脑源性神经营养因子及其特异性受体酪氨酸激酶B在中枢疾病的研究
- 格式:pdf
- 大小:229.79 KB
- 文档页数:3
神经营养因子的调节及其在神经退行性疾病中的作用神经营养因子是指对神经细胞发育、存活和功能发挥起重要作用的化学物质。
这些化学物质包括神经生长因子(Nerve growth factor,NGF)、神经营养因子(Neurotrophic factor,NTF)、神经源性因子(Neurotrophy factor,NT)、脑源性神经营养因子(Brain-derived neurotrophic factor,BDNF)、骨形态发生蛋白(Bone morphogenetic protein,BMP)、肌肉特异性因子(Muscle-specific factors,MSF)等。
这些神经营养因子在进化的过程中扮演着重要的角色,包括维持神经细胞的结构和功能、对神经系统的发育和修复起到至关重要的作用。
本文将着重探讨神经营养因子在神经退行性疾病中的作用以及其调节机制。
神经退行性疾病是指神经系统的一类疾病,包括老年性认知障碍、帕金森病、亚当斯-斯托克斯综合征、阿尔茨海默病等。
这些疾病对人类健康造成了极大的威胁。
神经营养因子的调节和功能异常在神经退行性疾病的发病中发挥着重要作用。
在老年性认知障碍中,神经营养因子的水平下降被认为是导致神经元损伤和细胞凋亡的一个重要因素。
在帕金森病中,NGF与NT因子在许多年代表了成为了帕金森病发病机制的一部分。
有报道称,正常情况下NT因子能够促进身体内通过不同类型肛门的控制。
在阿尔茨海默病中,BDNF的水平下降导致神经元死亡,加速疾病的进程。
神经营养因子的调节机制十分复杂。
神经营养因子的分泌和信号转导过程受到多种调节因素的控制,包括单独或复合作用的穿梭蛋白(Shufflin protein)、转录因子、激酶和磷酸酶等。
在神经营养因子的分泌过程中,线粒体的作用不可忽视。
研究发现线粒体在神经营养因子诱导神经元后生长方面起着重要的作用。
激素是一种重要的调节因子。
在很多动物的脊髓中,丙酮酸的代谢与神经元生长因子的释放是相互关联的。
运动、BDNF与能量代谢平衡的研究进展作者:张林习雪峰聂文良来源:《首都体育学院学报》2012年第04期摘要:脑源性神经营养因子(BDNF)是神经营养因子(NTF)家族的一员。
BDNF主要在中枢神经系统内表达,主要分布在海马、杏仁核和皮质,在外周系统心脏、脂肪和骨骼肌也有表达。
酪氨酸激酶受体B ( tyrosine kinase receptor B,Trk B)是BDNF的特异性高亲和力受体,BDNF可通过与Trk B结合,激发各种信号传导通路而发挥其特殊的生物学功能。
脑源性神经营养因子(BDNF)及其受体酪氨酸激酶受体B (Trk B)基因突变或功能缺失均会导致机体能量代谢失衡。
BDNF可通过调节神经元的生存、生长并维持其功能在学习和记忆中发挥着重要的作用,BDNF可通过中枢和/或外周的机制调节机体的能量代谢。
BDNF是运动预防和治疗人体代谢紊乱的重要因子。
运动可以改变中枢神经系统、外周组织细胞内,以及血液BDNF 水平。
关键词:健康促进;脑源性神经营养因子;酪氨酸激酶受体B;能量代谢;代谢平衡中图分类号: G 804.2文章编号:1009-783X(2012)04-0371-05文献标志码:脑源性神经营养因子(brain derived neurotrophic factor, BDNF)是神经营养因子(neurotrophic factors,NTF)家族的一员。
BDNF mRNA及蛋白主要在中枢神经系统内表达,主要分布在海马、杏仁核和皮质,也存在于纹状体、基底前脑、下丘脑、脑干和小脑,近来发现卵巢、心、肺、血小板和骨骼肌也有表达。
酪氨酸激酶受体B( tyrosine kinase receptor B,Trk B)是BDNF的特异性高亲和力受体,BDNF可通过与Trk B结合,激发各种信号传导通路而发挥其特殊的生物学功能。
BDNF既可通过调节神经元的生存、生长并维持其功能在学习和记忆中发挥着重要的作用,也可通过中枢和/或外周的机制调节机体的能量代谢平衡。
hAECs的生物学特性和对中枢神经系统疾病的治疗机制-神经病学论文-临床医学论文-医学论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——中枢神经系统疾病包括中枢神经系统感染、早发性的神经功能障碍、晚发性的神经退行性疾病、自身免疫和炎症疾病等。
目前这些疾病没有有效的治疗药物和方法,尤其是对于神经退行性疾病,例如阿尔兹海默病( Alzheimers disease,AD) 、帕金森氏病( Parkinsons disease,PD) 等,引起脑组织重量减轻、脑体积减少,特定脑区功能下降,中神经元,神经元数量明显减少,严重影响患者的生活质量。
中枢神经系统疾病中的神经元不会再生,因此脑功能恢复缓慢。
对于这种疾病,临功能康复治疗仅是防止肌肉组织萎缩,缓解运动功能障碍,药物治疗仅是对症的姑息治疗,没有对疾病的病理改变进行改善修复,因此仅能缓解症状,没有起到根本的治疗作用。
目前基于干细胞的自身生物学特性,干细胞可分化为特异性的细胞类型,并维持细胞间在生理、病理条件下的体内平衡。
在神经系统疾病治疗方面得到了广泛的关注,为治疗神经系统疾病提供新的途径。
羊膜位于胚胎绒毛膜内侧,是一层无血管、神经、淋巴、肌肉的透明薄膜,与发育中的胎儿联系紧密。
人羊膜来源的细胞主要由两类细胞构成: 人羊膜上皮细胞( human amnion epithelial cells,hAECs)和人羊膜间充质细胞( human amnion mesenchymecells,hAMCs) 。
hAECs 具有多向分化潜能,并具有低免疫源性及免疫协同抑制作用,同时可避免胎盘干细胞实验及临床应用中的伦理问题,在干细胞领域中具有广阔应用前景。
1910 年Davis 等研究报道将胎膜应用到皮肤移植的经验,20 世纪90 年代初,羊膜也已广泛应用到临床治疗中,包括烧伤、慢性溃疡、腹腔内粘连、髋关节置换术、角膜修复、神经修复等疾病。
可见hAECs 成为再生医学中有明显治疗效果的一种细胞资源。
2023-2024学年上海市建平中学高二上学期期中生物试题(等级班)1.资料一:黏多糖贮积症是由IDUA基因突变导致的遗传病。
黏多糖贮积症患者细胞中IDUA基因转录出的mRNA长度不变但提前出现终止密码子,最终导致合成的IDUA酶失去活性,引发黏多糖积累过多而无法及时清除,造成人体多系统功能障碍。
(1)下列相关说法中错误的是____。
A.可以通过RNA干扰的方法治疗该疾病B.患者IDUA基因上也会提前出现终止密码子C.可以通过口服IDUA酶治疗该疾病D.患者IDUA基因的遗传信息发生改变(2)异常IDUA酶与正常IDUA酶的差异体现在____。
(选填编号)①氨基酸的数目不同②活性中心结构不同③催化的底物种类不同(3)失活的IDUA酶的氨基酸序列长度与正常IDUA酶的比值____。
A.大于1 B.等于1 C.小于1 D.以上皆有可能资料二:抑制性tRNA(sup-tRNA)的反密码子可以与终止密码子配对。
在IDUA突变基因的翻译过程中,加入sup-tRNA可获得有功能的全长蛋白。
(4)抑制性tRNA的功能是____。
A.使翻译提前终止B.抑制氨基酸脱水缩合C.改变mRNA的序列D.使终止密码子编码氨基酸(5)不同的sup-tRNA可以携带不同氨基酸。
科研人员将不同的sup-tRNA导入实验动物体内,并检测了IDUA蛋白的分子量(条带的粗细可以反映分子量的大小),结果如下表,“—”代表未加入。
丝氨酸据表分析,可继续探究携带____氨酸的sup-tRNA用于疾病治疗的前景。
(6)科研人员利用选定的sup-tRNA对IDUA突变基因纯合小鼠及IDUA基因敲除小鼠进行治疗,检测肝脏细胞IDUA酶活性和组织黏多糖的积累量。
与不治疗的患病小鼠相比较,下列预期的实验结果中,可说明治疗有效的是____。
A.IDUA突变基因纯合小鼠IDUA酶活性高,组织黏多糖积累量少B.IDUA基因敲除小鼠IDUA酶活性与组织黏多糖积累量无明显差异C.IDUA基因敲除小鼠IDUA酶活性高,组织黏多糖积累量少D.IDUA突变基因纯合小鼠IDUA酶活性与组织黏多糖积累量无明显差异2.资料1:甜椒是我国温室栽培的主要蔬菜之一!下图中甲表示甜椒叶肉细胞中的两种细胞器,乙表示利用甜椒叶圆片探究光照强度对光合作用速率影响的实验装置。
神经营养因子在中枢神经系统发育与修复中的作用当我们谈到中枢神经系统的发育与修复时,我们通常会想到大脑和脊髓。
这两个器官在人类身体中的重要性无法估量。
中枢神经系统的发育和修复是一个复杂而有挑战性的过程,其中需要许多不同的因素的共同作用。
神经营养因子就是其中一个关键的因素之一。
在本文中,我们将探讨神经营养因子在中枢神经系统发育与修复中的作用。
神经营养因子神经营养因子是一种分泌物质,可以促进神经元的成长、分化和生存。
这些因子在神经系统的多个方面发挥作用,包括中枢神经系统的发育和修复。
神经营养因子是由许多不同类型的细胞产生的,包括神经元、神经胶质细胞和免疫细胞。
这些因子可以通过自分泌或相邻细胞的刺激而释放出来。
一些常见的神经营养因子包括神经生长因子(NGF)、脑源性神经营养因子(BDNF)和神经元特异性烯醇化酶(MAO)。
神经营养因子在中枢神经系统发育中的作用中枢神经系统的发育是一个复杂的过程,需要多种因素的参与,包括神经营养因子。
这些因子在神经元的成长、分化和生存过程中起着重要的作用。
在早期的胚胎发育过程中,神经营养因子就开始发挥作用。
在这个阶段,神经元的增殖、分化和迁移是基本过程。
神经生长因子和BDNF是其中两个起主要作用的神经营养因子。
神经生长因子可以促进神经元的增殖和分化,同时也可以在神经元迁移过程中起到导向作用。
BDNF则可以促进神经元的增殖和分化,并且在早期的神经元迁移中发挥重要的作用。
当神经元发生增生、生成和差异化之后,神经营养因子也继续发挥作用。
在神经元的轴突导向过程中,神经元可以分泌神经糖蛋白、N-CAM等分子,这些分子可以与BDNF等神经营养因子协同作用,促进轴突生长和发展。
此外,神经营养因子还可以促进合适的突触形成和成熟。
在神经元网络的形成阶段,神经元可以释放BDNF等神经营养因子,促进突触的发展和维护。
神经营养因子在中枢神经系统修复中的作用中枢神经系统的修复是另一个关键的过程,需要多种因素的参与,包括神经营养因子。