实验1信号的频谱图
- 格式:pdf
- 大小:258.68 KB
- 文档页数:10
实验一 信号的频谱图一、 实验目的1. 掌握周期信号的傅里叶级数展开2. 掌握周期信号的有限项傅里叶级数逼近3. 掌握周期信号的频谱分析4. 掌握连续非周期信号的傅立叶变换5. 掌握傅立叶变换的性质 二、 相关知识 1 周期信号的傅里叶级数设周期信号()f t ,其周期为T ,角频率为0022f T,该信号可展开为三角形式的傅里叶级数,即为:0102010200001()cos cos2sin sin cos sin n n n f t a a t a t b t b t a a n t b n t其中,正弦项与余弦项的系数n a 和n b 成为傅里叶系数,根据函数的正交性,得0000000001()2()cos 2()sin t T t t T n t t T n t a f t dt T a f t n dt T b f t n dt T(2)其中,1,2,n 。
积分区间00(,)t t T 通常取为(0,)T 或(,)22T T。
若将(2)式中同频率项合并,可改写为001()cos n n n f t A A n t(3)从物理概念上来说,(3)中的0A 即是信号的直流分量;式中的第二项称为信号的基波或者基波分量,它的角频率与原周期信号相同;式中第三项称为信号的二次谐波,他的频率是基波频率的二倍;以此类推。
一般而言 0cos n n A n t 称为信号的n 次谐波;n 比较大的分量统称为信号的高次谐波。
我们还常用到复指数形式的傅里叶。
设周期信号()f t ,其周期为T ,角频率为0022f T,该信号复指数形式的傅里叶级数为 0()jn tnn f t F e其中2021(),0,1,T T jn tn F f t edt n T,称为复指数形式傅里叶级数系数。
利用MATLAB 可以直观地观察和分析周期信号傅里叶级数及其收敛性。
【例1-1】周期方波信号如图所示,画出该信号的傅里叶级数,利用MA TLAB 编程实现其各次谐波的叠加。
实验一采样率对信号频谱的影响集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#实验一 采样率对信号频谱的影响1.实验目的(1)理解采样定理;(2)掌握采样频率确定方法; (3)理解频谱的概念;(4)理解三种频率之间的关系。
2.实验原理理想采样过程是连续信号x a (t )与冲激函数串M (t )的乘积的过程∑∞-∞=-=k skT t t M )()(δ (7-13))()()(ˆt M t x t xa a = (7-14) 式中T s 为采样间隔。
因此,理想采样过程可以看作是脉冲调制过程,调制信号是连续信号x a (t ),载波信号是冲激函数串M (t )。
显然)()()()()(ˆs k s ak s aa kT t kT xkT t t xt x-=-=∑∑∞-∞=∞-∞=δδ (7-15)所以,)(ˆt xa 实际上是x a (t )在离散时间kT s 上的取值的集合,即)(ˆs a kT x 。
对信号采样我们最关心的问题是,信号经过采样后是否会丢失信息,或者说能否不失真地恢复原来的模拟信号。
下面从频域出发,根据理想采样信号的频谱)(ˆΩj X a 和原来模拟信号的频谱)(Ωj X 之间的关系,来讨论采样不失真的条件∑∞-∞=Ω-Ω=Ωk ssakj j X T j X )(1)(ˆ (7-16)上式表明,一个连续信号经过理想采样后,其频谱将以采样频率Ωs =2π/T s 为间隔周期延拓,其频谱的幅度与原模拟信号频谱的幅度相差一个常数因子1/T s 。
只要各延拓分量与原频谱分量之间不发生频率上的交叠,则可以完全恢复原来的模拟信号。
根据式(7-16)可知,要保证各延拓分量与原频谱分量之间不发生频率上的交叠,则必须满足Ωs ≥2Ω。
这就是奈奎斯特采样定理:要想连续信号采样后能够不失真地还原原信号,采样频率必须大于或等于被采样信号最高频率的两倍h s Ω≥Ω2,或者h s f f 2≥,或者2hs T T ≤(7-17) 即对于最高频率的信号一个周期内至少要采样两点,式中Ωh 、f s 、T h 分别为被采样模拟信号的最高角频率、频率和最小周期。
实验一连续时间信号的时域和频域分析一. 实验目的:1. 熟悉MATLAB 软件平台。
2. 掌握MATLAB 编程方法、常用语句和可视化绘图技术。
3. 编程实现常用信号及其运算MATLAB 实现方法。
4. 编程实现常用信号的频域分析。
二. 实验原理:1、连续时间信号的描述:(1)向量表示法连续信号是指自变量的取值范围是连续的,且对于一切自变量的取值,除了有若干个不连续点之外,信号都有确定的值与之对应。
严格来说,MATLAB 并不能处理连续信号,而是用等时间间隔点的样值来近似表示连续信号。
当取样时间间隔足够小时,这些离散的样值就能较好地近似连续信号。
矩阵是MATLAB 进行数据处理的基本单元,矩阵运算是MATLAB 最重要的运算。
通常意义上的数量(也称为标量)在MATLAB 系统中是作为1×1 的矩阵来处理的,而向量实际上是仅有一行或者一列的矩阵。
通常用向量表示信号的时间取值范围,如t = -5:5,但信号x(t)、向量t 本身的下标都是从1 开始的,因此必须用一个与向量x 等长的定位时间变量t,以及向量x,才能完整地表示序列x(t)。
在MATLAB 可视化绘图中,对于以t 为自变量的连续信号,在绘图时统一用plot 函数;而对n 为自变量的离散序列,在绘图时统一用stem 函数。
(2)符号运算表示法符号对象(Symbolic Objects 不同于普通的数值计算)是Matlab 中的一种特殊数据类型,它可以用来表示符号变量、表达式以及矩阵,利用符号对象能够在不考虑符号所对应的具体数值的情况下能够进行代数分析和符号计算(symbolic math operations),例如解代数方程、微分方程、进行矩阵运算等。
符号对象需要通过sym 或syms 函数来指定, 普通的数字转换成符号类型后也可以被作为符号对象来处理.我们可以用一个简单的例子来表明数值计算和符号计算的区别: 2/5+1/3 的结果为0.7333(double 类型数值运算), 而sym(2)/sym(5)+sym(1)/sym(3)的结果为11/15, 且这里11/15 仍然是属于sym 类型, 是符号数。
实验一 抽样定理与信号恢复一、实验目的1. 观察离散信号频谱,了解其频谱特点;2. 验证抽样定理并恢复原信号。
二、实验原理1. 离散信号不仅可从离散信号源获得,而且也可从连续信号抽样获得。
抽样信号 Fs (t )=F (t )·S (t )。
其中F (t )为连续信号(例如三角波),S (t )是周期为Ts 的矩形窄脉冲。
Ts 又称抽样间隔,Fs=1Ts 称抽样频率,Fs (t )为抽样信号波形。
F (t )、S (t )、Fs (t )波形如图1-1。
t-4T S -T S 0T S 4T S8T S 12T S tt02/1τ1τ2/31τ2/1τ1τ2/31τ2/1τ-(a)(b)(c)图1-1 连续信号抽样过程将连续信号用周期性矩形脉冲抽样而得到抽样信号,可通过抽样器来实现,实验原理电路如图1-2所示。
2. 连续周期信号经周期矩形脉冲抽样后,抽样信号的频谱()∑∞∞--∙=m s s m m SaTsA j )(22s F ωωπδτωτω 它包含了原信号频谱以及重复周期为fs (f s =πω2s 、幅度按ST A τSa (2τωs m )规律变化的原信号频谱,即抽样信号的频谱是原信号频谱的周期性延拓。
因此,抽样信号占有的频带比原信号频带宽得多。
以三角波被矩形脉冲抽样为例。
三角波的频谱 F (j ω)=∑∞-∞=-K k k sa E )2()2(12τπωδππ抽样信号的频谱Fs (j ω)=式中 取三角波的有效带宽为31ω18f f s =作图,其抽样信号频谱如图1-3所示。
图1-2 信号抽样实验原理图)(2(212s m k s m k k Sa m Sa TS EA ωωωδπτωτπ--∙∙∑∞-∞=-∞=111112ττπω==f 或(b) 抽样信号频谙图1-3 抽样信号频谱图如果离散信号是由周期连续信号抽样而得,则其频谱的测量与周期连续信号方法相同,但应注意频谱的周期性延拓。
实验一采样率对信号频谱的影响1.实验目的 (1)理解采样定理;(2)掌握采样频率确定方法; (3)理解频谱的概念;(4)理解三种频率之间的关系。
2.实验原理理想采样过程是连续信号x a (t )与冲激函数串M (t )的乘积的过程∑∞-∞=-=k skT t t M )()(δ(7-13))()()(ˆt M t x t xa a =(7-14) 式中T s 为采样间隔。
因此,理想采样过程可以看作是脉冲调制过程,调制信号是连续信号x a (t ),载波信号是冲激函数串M (t )。
显然)()()()()(ˆs k s ak s aa kT t kT xkT t t xt x-=-=∑∑∞-∞=∞-∞=δδ(7-15)所以,)(ˆt xa 实际上是x a (t )在离散时间kT s 上的取值的集合,即)(ˆs a kT x 。
对信号采样我们最关心的问题是,信号经过采样后是否会丢失信息,或者说能否不失真地恢复原来的模拟信号。
下面从频域出发,根据理想采样信号的频谱)(ˆΩj X a和原来模拟信号的频谱)(Ωj X 之间的关系,来讨论采样不失真的条件∑∞-∞=Ω-Ω=Ωk ssakj j X T j X )(1)(ˆ(7-16)上式表明,一个连续信号经过理想采样后,其频谱将以采样频率Ωs =2π/T s 为间隔周期延拓,其频谱的幅度与原模拟信号频谱的幅度相差一个常数因子1/T s 。
只要各延拓分量与原频谱分量之间不发生频率上的交叠,则可以完全恢复原来的模拟信号。
根据式(7-16)可知,要保证各延拓分量与原频谱分量之间不发生频率上的交叠,则必须满足Ωs ≥2Ω。
这就是奈奎斯特采样定理:要想连续信号采样后能够不失真地还原原信号,采样频率必须大于或等于被采样信号最高频率的两倍h s Ω≥Ω2,或者h s f f 2≥,或者2hs T T ≤(7-17) 即对于最高频率的信号一个周期内至少要采样两点,式中Ωh 、f s 、T h 分别为被采样模拟信号的最高角频率、频率和最小周期。
实验一信号频谱分析实验1.引言信号频谱分析是一种通过将信号在频域上进行分解和分析的方法,用于研究信号的频率特性和频谱分布。
频谱分析可以帮助我们了解信号的频率成分、噪声干扰以及信号与系统之间的传递特性。
本实验旨在通过使用快速傅里叶变换(FFT)算法进行信号频谱分析,加深对频谱分析原理和方法的理解。
2.实验目的(1)理解信号频谱分析的基本原理和方法。
(2)熟悉使用FFT算法进行信号频谱分析的流程和步骤。
(3)学会使用示波器和信号发生器进行实验测量和信号生成。
3.实验仪器和设备示波器、信号发生器、计算机等。
4.实验原理信号频谱是描述信号在频域上的分布情况,表示了信号中各个频率成分的强度和相位信息。
频谱分析通过对信号进行傅里叶变换,将信号从时域转换为频域,得到信号的频谱信息。
在本实验中,我们使用快速傅里叶变换(FFT)算法对信号进行频谱分析。
FFT算法是一种高效的离散傅里叶变换(DFT)算法,通过将DFT变换的计算量从O(N^2)降低到O(NlogN),使得频谱分析更加实用。
FFT算法将信号划分为若干个子序列,并对每个子序列进行DFT变换,然后利用蝶形运算将子序列的变换结果合并,最终得到整个信号的频谱信息。
5.实验步骤(1)使用信号发生器产生一个频率为f1的正弦信号,并将其接入示波器。
(2)通过示波器观察和记录信号的波形。
(3)将示波器设置为频谱分析模式,选择FFT算法进行频谱分析。
(4)根据示波器显示的频谱图,记录信号在频域上的频率分布情况。
(5)改变信号发生器的频率,重复步骤(1)-(4),分析和比较不同频率下信号的频谱特性。
(6)将示波器设置为傅里叶合成模式,通过合成不同频率和幅度的正弦波,观察合成信号的波形和频谱分布情况。
(7)利用计算机进行信号频谱分析,使用MATLAB等软件绘制信号的频谱图,并进行进一步分析和比较。
6.实验注意事项(1)实验中使用的信号发生器和示波器需要进行校准,确保测量和生成的信号准确可靠。
习题一绘制典型信号及其频谱图电子工程学院 202班一、单边指数信号单边指数信号的理论表达式为对提供的MATLAB程序作了一些说明性的补充,MATLAB程序为%单边指数信号clc;close all;clear all;E=1;a=1;%调整a的值,观察不同a的值对信号波形和频谱的影响t=0:0.01:4;w=-30:0.01:30;f=E*exp(-a*t);F=1./(a+j*w);figure(1);plot(t,f);xlabel('t');ylabel('f(t)');title('信号时域图像');figure(2);1 / 152 / 15plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|');title('幅频特性');figure(3);plot(w,20*log10(abs(F)));xlabel('\omega');ylabel('|F(\omega)| in dB');title('幅频特性/dB');figure(4);plot(w,angle(F)*57.29577951);xlabel('\omega');ylabel('\phi(\omega )/(°)');title('相频特性');调整,将a 分别等于1、5、10等值,观察时域波形和频域波形。
由于波形较多,现不失代表性地将a=1和a=5时的各个波形图列表如下进行对比,其他a 值的情况类似可推知。
3 / 15分析:由上表中a=1和a=5的单边指数信号的波形图和频谱图的对比可以发现,当a值增大时,信号的时域波形减小得很快,而其幅频特性的尖峰变宽,相频特性的曲线趋向平缓。
实验一 利用DFT 分析信号频谱一、实验目的1、加深对DFT 原理的理解。
2、应用DFT 分析信号的频谱。
3、深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。
二、实验设备与环境计算机、MATLAB 软件环境。
三、实验基础理论1、DFT 与DTFT 的关系DFT 实际上就是DTFT 在单位圆上以k N j e zπ2=的抽样,数学公式表示为: ∑-=-===102)(|)()(2N n k N j e z e n x z X k X k N j ππ , 1,..1,0-=N k(2—1)2、利用DFT 求DTFT方法一:利用下列公式: )2()()(10∑-==-=N k k j Nk k X e X πωφω (2—2) 其中21)2/sin()2/sin()(--=N j e N N ωωωωφ为内插函数方法二:实际在MATLAB 计算中,上述插值运算不见得就是最好的办法。
由于DFT 就是DTFT 的取样值,其相邻两个频率样本点的间距为Nπ2,所以如果我们增加数据的长度N,使得到的 DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。
如果没有更多的数据,可以通过补零来增加数据长度。
3、利用DFT 分析连续时间函数利用DFT 分析连续时间函数就是,主要有两个处理:①抽样,②截断对连续时间信号)(t x a 一时间T 进行抽样,截取长度为M,则nT j M n a t j a a e nT x T dt e t x j X Ω--=+∞∞-Ω-∑⎰==Ω)()()(10(2—3)再进行频域抽样可得 )()(|)(1022k TX enT x T j X M M n n N k j a NT k a ==Ω∑-=-=Ωππ(2—4)因此,利用DFT 分析连续时间信号的步骤如下:(1)、确定时间间隔,抽样得到离散时间序列)(n x 、(2)、选择合适的窗函数与合适长度M,得到M 点离散序列)()()(n w n x n x M =、(3)、确定频域采样点数N,要求N ≥M 。