=90°,AB=39m,BC=36m,求这块地的面积.考点:勾股定理的应用;三角形的面积;勾股定理的逆定理.专题:应用题.分析:连接AC,运用勾股定理逆定理可证△ACD,△ABC为直角三角形,可求出两直角三角形的面积,此块地的面积为两个直角三角形的面积差.解答:解:连接AC,则在Rt△ADC中,AC2=CD2+AD2=122+92=225,∴AC=15,在△ABC中,AB2=1521,AC2+BC2=152+362=1521,∴AB2=AC2+BC2,∴∠ACB=90°,∴S△ABC﹣S△ACD=AC•BC﹣AD•CD=×15×36﹣×12×9=270﹣54=216.答:这块地的面积是216平方米.点评:解答此题的关键是通过作辅助线使图形转化成特殊的三角形,可使复杂的求解过程变得简单.23.如图,在平面直角坐标系中,一次函数y=kx+5的图象经过点A(1,4),点B是一次函数y=kx+5的图象与x轴的交点.(1)求点B的坐标.(2)求△AOB的面积.考点:一次函数图象上点的坐标特征.分析:(1)利用待定系数法把A点坐标代入y=kx+5中即可算出k的值,然后联立两个函数解析式,即可算出B点坐标;(2)根据A、B两点的坐标和三角形的面积公式进行计算即可.解答:解:(1)把A(1,4)代入y=kx+5中得:4=k+5,解得:k=﹣1,则一次函数解析式为y=﹣x+5,令y=0,则0=﹣x+5,解得x=5,故B点坐标是(5,0);(2)∵A(1,4),B(5,0);∴S△AOB=×OB×y A=×5×4=10.点评:此题考查了一次函数的坐标特征以及与坐标轴交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.24.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点A的坐标为(1,4)点B的坐标为(2,0)点C的坐标为(4,0).(1)在下图的直角坐标系中画出A,B,C三点,并作出△ABC关于x轴对称的△A1B1C1,求出A1,B1,C1坐标;(2)在y轴上是否存在点D,使得△COD为等腰直角三角形?若存在,请求出D的坐标.考点:作图-轴对称变换;等腰直角三角形.分析:(1)根据题意画出△ABC,再根据轴对称的性质作出△ABC关于x轴对称的△A1B1C1,写出A1,B1,C1坐标即可;(2)根据C(4,0)可直接找出符合条件的点.解答:解:(1)如图所示,A1(1,﹣4),B1(2,0),C1(4,0);(2)∵C(4,0),∠COD=90°,∴D(0,4)或(0,﹣4).点评:本题考查的是作图﹣轴对称变换,熟知关于坐标轴对称的点的坐标特点是解答此题的关键.25.某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:方案一:从包装盒加工厂直接购买,购买所需的费y1与包装盒数x满足如图1所示的函数关系.方案二:租赁机器自己加工,所需费用y2(包括租赁机器的费用和生产包装盒的费用)与包装盒数x满足如图2所示的函数关系.根据图象回答下列问题:(1)方案一中每个包装盒的价格是多少元?(2)方案二中租赁机器的费用是多少元?生产一个包装盒的费用是多少元?(3)请分别求出y1、y2与x的函数关系式.(4)如果你是决策者,你认为应该选择哪种方案更省钱?并说明理由.考点:一次函数的应用.专题:综合题.分析:(1)根据图象1可知100个盒子共花费500元,据此可以求出盒子的单价;(2)根据图2可以知道租赁机器花费20000元,根据图象所经过的点的坐标求出盒子的单价即可;(3)根据图象经过的点的坐标用待定系数法求得函数的解析式即可;(4)求出当x的值为多少时,两种方案同样省钱,并据此分类讨论最省钱的方案即可.解答:解:(1)500÷100=5,∴方案一的盒子单价为5元;(2)根据函数的图象可以知道租赁机器的费用为20000元,盒子的单价为÷4000=2.5,故盒子的单价为2.5元;(3)设图象一的函数解析式为:y1=k1x,由图象知函数经过点(100,500),∴500=100k1,解得k1=5,∴函数的解析式为y1=5x;设图象二的函数关系式为y2=k2x+b由图象知道函数的图象经过点(0,20000)和∴,解得:,∴函数的解析式为y2=2.5x+20000;(4)令5x=2.5x+20000,解得x=8000,∴当x=8000时,两种方案同样省钱;当x<8000时,选择方案一;当x>8000时,选择方案二.点评:本题考查了一次函数的应用,解题的关键是从实际问题中整理出函数模型,并利用函数的知识解决实际问题.26.观察下列等式:①;②;③;…回答下列问题:(1)仿照上列等式,写出第n个等式:,;(2)利用你观察到的规律,化简:;(3)计算:….考点:分母有理化.专题:规律型.分析:根据观察,可得规律,根据规律,可得答案.解答:解:(1)写出第n个等式,故答案为:;(2)原式==;(3)原式=+…+=﹣1.点评:本题考查了分母有理化,发现规律是解题关键.。
2015学年第一学期八年级数学学科期中质量调研试卷(时间 90 分钟,满分100分)一、填空题(每题2分,共32分) 1. 代数式x2-有意义,则x 的取值范围是 2. = ,其中3-=x . 3. 已知0>a ,化简:__________4=-ba.. 4.写出y x -的一个有理化因式: 5. x 33<-的解集是 6. 若最简二次根式b a b ba ++32与是同类二次根式,则ab =__________7. 如果圆的面积与正方形的面积相等,那么正方形的周长与圆的周长的比值是 8. 若代数式1692+-mx x 能配成一个完全平方式,则m 的值为 ; 9. 已知m 、n 为实数,且()()的值为那么222222,201n m n m n m +=-++ ; 10. 一块长方方形绿地的面积为1200平方米,并且长比宽多10米,如果设长为x 米,那么列出的方程是 11. 在实数范围内分解因式:22342y xy x -+= .12. 已知关于x 的方程12)1(2=++x x m 有实数根,则实数m 的取值范围是 .13. 人们从长期的实践中总结出来的真命题叫做 . 14. 已知:如图,AB ∥CD ,AB =CD ,点O 是BD 上一点, 过点O 的直线分别交DA 和BC 的延长线于点E 、F , 则图中共有 对全等三角形15. 设等腰三角形的三条边分别是a,b,c,已知a =5,b 、c是关于x 的方程042=+-m x x的两个根,则m 的值是______________.16.在△ABC 中,AB =AC ,把△ABC 折叠,使点B与点A 重合,折痕交AB 于点M ,交BC 于点N .如果△CAN 是等腰三角形,则∠B 的度数为______________. 二、选择题(每题3分,共15分) 17. ( )(A ) 1个 (B) 2 个 (C) 3个 (D) 4个 18. 下列方程中一元二次方程的个数是)6(,72)4(2)5(3242)4(,63)3(25431)2(,0)1(222222=++-=+=+=+=-=c bx ax x x x x x x xx x x (A) 1个 (B) 2个 (C) 3 个 (D)4个 19. 如果3323+-=+a a a a成立,则a 的取值范围是---( )(A) a ≥-3 (B) a ≤0 (C) 0≤a ≤-3 (D) -3≤a ≤020. 关于x 的方程012=-++a ax x 的根的情况是( )(A)有两个相等的实数根; (B)有两个实数根; (C) 有两个不相等的实数根; (D)无法确定; 21. 以下说法中,正确的个数是( )(1)有两条边和其中一边所对的角对应相等的两个三角形全等 (2)全等三角形的中线相等(3)有两条边和第三条边上的高对应相等的两个三角形全等。
2015八年级数学上学期期中试卷(带答案)辽宁省锦州实验中学2014~2015学年度八年级上学期期中数学试卷一、选择题(每题2分,共14分) 1.在实数�3.14,,π,,,0,,0.1010010001…(每两个1之间的0的个数依次多1)中,无理数的个数是() A. 2个 B. 3个 C. 4个 D. 5个 2.估算�2的值在() A.在5和6之间 B.在4和5之间 C.在3和4之间 D.在2和3之间 3.函数y=2x�5的图象一定过()A.(�2,1) B. C.(�1,2) D.(1,�2) 4.如图图象可能是关于x的一次函数y=k(x�1)的图象的是()A. B. C. D. 5.一架250cm的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm,如果梯子顶端沿墙下滑40cm,那么梯足将向外滑动() A. 150cm B. 90c m C. 80cm D. 40cm 6.如图,直角三角形ABC中,∠C=90°,D为AC上一点,DA=DB=5,△ABD 的面积为10,则CD长是() A. 3 B. 4 C. 5 D. 6 7.△ABC 中,AB=15,AC=13,高AD=12,则△ABC的周长为() A. 42 B. 32 C. 42或32 D. 37或33 二、填空(每题2分,共14分) 8.的算术平方根是. 9.1�的绝对值是. 10.已知直角三角形的两边的长分别是3和4,则第三边长为. 11.点(�4,y1),都在直线y=�x+2上,则y1 y2(填“>”或“<”) 12.已知点P在第四象限,且P到x轴和y轴的距离分别是3和4,则点P的坐标为. 13.一个正数的平方根为2x�4和3x�1,则x= . 14.关于x的一次函数y=kx�3的图象过点M(�2,1),则该图象与x轴交点坐标,与y轴交点坐标.三、计算(每小题20分,共20分) 15.(1)���2 (1+ )(3)÷22 × (4)(4 �4 +3 )÷2 .四、作图题 16.作图:在数轴上作出表示的点.(不写作法,保留适当的作图痕迹,要作答)五、解答题 17.如图,有一个长、宽、高分别为2cm、2cm、3cm的长方体,有一只蚂蚁想沿着外侧壁从A点爬到C1处,请你帮助小蚂蚁计算出最短路线. 18.如图,我校实验大楼边上有一块空地需要绿化(用阴影部分表示),通过测量可以知道CD=6m,AD=8m,BC=24m,AB=26m,AD⊥CD,试求出这块空地的面积(即阴影部分面积) 19.某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神舟行”不缴月租费,每通话1min付费0.6元.若一个月内通话x min,两种方式的费用分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;一个月内通话多少分钟,两种移动通讯费用相同;(3)某人估计一个月内通话300min,应选择哪种移动通讯合算些. 20.如图,正比例函数与一次函数交于点A(3,4),且一次函数与x轴交于点C,与y轴交于点B,(1)求两个函数解析式;求△AOC的面积.辽宁省锦州实验中学2014~2015学年度八年级上学期期中数学试卷参考答案与试题解析一、选择题(每题2分,共14分) 1.在实数�3.14,,π,,,0,,0.1010010001…(每两个1之间的0的个数依次多1)中,无理数的个数是() A. 2个 B. 3个 C. 4个 D. 5个考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:无理数有:,π,1010010001…(每两个1之间的0的个数依次多1)共4个.故选C.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数. 2.估算�2的值在() A.在5和6之间 B.在4和5之间 C.在3和4之间 D.在2和3之间考点:估算无理数的大小.分析:先求出的范围,再两边都减去2,即可得出答案.解答:解:∵6<<7,∴4<�2<5,即�2在4和5之间,故选B.点评:本题考查了估算无理数的大小的应用,解此题的关键是求出的范围. 3.函数y=2x�5的图象一定过() A.(�2,1) B. C.(�1,2) D.(1,�2)考点:一次函数图象上点的坐标特征.分析:分别把各点代入一次函数的关系式进行检验即可.解答:解:A、∵2×(�2)�5=�9≠1,∴此点不在该一次函数的图象上,故本选项错误; B、∵2×2�5=�1,∴此点在该一次函数的图象上,故本选项正确; C、∵2×(�1)�5=�7≠2,∴此点不在该一次函数的图象上,故本选项错误; D、∵2×1�5=�3≠�2,∴此点不在该一次函数的图象上,故本选项错误.故选B.点评:考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合该函数的解析式是解答此题的关键. 4.如图图象可能是关于x的一次函数y=k(x�1)的图象的是() A. B. C. D.考点:一次函数的图象.分析:将y=k(x�1)化为y=kx�k后分k>0和k<0两种情况分类讨论即可.解答:解:y=k(x�1)=kx�k,当k>0时,�k<0,此时图象呈上升趋势,且交与y轴负半轴,无符合选项;当k<0时,�k>0,此时图象呈下降趋势,且交与y轴正半轴,D选项符合;故选D.点评:本题考查了一次函数的性质,解题的关键是能够分类讨论. 5.一架250cm的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm,如果梯子顶端沿墙下滑40cm,那么梯足将向外滑动() A. 150cm B. 90cm C. 80cm D. 40cm考点:勾股定理的应用.分析:根据条件作出示意图,根据勾股定理求得OB′的长度,梯子滑动的距离就是OB′与OB的差.解答::解:在Rt△OAB中,根据勾股定理OA= = =240cm.则OA′=OA�40=240�40=200米.在Rt△A′OB′中,根据勾股定理得到:OB′= = =150cm.则梯子滑动的距离就是OB′�OB=150�70=80cm.故选C.点评:考查了勾股定理的应用,正确作出示意图,把实际问题抽象成数学问题是解题的关键. 6.如图,直角三角形ABC中,∠C=90°,D为AC上一点,DA=DB=5,△ABD的面积为10,则CD长是() A. 3 B. 4 C. 5 D. 6考点:勾股定理.分析:根据Rt△ABC中,∠C=90°,可证BC是△DAB的高,然后利用三角形面积公式求出BC的长,再利用勾股定理即可求出DC的长.解答:解:∵在Rt△ABC中,∠C=90°,∴BC⊥AC,即BC是△DAB的高,∵△DAB的面积为10,DA=5,∴ DA•BC=10,∴BC=4,∴CD= =3.故选A.点评:此题主要考查学生对勾股定理和三角形面积的理解和掌握,此题的突破点是利用三角形面积公式求出BC的长. 7.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为() A. 42 B. 32 C. 42或32 D. 37或33考点:勾股定理.分析:本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.解答:解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中, BD= = =9,在Rt△ACD 中,CD= = =5 ∴BC=5+9=14 ∴△ABC的周长为:15+13+14=42;当△ABC为钝角三角形时,在Rt△ABD中,BD= = =9,在Rt△ACD 中,CD= = =5,∴BC=9�5=4.∴△ABC的周长为:15+13+4=32 ∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.故选C.点评:此题考查了勾股定理及解直角三角形的知识,在解本题时应分两种情况进行讨论,易错点在于漏解,同学们思考问题一定要全面,有一定难度.二、填空(每题2分,共14分) 8.的算术平方根是.考点:算术平方根.分析:根据开方运算,可得一个数的算术平方根.解答:解:的算术平方根是,故答案为:.点评:本题考查了算术平方根,两次求算术平方根. 9.1�的绝对值是�1 .考点:实数的性质.分析:根据绝对值的性质解答即可.解答:解:1�的绝对值是�1.故答案为:�1.点评:本题考查了实数的性质,主要利用了绝对值的性质. 10.已知直角三角形的两边的长分别是3和4,则第三边长为5或.考点:勾股定理.专题:分类讨论.分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①3是直角边,4是斜边;②3、4均为直角边;可根据勾股定理求出上述两种情况下,第三边的长.解答:解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为: = ;②长为3、4的边都是直角边时:第三边的长为: =5;综上,第三边的长为:5或.故答案为:5或.点评:此题主要考查的是勾股定理的应用,要注意的是由于已知的两边是直角边还是斜边并不明确,所以一定要分类讨论,以免漏解. 11.点(�4,y1),都在直线y=� x+2上,则y1 >y2(填“>”或“<”)考点:一次函数图象上点的坐标特征.分析:根据一次函数y=kx+b 的性质可知.解答:解:因为直线y=� x+2中k=�<0,所以y 随x的增大而减小.又因为�4<2,所以y1>y2.故答案为:>.点评:考查了一次函数图象上点的坐标特征,解答此题要熟知一次函数y=kx+b的性质:当k>0时,y随x的增大而增大;当k<0时,y 随x的增大而减小. 12.已知点P在第四象限,且P到x轴和y 轴的距离分别是3和4,则点P的坐标为(4,�3).考点:点的坐标.分析:已知点P在第四象限内,那么横坐标大于0,纵坐标小于0,进而根据到坐标轴的距离判断具体坐标.解答:解:因为点P在第四象限,所以其横、纵坐标分别为正数、负数,又因为点P到x轴和y轴的距离分别是3和4,所以点P的坐标为(4,�3).故答案为(4,�3).点评:本题主要考查了点在第四象限时点的坐标的符号,点到x轴的距离为这点纵坐标的绝对值,到y轴的距离为这点横坐标的绝对值. 13.一个正数的平方根为2x�4和3x�1,则x= 1 .考点:平方根.分析:根据一个正数的平方根互为相反数,可得平方根的和为零.解答:解:一个正数的平方根为2x�4和3x�1,得 +(3x�1)=0. 2x�4+3x�1=0.解得x=1,故答案为:1.点评:本题考查了平方根,利用平方根的和为零得出关于x的一元一次方程是解题关键. 14.关于x的一次函数y=kx�3的图象过点M(�2,1),则该图象与x轴交点坐标(�,0),与y轴交点坐标(0,�3).考点:一次函数图象上点的坐标特征.分析:把点M的坐标代入一次函数即可求得k的值,然后让横坐标等于0得到图象与y轴的交点;让纵坐标等于0得到图象与y轴的交点.解答:解:∵一次函数y=kx�3的图象经过点M(�2,1),∴�2k�3=1.解得:k=�2.∴此一次函数的解析式为y=�2x�3.令y=0,可得x=�.∴一次函数的图象与x轴的交点坐标为(�,0).令x=0,可得y=�3.∴一次函数的图象与y轴的交点坐标为(0,�3).故答案为(�,0),(0,�3).点评:本题考查的知识点是:在这条直线上的各点的坐标一定适合这条直线的解析式;x轴上的点纵坐标为0;y轴上的点横坐标为0.三、计算(每小题20分,共20分) 15.(1)���2 (1+ )(3)÷22 × (4)(4 �4 +3 )÷2 .考点:二次根式的混合运算.分析:(1)先把各二次根式化为最简二次根式,然后合并即可;利用多项式乘法展开,然后合并即可;(3)根据二次根式的乘除法则运算;(4)根据二次根式的除法法则运算.解答:解:(1)原式=4 �5 ��= �;原式=2�+2 �5 =�3+ ;(3)原式=1× × = ;(4)原式=2 �1+3 =2 +2.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.四、作图题 16.作图:在数轴上作出表示的点.(不写作法,保留适当的作图痕迹,要作答)考点:作图―代数计算作图;实数与数轴.分析:因为5=1+4,所以只需作出以1和2为直角边的直角三角形,则其斜边的长即是.然后以原点为圆心,以为半径画弧,和数轴的正半轴交于一点即可.解答:解:如图,过表示数1的点A作数轴的垂线AB,取AB=2,以O为圆心,OB为半径画弧与数轴相交于点P,则P点就是表示的点.点评:考查了无理数用数轴上的点表示的方法,能够熟练运用勾股定理进行计算.五、解答题 17.如图,有一个长、宽、高分别为2cm、2cm、3cm的长方体,有一只蚂蚁想沿着外侧壁从A点爬到C1处,请你帮助小蚂蚁计算出最短路线.考点:平面展开-最短路径问题.分析:将长方体展开,根据勾股定理求出AC1的长,进而得出最短路线.解答:解:如图1所示,AC1= =5cm;如图2所示, AC1= = cm,∵ >5,∴按图1的爬行路线最短.点评:本题考查的是平面展开�最短路径问题,此类问题应先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题. 18.如图,我校实验大楼边上有一块空地需要绿化(用阴影部分表示),通过测量可以知道CD=6m,AD=8m,BC=24m,AB=26m,AD⊥CD,试求出这块空地的面积(即阴影部分面积)考点:勾股定理;勾股定理的逆定理.分析:先根据勾股定理求出AC的长,再根据勾股定理的逆定理判断出△ACB为直角三角形,再根据S阴影= AC×BC�AD×CD即可得出结论.解答:解:在Rt△ADC中,∵CD=6米,AD=8米,BC=24米,AB=26米,∴AC2=AD2+CD2=82+62=100,∴AC=10(取正值).在△ABC中,∵AC2+BC2=102+242=676,AB2=262=676.∴AC2+BC2=AB2,∴△ACB 为直角三角形,∠ACB=90°.∴S阴影= AC×BC�AD×CD=×10×24�×8×6=96(米2).答:剩余土地(图中阴影部分)的面积为:96米2.点评:本题考查的是勾股定理在实际生活中的应用,有利于培养学生生活联系实际的能力和计算能力. 19.某移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神舟行”不缴月租费,每通话1min付费0.6元.若一个月内通话x min,两种方式的费用分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;一个月内通话多少分钟,两种移动通讯费用相同;(3)某人估计一个月内通话300min,应选择哪种移动通讯合算些.考点:一次函数的应用.分析:(1)因为移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50元月租费,然后每通话1分钟,再付话费0.4元;“神舟行”不缴月租费,每通话1min付费0.6元.若一个月内通话xm in,两种方式的费用分别为y1元和y2元,则y1=50+0.4x,y2=0.6x;令y1=y2,解方程即可;(3)令x=300,分别求出y1、y2的值,再做比较即可.解答:解:(1)y1=50+0.4x;y2=0.6x;令y1=y2,则50+0.4x=0.6x,解之,得x=250 所以通话250分钟两种费用相同;(3)令x=300 则y1=50+0.4×300=170;y2=0.6×300=180 所以选择全球通合算.点评:本题需仔细分析题意,建立函数解析式,利用方程或简单计算即可解决问题. 20.如图,正比例函数与一次函数交于点A(3,4),且一次函数与x轴交于点C,与y轴交于点B,(1)求两个函数解析式;求△AOC的面积.考点:两条直线相交或平行问题.分析:(1)首先设正比例函数解析式为y=kx,再把(3,4)点代入可得k的值,进而得到解析式;设一次函数解析式为y=kx+b,把(3,4)( 0,�5)代入可得关于k、b的方程组,然后再解出k、b的值,进而得到解析式.根据一次函数的解析式即可求得C的坐标,根据A、C的坐标进而求得三角形AOC 的面积.解答:解:(1)设正比例函数解析式为y=kx,∵图象经过点A(3,4),∴4=k×3, k= ,∴正比例函数解析式为y= x;设一次函数解析式为y=kx+b,∵图象经过(3,4)(0,�5),∴ ,解得,∴一次函数解析式为y=3x�5.∵一次函数解析式为y=3x�5.∴C(,0)∴S△AOC= × ×4= .点评:此题主要考查了待定系数法求一次函数解析式,关键是掌握凡是函数经过的点必能满足解析式.。
2015年第一学期期中考试试卷初二数学(考试时间 90分钟 满分 100分)一、填空:(本大题共14题,每题2分,满分28分)1、 化简:=2722、 化简:=-2)23(3、 二次根式32+x 中,x 应满足的条件是4、 若 x <0,化简 y x 34=5、 21—的倒数是6、 化简22)(a a -+=7、 不等式x x 32>- 的解集是8、 方程x x -=2的解是9、 已知m 方程222+=x x 的一个根,则代数式56m 32--m 的值是 10、在实数范围内因式分解:=--22342y xy x11、某校八年级举行篮球比赛,每个班级都要和其他班级比赛一次,结果一共进行了120场比赛,设该校八年级共有x 个班级,则可列方程 。
12、将命题“长度相等的两条线段是相等的线段”改写成“如果…,那么…”的形式: 13、如图,△ABC 中,∠ABC 和∠ACB 的平分线相交于O 点, O D ∥AB 交BC 于点D ,OE ∥AC 交BC 于点E ,若△DOE 的周长是 12cm ,则BC= cm 。
14、△ABC 中,∠ABC=42°,将△ABC 绕点B 旋转,使得点A 落在直线BC 上,记作点A 1,点C 落在C 1处,则∠B C 1C= 度。
二、选择题(本大题共4题,每题3分,满分12分)15、a 与212是同类二次根式,则a 一定是 ………… ……………………( ) (A ) 2 (B ) 12 (C ) 8 (D )不能确定CBAOED学校_________________ 班级 _______________ 学号 _______________ 姓名_______________ 装 订 线 内 不 准 答 题 …………………………………………………………………………………………………………………………………………………………………16、等腰△ABC 的一条边长是4,另外两边的长是关于0102=+-m x x x 的方程的两个实根,则m 的值是 ……………………………………………………………… ( ) (A )24 (B ) 25 (C ) 25或26 (D ) 24或25 17、下列各命题中,真命题是 ………………………………………………………( ) (A )若a ∥b ,b ∥c ,则a ∥c (B )两条直线被第三条直线所截,同位角相等 (C )0.01是0.1的一个平方根 (D ) 若a ⊥c ,b ⊥c ,则a ∥b18、如图,已知四边形ABCD 中,AC 、BD 相交于点O ,∠ABO=∠DCO ,∠OBC=∠OCB ,那么下列结论:①AB=CD ,②BC=2AD ,③AD ∥BC ,④AO=DO ,其中正确的结论是 ……………………( )(A )①②③ (B )①②④ (C ) ①③④ (D )②③④三、简答题(本题共5题,每题6分,满分30分)19、计算:818633211+++)(— 20、计算:12532×(-32243)÷(4112)21、解方程:43)38(y 23-=-y y 22、用配方法解方程:021322=+-x x23、如图,△ABC 中,AB=AC ,BD 、CE 分别是AC 、AB 边上的中线,BD 、CE 相交于O 点,求证:OB=OCO C A DBBCADE O四、解答题(本大题共4题,24、25、26每题7分,27题9分,满分30分)24、当0124)122=-+--k kx x k x k 的一元二次方程(为何值时,关于有实根?并求出这时方程的根(用含k 的代数式表示)。
南县2015年上学期期中考试八年级数学时量:90分钟满分:150一、选择题(每题只有一个结果符合要求,每小题5分,共40分)1.一个多边形的内角和是900°,这个多边形的边数是( )A.4 B.5 C.6 D.72.四边形ABCD中,对角线AC与BD交于点O,下列条件不能判定这个四边形是平行四边形的是( ) A.OA=OC,OB=OD B.AD∥BC,AB∥DC C.AB=DC,AD=BC D.3.已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是( ) A.选①②B.选②③C.选①③D.选②④4.下列各组数据中,不能作为一个直角三角形三边长的一组是( )A. B. C. D.5.下列判断不正确的是( ) A.四个角相等的四边形是矩形B.对角线垂直的四边形是菱形 C.对角线相等的平行四边形是矩形D.对角线垂直的平行四边形是菱形6.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB 上,PM=PN,若MN=2,则OM=( ) A.3B.4C.5D.67.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为( )A.2 B.3 C.4 D.58.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是( )A.(2,10) B.(﹣2,0) C.(2,10)或(﹣2,0) D.(10,2)或(﹣2,0)二、填空题(每小题5分,共30分)9.如图,Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AC=6cm,BC=8cm则CD的长为 cm.10.如图,在Rt△ABC中,∠C=90°,D为AB的中点,DE⊥AC于点E.∠A=30°,AB=8,则DE的长度是.11.如图,Rt△ABC中,∠ACB=90°,BD是∠ABC的角平分线,AC=8,,则D到AB的距离为 .12.将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),则这个平行四边形的最小内角为度.13.如图,已知矩形ABCD,一条直线把矩形分割成两个多边形,若两个多边形的内角和分别为和,则的最小值为 .14.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是 .三、解答题(每题8分,共24分)15.在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为 ;(2)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,A1的坐标为 .16.如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(≈1.414,精确到1米)17.已知:如图,在矩形ABCD中,点E,F分别在AB,CD边上,BE=DF,连接CE,AF.求证:AF=CE.四、解答题(每题10分,共30分)18.如图,BD是△ABC的角平分线,点E,F分别在BC、AB上,且DE∥AB,EF∥A C.求证:BE=AF.19.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a.∵S四边形ADCB=S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c220.如图,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F,若AD=3,BD=6.(1)求证:△EDF≌△CBF;(2)求∠EB C.五、解答题(本题12分)21.如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.(1)求证:四边形DBFE是平行四边形;(2)当△ABC满足什么条件时,四边形DBEF是菱形?为什么?六、解答题(本题14分)22.如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DF、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.。
10. 如图5,圆柱形开口杯底部固定在长方体水池底,向水池匀速注入水(倒在杯外),注满为止,水池中水面高度是h 注水时间为t ,则h 与t 之间的关系大致为下图中的 ( )二. 填空题(本大题共10小题,每小题3分,共30分) 11. 在下列数中:39-,1211,4.0,25,31-,-88,14.3-π,0,.1.0,2)3(-,225。
其中无理数的个数有 个。
12. 函数x y -=4中,自变量x 的取值范围是 。
13. 若函数m x m y m +-+=32)2(是一次函数,则m= 。
14. 已知函数⎩⎨⎧>-≤+=0,20,12x x x x y 若10=y ,则x = 。
15. 若一次函数的图象k x k y +--=1)3(不经过第二象限,则k的取值范围是 。
16. 已知点P(x,2x-6)在x 17. 如图,已知A 、B 两点的坐标分别是(-3,6)、(3,6)则直线AC 与y 轴相交的点的y 坐标为 。
18. 把直线4+-=x y 向右平移3个单位长度,所得直线与y 轴交点的y 坐标为 19. 设119-的整数部分是a,小数部分是b ,则()()a b ++191=20. 已知一条直线y= -3x+8与x 轴、y 轴分别交于A 、B 两点,将这条直线向左平移后与x 轴、y 轴分别交于C 、D 两点,若AB=AD ,则直线CD 的函数关系式为 。
三. 解答题(本大题共8小题,21~25题每题6分, 26、27两题每题9分,28题12分,共60分) 21. 计算:(1) (3分)30)21()14.3()25)(25(--+---+π(2) (3分)52)5(832402---++22. 已知y-3与x 成正比例,且当x=1时,y=5。
(1) (3分)求y 与x 的函数关系式;(2) (3分)求当x=-2时的函数值;23. 已知一次函数y=mx+n (m 、n 是常数)的图象经过第一、二、四象限,化简:122++--m n n m24. 如图,甲轮船以16海里/时的速度离开港口O 沿北偏东57°的方向航行,乙轮船同时从港口O 出发沿北偏西33°的方向航行,已知它们离开港口1.5小时后分别到达B 、A 两地,且AB=30海里,问乙轮船每小时航行多少海里?25.变量?哪个是函数?(2) (3分)如果用x(min)表示时间,用y (元)表示电话费,那么随着x 的变化,y 的变化趋势是怎样的?请写出它们的函数表达式。
2014-2015八年级上学期期中考试数学模拟试卷(一)
(满分100分,考试时间90分钟)
一、选择题(每小题3分,共24分)
1. 以下列各组数为边长,能构成直角三角形的是( )
A .1
3 B .32,42,52 C .13,14,1
5 D .0.9,1.2,1.5
2. 已知下列各数:0.4,
3.141 592 6,
2π,227
0.101 001 000 1…(相邻两个1之间0的个数逐次加1),其中是无理数的有( )个. A .2
B .3
C .4
D .5
3. 下列等式成立的是( )
A
= B
= C
x y =+
D
.2x =-
4. 如图,数轴上有A ,B ,C ,D 四点,根据图中各点的位置,判断哪一点所
表示的数与5 ) A .A
B .B
C .C
D .D
D C B
A 1
0-1
-2
-3
5. 已知在Rt △ABC 中,∠C =90°,若a +b =12cm ,c =10cm ,则Rt △ABC 的面积
是( ) A .48cm 2 B .24cm 2 C .16cm 2 D .11cm 2 6. 若点P (-2a ,a -3)在x 轴上,则点P 关于y 轴对称的点的坐标为( ) A .(0,-3)
B .(0,3)
C .(-6,0)
D .(6,0)
7. 已知点M (2,1)和点N (1,-2),点P 在y 轴上,且PM +PN 最短,则点P 的
坐标是( ) A .(-1,0)
B .(0,-1)
C .(5
3
,0)
D .(0,
53
) 8. 已知一次函数y =kx +b 与正比例函数y =kbx ,它们在同一坐标系内的图象可能
是(
)
A .
B .
C .
D .
二、填空题(每小题3分,共21分)
9.
________.
10. 已知关于x 的函数2
(1)1m y m x m =-++是一次函数,则m =_________. 11. 如图所示,有一根高为9m 的木柱,它的底面周长为
40
7
m ,为了营造喜庆的气氛,老师要求小明将一根彩带从柱底向柱顶均匀地缠绕7圈,一直缠到起点的正上方为止.则小明准备的彩带至少需要____________m
.
C
B A E
D
F
第11题图 第12题图 第13题图
12. 小明是一位善于思考的学生,在一次数学活动课上,他将一副直角三角板
按如图所示位置摆放,A ,B ,D 在同一直线上,EF ∥AD ,∠CAB =∠EDF =90°,∠E =60°,∠C =45°,EF =8,则BD =__________.
13. 如图,直线y 1=kx +b 经过点A (-1,-2)和点B (-2,0),直线y 2=2x 经过点A ,
当y 1<y 2时,x 的取值范围是______________.
14.
标为_______________.
第14题图 第15题图
15. 如图,在平面直角坐标系中,已知点P (2,1),点A 是x 轴上的一个动点,
当△PAO 是等腰三角形时,点A 的坐标为__________________________. 三、解答题(本大题共
6小题,满分55分) 16.
混合运算(每小题5分,共10分):
(1
11()22-
-
;
(2)21)(2(1+.
17. (8分)已知直线y =(3-a )x +b -2在平面直角坐标系中的图象如图所示,化
简:
2b a b ---.
18. (8分)在如图所示的平面
直角坐标系中描出下列各点:A (3,-5),B (2,0), C (3,5),D (-3,-5).并解答:
(1)点A 在第________象限; (2)将点A 向左平移6个单位, 它与点_________重合; (3)连接AC ,则直线AC 与y 是什么关系?
(4)求△ACD 的面积.
19. (9分)如图,在长方形ABCD 中,AB =3cm ,AD =9cm ,将此长方形折叠,
使点B 与点D 重合,折痕为EF ,求△ABE 的面积.
C'
F
E
D
C
B
A
20.(9分)如图,直线l1的表达式为y=-3x+3,且l1与x轴交于点D,直线l2
经过点A,B,直线l1,l2相交于点C.
(1)求点D的坐标;
(2)求直线l2的表达式;
(3)求△ADC的面积;
(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.
21.(11分)在一条笔直的公路上有A,B两地,甲骑自行车从A地到B地;乙
骑自行车从B地到A地,到达A地后立即按原路返回.如图是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:
(1)写出A,B两地之间的距离;
(2)求出点M的坐标,并解释该点坐标所表示的实际意义;
(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.。