定理,命题证明导学案
- 格式:doc
- 大小:14.00 KB
- 文档页数:2
子洲三中 “双主”高效课堂 数学 导学案2014-2015学年第一学期 姓名:组名: 使用时间2014年 月 日年 级科 目课 题主 备 人 备 课 方 式负责人(签字) 审核领导(签字) 序号 八(3) 数学§7、2、2 定义与命题(2)乔智一、学习目标:1.了解公理、证明、定理的含义; 2.识记本教材所采用的公理.3、初步体会证明的思路与书写的过程。
学习过程:学新准备:1、什么叫做定义?举例说明.什么叫命题?举例说明2、找出下述命题中的条件和结论,指出它们哪些是正确的命题?哪些是不正确的命题? (1)如果两个角相等,那么它们是对顶角; (2)如果a >b ,b >c ,那么a =c ;(3)两角和其中一角的对边对应相等的两个三角形全等; (4)菱形的四条边都相等; (5)全等三角形的面积相等3阅读教材P168-170页,完成下列问题: (一)知识点:公理、证明、定理的含义公理: 证明: 定理:识记本教材的八条公理: ① ② ③ ④⑤⑥ ⑦ ⑧此八条基本事实前面已详细探索过,不必验证它们的正确性,可以直接用来证实其它命题的正确性,另外一条我们将在以后认识它。
此外等式和不等式的有关性质也可看作公理.比如:如果a=b ,b=c ,那么a=c .(二)你能用所学的公理、定义、性质完成下列定理的证明吗?试试看?定理:同角(等角)的补角相等。
同角(等角)的余角相等。
三角形的任意两边之和大于第三边。
范例:定理:对顶角相等已知:如图,直线AB 与直线CD 相交于点O ,∠AOC 与∠BOD 是对顶角。
求证:∠AOC=∠BOD证明:∵直线AB 与直线CD 相交于点O ( ) ∴∠AOB 和∠COD 都是平角 ( )∴∠AOC 和∠BOD 都是∠AOD 的补角 ( ) ∴∠AOC=∠BOD ( )总结:证明一个命题的步骤: ①根据命题画图,②根据图形和命题写出已知和求证(写成符号语言)③根据已知对求证进行证明。
华师大版2020-2021年八年级数学上册导学案第13章全等三角形13.1 命题、定理与证明1 命题学习目标:1.了解命题的意义,并能对命题的真假做出判断;2.掌握题设和结论,能将命题改写为“如果……,那么……”的形式(重点);3.能够判定一个命题的真假,并能进行说明(难点).自主学习一、知识链接填一填:(1)两个角相加等于90度,则这两个角互;(2)平行于同一条直线的两条直线.二、新知预习试一试:用学过的知识,试判断下列句子是否正确:(1)如果两个角是对顶角,那么这两个角相等;()(2)三角形的内角和是180°;()(3)同位角相等.()合作探究一、探究过程探究点1 命题问题1 观察上面的填一填的内容,你发现它们有什么特点?【要点归纳】像这样表示判断的语句叫做命题.例1 判断下列语句是不是命题?是用“√”,不是用“×”表示.(1)对顶角相等吗?()(2)画一条线段AB=2cm.()(3)两条直线平行,内错角相等.()【针对训练】判断下列语句是不是命题?是用“√”,不是用“×”表示.(1)长度相等的两条线段是相等的线段吗?()(2)两条直线相交,有且只有一个交点.()(3)角度相等的两个角是同一个角.()(4)取线段AB的中点C.()问题2 “试一试”中的句子都是命题吗?你认为命题的组成部分是什么?【要点归纳】在数学中,许多命题是由条件和结论两部分组成的.条件是已知事项,结论是由已知事项推出的事项.这种命题常可写成“如果……,那么……”的形式.例2 把命题“等边三角形的三条边相等”改写成“如果……,那么……”的形式,并分别指出命题的条件和结论.问题3 所有的命题都是正确的吗?比如:有四条腿的动物是猫,这句话正确吗?【要点归纳】像这样表示判断的语句叫做命题.正确的命题称为_____命题,错误的命题称为_____命题.例3 判断下列命题的真假.真的用“√”,假的用“×”表示.(1)同旁内角互补.()(2)一个角的补角大于这个角.()(3)相等的两个角是对顶角.()(4)两点可以确定一条直线.()(5)两点之间线段最短.()(6)同角的余角相等.()【针对训练】命题:①对顶角相等;②垂直于同一条直线的两直线平行;③相等的角互为补角;④同位角相等.其中真命题有()A.1个B.2个C.3个D.4个探究点2:举反例问题4小明说:“a+b一定比a大”.小红马上说:“不对,1+(-2)就没有1大.”看完上面的短对话,你认为小红是怎样说明小明不对的?【要点归纳】说明该命题不成立,只要举出一个符合该命题条件而不符合该命题结论的例子就可以了,这种方法称为“举反例”.例4 下列五个命题中,哪些是假命题?举反例说明.①相等的角是对顶角;②内错角相等;③垂线段最短;④一个三角形里一定有2个钝角;⑤同一平面内,互不重合的两条直线不平行就相交.二、课堂小结1.表示判断某一事件的语句叫做______.正确的命题称为___命题,错误的命题称为___命题;2.许多命题可以写成“如果……,那么……”的形式.其中,用“如果”开始的部分是_____,用“那么”开始的部分是_____.当堂检测1.下列语句中,是命题的为()A.延长线段AB到C B.正数总大于负数C.过点O作直线a∥b D.锐角都相等吗2.命题“如果ab=0,那么a=0”是命题(填“真”或“假”).3.“垂直同一条直线的两条直线互相平行”这个命题的条件是.4.把下列命题改写成“如果……,那么……”的形式:(1)命题“对顶角相等”:如果,那么.(2)命题“平行于同一直线的两直线平行”:如果,那么__________ .(3)命题“同角的补角相等”:如果,那么.5.下列句子哪些是命题?是命题的,指出是真命题还是假命题?(1)内错角相等;(2)画一条直线;(3)四边形是正方形;(4)你的作业做完了吗?(5)过点P画线段MN的垂线;(6)x>2.6.举反例说明下列命题是假命题.(1)若两个角不是对顶角,则这两个角不相等;(2)若ab=0,则a+b=0.参考答案自主学习一、知识链接填一填:(1)余(2)平行二、新知预习试一试:(1)正确(2)正确(3)错误合作探究一、探究过程探究点1例1 (1)×(2)×(3)√【针对训练】(1)×(2)√(3)√(4)×例2解:如果一个三角形是等边三角形,那么这个三角形的三条边相等.该命题的条件是“一个三角形是等边三角形”,结论是“这个三角形的三条边相等”.【要点归纳】真假例3 (1)×(2)×(3)×(4)√(5)√(6)√【针对训练】A探究点2:例4 解:①是假命题,如图①,它们都为30°的角,但不是对顶角;②是假命题,如图②,他们是内错角,但不相等;③是真命题;④是假命题,一个三角形三个角分别是50°,60°,70°,其中一个钝角都没有;⑤是真命题.二、课堂小结命题真假条件结论当堂检测1.B 2.假3.两条直线垂直于同一条直线4.(1)两个角是对顶角这两个角相等(2)两条直线平行于同一条直线这两条直线平行(3)两个角是同一个角的补角这两个角相等5.解:(1)是假命题.(2)不是命题.(3)是假命题.(4)不是命题.(5)不是命题.(6)不是命题.6.解:(1)如图,∠1和∠2不是对顶角,但是它们相等;(2)当a=0,b=2时,ab=0,但是a+b≠0.。
5. 5三角形内角和定理(1)一、课程标准:掌握三角形内角和定理及推论的证明过程。
二、学习目标:掌握“三角形内角和定理及推论”的证明过程,并能根据这个定理及推论解决实际问题。
三、学习重点难点:重点:三角形内角和定理及推论的证明过程。
难点:如何添加辅助线。
四、突破重难点的设想:五、学前准备:六、学情分析:七、使用说明与学法指导:1、在充分预习自学的前提下,认真完成导学案。
2、将预习中不能解决的问题标注出来,并填写到后面“我的疑问”处。
3、限时完成。
预习案一.自主预习:阅读课本p170—p171内容,思考下列问题:(课前完成)1、三角形的内角和是多少度?你是怎样知道的?2、如何证明此命题是真命题呢?要证三角形三个内角和是180°,观察图形,三个角间没什么关系,能不能象前面那样,把这三个角拼在一起呢?拼成什么样的角呢?①平角,②两平行线间的同旁内角。
1A B CD E A B C E D 3、要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。
如何把三个角转化为平角或两平行线间的同旁内角呢?预习疑难摘要: 探究案探究一:探究三角形内角和定理1、已知:∠A, ∠B, ∠C 是△ABC 的三个内角。
(尝试独立思考完成)求证:∠A+∠B+∠C=180°。
2、你能用如图所示的的方法证明三角形的内角和吗(小组合作交流)除上述两种方法外,你还能想出这一定理的其他证明方法吗?(看谁的证明方法多)探究二:探讨三角形外角的性质:3问题1:如图,△ABC 中,∠A=70°,∠B=60°,∠ACD 是△ABC 的一个外角,能由∠A 、∠B 求出∠ACD 吗?如果能,∠ACD 与∠A 、∠B 有什么关系?问题2:任意一个△ABC 的一个外角∠ACD 与∠A 、∠B 的大小会有什么关系呢?由学生归纳得出: 推论1: 三角形的一个外角等于和它不相邻的两个内角的和.推论 2:三角形的一个外角大于任何一个和它不相邻的内角._______________________________________________________叫做推论。
导学案8 5.3.2 命题、定理、证明(1)学习目标:(1)了解命题的概念以及命题的构成(如果……那么……的形式).(2)知道什么是真命题和假命题.自学指导:认真阅读课本第20页—21页练习部分的内容,找出下列问题的答案:(1)命题的定义是什么?(2)命题有哪两部分组成?(3)什么是真命题和假命题?自学检测完成下列问题:(1)命题是。
练习1 判断下列语句是不是命题?(1)两点之间,线段最短;()(2)请画出两条互相平行的直线;()(3)过直线外一点作已知直线的垂线;()(4)如果两个角的和是90º,那么这两个角互余.()(2)命题是由和组成。
练习2 指出下列命题的题设和结论:(1)如果AB⊥CD,垂足是O,那么∠AOC=90°。
(2)两直线平行, 同位角相等.(3)如果两个角互补,那么它们是邻补角.(3)如果一个数能被2整除,那么它也能被4整除.练习3 下列语句是命题吗?如果是,请将它们改写成“如果……,那么……”的形式.(1)两条直线被第三条直线所截,同旁内角互补;(2)等式两边都加同一个数,结果仍是等式;(3)互为相反数的两个数相加得0;(4)同旁内角互补;(5)对顶角相等.(4)是真命题;是假命题。
练习4 判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.(1)邻补角是互补的角;(2)互补的角是邻补角;(3)两个锐角的和是锐角;(4)不等式的两边同乘以同一个负数,不等号的方向不变。
归纳小结:1.什么叫做命题?你能举出一些例子吗?2.命题是由哪两部分组成的?3.举例说明什么是真命题,什么是假命题.当堂检测:.下列语句中,不是命题的是:()A.两点之间线段最短B.对顶角相等C.不是对顶角的角不相等.D.连接A、B两点2.下列命题中,真命题是()A.两直线被第三条直线所截,内错角相等。
B.直线是平角.C.两直线平行,同旁内角互补.D.不相交的两条直线叫做平行线.3.命题“邻补角之和是平角”的题设是,结论是.4.对于同一平面内的三条直线a、b、c,给出下列五个论断:①a∥b;②b∥c;③a⊥b;④a∥c;⑤a⊥c.以其中两个论断为条件,一个论断为结论组成一个你认为正确的命题是5.把下列命题命题改写成“如果……,那么……的形式.(1)平面内垂直于同一条直线的两条直线平行.(2)角平分线上一点到角的两边距离相等.(3)同角的余角相等.。
11.5《几何证明举例》导学案(2)课本内容:P131—132 例3 课前准备:直尺 学习目标:1. 会证明下列定理:SSS HL2. 能根据上述定理证明有关的命题3、养成善于思考,善于探究,善于推理,言必有据的好习惯 一. 自主预习课本P131——132的内容,独立完成课后练习1、2后, 与小组同学交流(课前完成) 二. 回顾课本P28-31 P120—121思考下列问题: 1、S.S.S 定理的内容2、几何证明的过程的步骤三、课堂探究 例3四、巩固练习1、判定两个三角形全等方法, , , ,2、如图,Rt ABC 中,直角边 、 ,斜边3、如图,AB BE 于B ,DE BE 于E , 1)若 C A= E D ,AB=DE ,则 Δ ABC 与 Δ DEF (填“全等”或“不全等”) 根据 (用简写法)4:已知AC=FE,BC=DE,点A,D,B,F 在一条直线上,AD=BF, 求证:∠E=∠CABCA BCDEF5:如图,AB=AD,CB=CD. 求证: AC 平分∠BAD四、学习小结 五、达标检测1.下列条件不可以判定两个直角三角形全等的是 ( ) A .两条直角边对应相等 B .两个锐角对应相等 C .一条直角边和它所对的锐角对应相等 D .一个锐角和锐角所对的直角边对应相等2.△ABC 中,AB =AC,BD 、CE 是AC 、AB 边上的高,则BE 与CD 的大小关系为( )A .BE >CDB .BE =CDC .BE <CD D .不确定 3.如图,是一个三角形测平架,已知AB =AC,在BC 的中点D 挂一个重锤,自然下垂.调整架身,使点A 恰好在重锤线上,AD 和BC 的关系为______.4.正方形ABCD 中,AC 、BD 交于O,∠EOF =90o ,已知AE =3,CF =4,则EF 的长为___.5.“三月三,放风筝”,如图1—24—4是小明制作的风筝,他根据DE =DF,EH =FH,不用度量,就知道∠DEH =∠DFH,小明是通过全等三角形的识别得到的结论,请问小明用的识别方法是_____(用字母表示).6. 如图,两根长度为12米的绳子,一端系在旗杆上,另一端分别固定在地面两个木桩上,两个木桩离旗杆底部的距离相等吗?请说明你的理由。
五章相交线与平行线5.3.2命题、定理班级:姓名:学号:小组:[学习目标]1.什么是命题?什么是真命题?什么是假命题?2.给出一个命题,能够说出命题的题设和结论。
3.给你一个命题,能够判断是真命题还是假命题。
一、自主学习阅读P20-21课文,回答以下问题:1.的句子叫做命题。
命题由和两部分组成。
2.是真命题,是假命题。
3.下列语句中是命题的有()(1)两点之间,直线最短;(2)不许大声讲话;(3)连接A、B两点;(4)花儿在春天开放;(5)两直线平行,同位角相等。
A.1个B.2个C.3个D.4个4.命题“两直线平行,同位角相等”中,“两直线平行”是命题的部分,“同位角相等”是命题的部分。
二、合作探究1.指出下列命题的题设的结论。
(1)同旁内角互补,两直线平行。
(2)积为正数的两个有理数均为正数。
2.把下列命题改写成“如果……,那么……”的形式:(1)对顶角相等。
(2)垂直于同一条直线的两直线平行。
3.判断下列命题是真命题还是假命题。
如果是假命题,请举一个反例。
(1)邻补角是互补的角。
(2)互补的角是邻补角。
(3)两个锐角的和是锐角。
(4)如果ab=0,那么a=0。
三、课堂小结四、当堂检测1.下列句子中不是命题的是()A.两直线平行,同位角相等。
B.直线AB垂直于CD吗?C.若︱a︱=︱b︱,则a2=b2。
D.同角的补角相等。
2.下列命题中,真命题的是()A.相等的角是对顶角;B.和为180°的两个角叫做邻补角。
C.在同一平面内,垂直于同一条直线的两条直线平行;D.两条直线被第三条直线所截,同位角相等;3.“一个钝角与一个锐角的差是锐角”的题设是,结论是。
4.请将下列命题改写成“如果……那么……”的形式,指出题设和结论:(1)等角的余角相等;(2)在同一平面内两条不平行的直线必相交。
(3)互为相反数的两数绝对值相等。
5.指出下列命题的题设和结论,并判断下列命题是真命题还是假命题。
如果是假命题,请举一个反例。
第三章推理与证明§2数学证明基础自主预习1.演绎推理:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理,简言之,演绎推理是由一般到特殊的推理.2.“三段论”是演绎推理的一般模式,包括:①大前提------一般性道理;②小前提------研究对象的特殊情况;③结论------由大前提和小前提作出的判断3.“三段论”可以表示为:①大前提:M是P②小前提:S是M③结论:S是P用集合说明:即若集合M的所有元素都具有性质P,S是M的一个子集,那么S中所有元素都具有性质P.4.在数学中,证明一个命题,就是根据命题的条件和已知的定义、公理、定理,利用演绎推理的法则将命题推导出来练习:一切无理数都不能写成分数的形式,2是无理数,所以2不能写成分数的形式,其演绎推理的“三段论”形式为:__________________________________________.【答案】大前提:一切无理数都不能写成分数的形式小前提:2是无理数结论:所以2不能写成分数的形式1.下列说法正确的个数有( )①演绎推理是由一般到特殊的推理;②三段论推理的常用规则有假言推理、三段论推理、关系推理、归纳推理;③演绎推理得到的结论的正误与大前提、小前提有关. A.0个 B.1个 C.2个 D.3个 【答案】C【解析】由演绎推理的相关概念知①③正确.2.有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数” 结论显然是错误的,是因为 A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误【答案】C【解析】大前提与小前提都是正确的,但整数就是那些不是真分数的有理数,故不能推出结论来.3. 设,,(,0),a b c ∈-∞则111,,a b c b c a+++() A.都不大于2- B.都不小于2-C.至少有一个不大于2-D.至少有一个不小于2-【答案】D【解析】因为6111-≤+++++ac c b b a 所以111,,a b c b c a+++中至少有一个不大于2-.4.已知b a ,是不相等的正数,b a y b a x +=+=,2,则y x ,的大小关系是_________【答案】x y <【解析】2222()2a b y a b x +==+=>=5.已知ABC ∆中,45,30=∠=∠B A ,求证b a <.证明:B A B A ∠<∠∴=∠=∠,45,30b a <∴此问题的证明过程中蕴含的“三段论”中的大前提是. 【答案】b a B A <⇒∠<∠.【解析】三角形中”大边对大角,小边对小角”的一个结论.智能提升作业1.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ⊆/平面α,直线a ≠⊂平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,这是因为A.大前提错误B.小前提错误C.推理形式错误D.非以上错误 【答案】A【解析】大前提为“直线平行于平面,则平行于平面内所有直线”,而此结论是不成立的,应是平行于平面内无数条直线才对. 2.函数]2,0[)44sin(3)(ππ在+=x x f 内( ) A .只有最大值 B .只有最小值C .只有最大值或只有最小值D .既有最大值又有最小值 【答案】C【解析】正弦函数在闭区间内有最值,]2,0[)44sin(3)(ππ在+=x x f 内的最小值与最大值分别是0与223. 3.在ABC ∆中,F E ,分别为AC AB ,的中点,则有BC EF //,此问题的大前提为( ) A.三角形中的中位线平行于第三边 B. 三角形的中位线等于第三边的一半C.EF 为中位线D. BC EF // 【答案】A 【解析】此问题的大前提便是三角形中位线的性质结论,即三角形中的中位线平行于第三边. B 选项中的结论在这没用到,C 选项中EF 为中位线即转述F E ,分别为AC AB ,的中点,此为该题的小前提,而D 选项BC EF //是结论,故B 、C 、D 错,A 正确. 4. 函数xy 1=在点4=x 处的导数是 ( )A .81 B .81- C .161 D .161- 【答案】D 【解析】函数xy 1=的导函数是3121xy -=',当4=x 时,161-='y . 5.设b a b a b a +=+∈则,62,,22R 的最小值是( )A .22-B .335- C .-3 D .27-【答案】C 【解析】令)(sin 3,cos 6R b a ∈==ααα,则))(sin(3sin 3cos 6R b a ∈++=+=+ϕαϕααα,于是其最小值为3-.6. 在ABC ∆中,CD BC AC ,>是AB 边上的高,求证:BCD ACD ∠>∠.证明:在ABC ∆中,BC AC BC AC >>, , ①BD AD >∴ ② 于是BCD ACD ∠>∠ ③ 则在上面证明的过程中错误的序号是( )A.①B.②C.③D. ①③ 【答案】C【解析】①②都正确,而对于③中的结论BCD ACD ∠>∠,只有在同一三角形中才有大边对大角的结论成立.7.)1,2(),2,1(-== 012)2(1=⨯+-⨯=⋅∴ ⊥大前提:________________________; 小前提:________________________; 结论:________________________.【答案】⊥⇒=⋅0; 012)2(1=⨯+-⨯=⋅; ⊥.【解析】结合题目已知的证明过程,答案易知.8.已知:空间四边形ABCD 中,E ,F 分别为BC ,CD 的中点,则直线EF 与平面ABD 的关系是_______________________. 【答案】//EF 面ABD【解析】连接BD ,因为F E ,分别为CD BC ,的中点,所以 EF ∥BD.又因为⊄EF 面ABD ,⊂BD 面ABD ,故//EF 面ABD .9.△ABC 三边长,,a b c 的倒数成等差数列,求证:角B 090<.【证明】222cos 2a c b B ac +-=≥222ac b ac -=212b ac -=211()b bb ac a c -=-++ ,,a b c 为△ABC 三边,a c ∴+b >,1ba c∴-+0>cos B ∴0> ∴B 090<. 10. 若数列{}n a 的前n 项和为2)(1n n a a n s +=,求证:数列{}n a 为等差数列。
§1.1.1命题导学案【学习要求】1.了解命题的概念.2.会判断命题的真假,能够把命题化为“若p,则q”的形式.【学法指导】学习中要通过命题的一般形式把握命题,从命题的工具作用认识命题,不要过多地纠缠在判断一个语句是不是命题上,只要求能够从课本的例子中了解命题的概念就可以了.【知识要点】1.命题:一般地,我们把用表达的,可以的陈述句叫做命题.2.命题的真假:判断的命题叫做真命题,判断的命题叫做假命题.3.命题的形式:在数学中,“”是命题的常见形式,其中p叫做命题的,q叫做命题的. 【问题探究】探究点一命题的概念及分类问题1我们在初中已经学过许多数学命题,你能举出一些数学命题的例子吗?当时是怎么定义命题的?问题2观察下列语句的特点:(1)两个全等三角形的周长相等;(2)5能被2整除;(3)对顶角相等;(4)今天天气真好啊!(5)请把门关上!(6)2是质数吗?(7)若x=2,则x2=4;(8)3+2=6.回答:①以上有几个命题?②命题必须具备什么特征?问题3数学中的定义、公理、定理都是命题吗?问题4怎样判断一个命题是真命题还是假命题?例1判断下列语句是否是命题,若是,判断其真假,并说明理由.(1)求证3是无理数. (2)若x R,则x2+4x+4≥0.(3)你是高一的学生吗?(4)并非所有的人都喜欢苹果.(5)若xy是有理数,则x、y都是有理数. (6)60x+9>4.跟踪训练1判断下列语句中哪些是命题,是真命题还是假命题?(1)末位是0的整数能被5整除;(2)平行四边形的对角线相等且互相平分;(3)两直线平行,则斜率相等;(4)△ABC中,若∠A=∠B,则sin A=sin B;(5)余弦函数是周期函数吗?探究点二命题的结构问题在数学中,命题的常见形式为“若p,则q”,除此以外,还可以写成什么形式?例2把下列命题改写成“若p,则q”的形式:(1)各位数数字之和能被9整除的整数,可以被9整除;(2)斜率相等的两条直线平行;(3)能被6整除的数既能被3整除也能被2整除;(4)钝角的余弦值是负数.跟踪训练2指出下列命题的条件p与结论q,并判断命题的真假. (1)若整数a是偶数,则a能被2整除;(2)对角线相等的平行四边形是矩形;(3)相等的两个角正切值相等.【当堂检测】1.下列语句为命题的是()A.对角线相等的四边形B.同位角相等C.x≥2D.x2-2x-3<02.下列命题:①面积相等的三角形是全等三角形;②若xy=0,则|x|+|y|=0;③若a>b,则ac2>bc2;④矩形的对角线互相垂直. 其中假命题的个数是_______3.把下列命题写成“若p,则q”的形式.(1)ac>bc⇒a>b;(2)已知x、y为正整数,当y=x+1时,y=3,x=2;(3)当m>14时,mx2-x+1=0无实数根;(4)当abc=0时,a=0或b=0或c=0;(5)负数的立方是负数.【课堂小结】1.根据命题的意义,可以判断真假的陈述句是命题,命题的条件与结论之间属于因果关系,真命题可以给出证明,假命题只需举出一个反例即可.2.任何命题都是由条件和结论构成的,可以写成“若p,则q”的形式.含有大前提的命题写成“若p,则q”的形式,大前提应保持不变.§1.1.2四种命题~§1.1.3四种命题间的相互关系导学案【学习要求】1.了解四种命题的概念.2.认识四种命题的结论,会写出某命题的逆命题,否命题和逆否命题.3.理解四种命题的关系.4.会利用命题的等价性解决问题.【学法指导】在本节的学习中,不要去死记硬背形式化的定义与模式,而应多通过具体实例,发现四种命题形式间的逻辑关系,并能利用这种关系对命题真假作出判断,从而体会正难则反思想的应用.【知识要点】1.四种命题的概念一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做.其中一个命题叫做原命题,另一个叫做原命题的.也就是说,如果原命题为“若p,则q”,那么它的逆命题为.对于两个命题,其中一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做.如果把其中一个命题叫做原命题,那么另一个叫做原命题的.也就是说,如果原命题为“若p,则q”,那么它的否命题为.对于两个命题,其中一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做.如果把其中的一个命题叫做原命题,那么另一个叫做原命题的.也就是说,如果原命题为“若p,则q”,那么它的逆否命题为.2.四种命题的相互关系3.四种命题的真假性之间的关系(1)两个命题互为逆否命题,它们有的真假性.(2)两个命题为互逆命题或互否命题,它们的真假性.【问题探究】探究点一四种命题的概念问题1观察下列四个命题:(1)若两个角是对顶角,则它们相等;(2)若两个角相等,则它们是对顶角;(3)若两个角不是对顶角,则它们不相等;(4)若两个角不相等,则它们不是对顶角.命题(1)与命题(2)(3)(4)的条件和结论之间分别有什么关系?问题2若(1)为原命题,则(2)为(1)的________命题,(3)为(1)的________命题,(4)为(1)的________命题.问题3在四种命题中,原命题是固定的吗?例1把下列命题写成“如果p,则q”的形式,并写出它们的逆命题、否命题与逆否命题.(1)正数的平方根不等于0;(2)当x=2时,x2+x-6=0.跟踪训练1分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:(1)实数的平方是非负数;(2)若x、y都是奇数,则x+y是偶数.探究点二四种命题的关系问题1通过以上学习,你认为如果原命题为真,那么它的逆命题、否命题的真假性是怎样的?问题2原命题为真,它的逆否命题的真假性如何?问题3四种命题中,真命题的个数可能为多少?例2下列命题:①“若xy=1,则x、y互为倒数”的逆命题;②“四边相等的四边形是正方形”的否命题;③“梯形不是平行四边形”的逆否命题;④“若ac2>bc2,则a>b”的逆命题.其中的真命题是__________.跟踪训练2有下列四个命题:①“若x+y=0,则x、y互为相反数”的否命题;②“若a≥b,则a2≥b2”的逆否命题;③“若x≤3,则x2-x-6>0”的否命题;④“对顶角相等”的逆命题.其中真命题的个数是()A.0 B.1 C.2 D.3 探究点三等价命题的应用问题我们在直接证明某一个命题为真命题有困难时,可以通过证明它的逆否命题为真命题,来间接地证明原命题为真命题.你认为等价命题证明问题和反证法是不是一回事?例3证明:已知函数f(x)是(-∞,+∞)上的增函数,a、b R,若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0.跟踪训练3证明:若a2-4b2-2a+1≠0,则a≠2b+1.【当堂检测】1.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数2.命题“如果x2<1,则-1<x<1”的逆否命题是()A.如果x2≥1,则x≥1,或x≤-1 B.如果-1<x<1,则x2<1C.如果x>1或x<-1,则x2>1 D.如果x≥1或x≤-1,则x2≥13.命题“若平面向量a,b共线,则a,b方向相同”的逆否命题是_________,它是_____命题(填“真”或“假”). 4.给出以下命题:①“若x2+y2≠0,则x、y不全为零”的否命题;②“正多边形都相似”的逆命题;③“若m>0,则x2+x-m=0有实根”的逆否命题. 其中为真命题的是________.5.若命题p的逆命题是q,命题p的否命题是r,则q是r的().A.逆命题B.否命题C.逆否命题D.以上结论都不正确【课堂小结】1.写四种命题时,可以按下列步骤进行:(1)找出命题的条件p和结论q;(2)写出条件p的否定綈p和结论q的否定綈q;(3)按照四种命题的结构写出所有命题.2.判断命题的真假可以根据互为逆否的命题真假性相同来判断,这也是反证法的理论基础.§1.2.1充分条件与必要条件导学案【学习要求】1.结合具体实例,理解充分条件、必要条件的意义.2.会判断某些条件之间的关系.【学法指导】充分条件、必要条件是常用的逻辑用语,在数学中有广泛的应用,对于理解数学有很大的帮助.在此引入概念,对于这两个概念的准确理解需要一定的时间体会和思考,对于概念的运用和掌握依赖于后续的学习,不要急于求成,而应在后续的学习中经常借助这些概念表达、阐述和分析.【知识要点】充分条件与必要条件【问题探究】探究点一 充分条件、必要条件问题1 判断下列两个命题的真假,并思考命题(1)中条件和结论之间的关系: (1)若x >a 2+b 2,则x >2ab ; (2)若ab =0,则a =0.问题2 结合充分条件、必要条件的定义,说说你对充分条件与必要条件的理解.问题3 判断命题“若x =1,则 x 2-4x +3=0”中条件和结论的关系,并请你从集合的角度来解释. 问题4 结合以上分析,请你归纳判断充分条件,必要条件有哪些方法?例1 指出下列各组命题中,p 是q 的什么条件?(充分不必要条件,必要不充分条件,既是充分条件也是必要条件,既不充分也不必要条件)(1)p :(x -2)(x -3)=0,q :x =2; (2)p :数a 能被6整除,q :数a 能被3整除; (3)p :x >1,q :x 2>1; (4)p :x ,y 不全为0,q :x +y ≠0. 跟踪训练1 指出下列命题中,p 是q 的什么条件?(1)p :x 2=2x +1,q :x =2x +1; (2)p :a 2+b 2=0,q :a +b =0; (3)p :x =1或x =2,q :x -1=x -1; (4)p :sin α>sin β,q :α>β.探究点二 充分条件、必要条件与集合的关系问题 设集合A ={x |x 满足条件p },集合B ={x |x 满足条件q },若A ⊆B ,则p 是q 的什么条件?q 是p 的什么条件?例2 是否存在实数p ,使“4x +p <0”是“x 2-x -2>0”的充分条件?如果存在,求出p 的取值范围;否则,说明理由. 跟踪训练2 已知p :3x +m <0,q :x 2-2x -3>0,若p 是q 的一个充分不必要条件,求m 的取值范围.【当堂检测】1.a <0,b <0的一个必要条件为( )A .a +b <0B .a -b >0C .ab>1D .ab<-12.如果命题“若A 则B ”的否命题是真命题,而它的逆否命题是假命题,则A 是B 的______________条件 3.若“x <m ”是“(x -1)(x -2)>0”的充分不必要条件,求m 的取值范围.4.指出下列各组命题中,p 是q 的什么条件?(充分不必要条件,必要不充分条件,充分且必要条件,既不充分也不必要条件)(1)p :△ABC 中,b 2>a 2+c 2,q :△ABC 为钝角三角形; (2)p :△ABC 中有两个角相等,q :△ABC 是正三角形; (3)若a ,b ∈R ,p :a 2+b 2=0,q :a =b =0.【课堂小结】1.充分条件、必要条件的判断方法: (1)定义法:直接利用定义进行判断.(2)等价法:“p ⇔q ”表示p 等价于q ,要证p ⇒q ,只需证它的逆否命题綈q ⇒綈p 即可;同理要证p ⇐q ,只需证綈q ⇐綈p 即可.所以p ⇔q ,只需綈q ⇔綈p .(3)利用集合间的包含关系进行判断.2.根据充分条件、必要条件求参数的取值范围时,主要根据充分条件、必要条件与集合间的关系,将问题转化为相应的两个集合之间的包含关系,然后建立关于参数的不等式(组)进行求解.§1.2.2 充要条件导学案【学习要求】1.理解充要条件的意义.2.会判断、证明充要条件.【学法指导】在数学中,形如“p 是q 的充要条件”的命题是相当普遍的.要证明命题的条件是充要条件,就是既要证明原命题,又要证明原命题的逆命题.证明原命题即证明命题条件的充分性,证明原命题的逆命题,即证明命题条件的必要性.在本节的学习中注意体验数学的等价转化思想,增强逻辑思维能力.【知识要点】1.如果既有 ,又有 ,就记作p ⇔q ,p 是q 的充分必要条件,简称 条件. 2.概括地说,如果 ,那么p 与q 互为充要条件.【问题探究】探究点一 充要条件的判断问题1 已知p :整数a 是6的倍数,q :整数a 是2和3的倍数,那么p 是q 的什么条件?q 又是p 的什么条件?问题2 结合实例说说你对充要条件的理解. 例1 下列各题中,哪些p 是q 的充要条件?(1)p :b =0,q :函数f (x )=ax 2+bx +c 是偶函数; (2)p :x >0,y >0,q :xy >0; (3)p :a >b ,q :a +c >b +c .跟踪训练1 (1)a ,b 中至少有一个不为零的充要条件是( ) A .ab =0 B .ab >0 C .a 2+b 2=0 D .a 2+b 2>0(2)x>2的一个必要不充分条件是__________;x+y>0的一个充分不必要条件是_________________. (3)“函数y=x2-2x-a没有零点”的充要条件是________.探究点二充要条件的证明例2已知数列{a n}的前n项和S n=p n+q (p≠0且p≠1),求证数列{a n}为等比数列的充要条件为q=-1.跟踪训练2求证:方程x2+(2k-1)x+k2=0的两个根均大于1的充要条件是k<-2.跟踪训练3求关于x的方程ax2+x+1=0至少有一个负实根的充要条件.【当堂检测】1.“lg x>lg y”是“x>y”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.设{a n}是等比数列,则“a1<a2<a3”是“数列{a n}是递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件3.设φR∈,则“φ=0”是“f(x)=cos(x+φ)(x∈R)为偶函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.“m=-1”是“直线mx+(2m-1)y+1=0与直线3x+my+3=0垂直”的___________条件.5.已知直线l1:x+ay+6=0和l2:(a-2)x+3y+2a=0,则l1∥l2的充要条件是a=________.6.已知p、q是r的必要条件,s是r的充分条件,q是s的充分条件,那么(1)s是q的什么条件?(2)r是q的什么条件?(3)p是q的什么条件?【课堂小结】1.充要条件的判断有三种方法:定义法、等价命题法、集合法.2.充要条件的证明与探求(1)充要条件的证明分充分性和必要性的证明.在证明时要注意两种叙述方式的区别:①p是q的充要条件,则由p⇒q证的是充分性,由q⇒p证的是必要性;②p的充要条件是q,则p⇒q证的是必要性,由q⇒p证的是充分性.(2)探求充要条件,可先求出必要条件,再证充分性;如果能保证每一步的变形转化过程都可逆,也可以直接求出充要条件.§1.3.1且(and)~1.3.2或(or) 导学案【学习要求】1.了解联结词“且”“或”的含义.2.会用联结词“且”“或”联结或改写某些数学命题,并判断新命题的真假.【学法指导】用集合的“交”、“并”之间的关系理解由“且”、“或”构成的命题,建立命题和集合运算之间的关系,体会逻辑用语在表述中的作用,注意逻辑联结词“或”与自然语言中的“或者”的区别与联系,以便准确地表达相关的数学知识. 【知识要点】1.“p且q”就是用联结词“”把命题p和命题q联结起来,得到的新命题,记作.2.“p或q”就是用联结词“”把命题p和命题q联结起来,得到的新命题,记作.3.真值表【问题探究】探究点一p∧q命题问题1观察三个命题:①5是10的约数;②5是15的约数;③5是10的约数且是15的约数,它们之间有什么关系?问题2分析问题1中三个命题的真假,并归纳p∧q型命题的真假和命题p,q真假的关系.例1将下列命题用“且”联结成新命题,并判断它们的真假:(1)p:平行四边形的对角线互相平分,q:平行四边形的对角线相等;(2)p:菱形的对角线互相垂直,q:菱形的对角线互相平分;(3)p:35是15的倍数,q:35是7的倍数.跟踪训练1指出下列命题的构成形式及构成它的命题p,q,并判断它们的真假.(1)(n-1)·n·(n+1) (n N∈*)既能被2整除,也能被3整除;(2)∅是{∅}的元素,也是{∅}的真子集.探究点二p∨q命题问题1观察三个命题:①3>2;②3=2;③3≥2,它们之间有什么关系?问题2分析问题1中三个命题的真假,并归纳p∨q型命题的真假与p、q真假的关系.例2分别指出下列命题的形式及命题的真假:(1)相似三角形的面积相等或对应角相等;(2)集合A是A∩B的子集或是A∪B的子集;(3)周长相等的两个三角形全等或面积相等的两个三角形全等.跟踪训练2对下列各组命题,用逻辑联结词“或”构造新命题,并判断它们的真假.(1)p:正数的平方大于0,q:负数的平方大于0;(2)p:3>4,q:3<4;(3)p:π是整数,q:π是分数.探究点三p∨q与p∧q的应用问题如果p∧q为真命题,那么p∨q一定是真命题吗?反之,如果p∨q为真命题,那么p∧q一定是真命题吗?例3设有两个命题.命题p:不等式x2-(a+1)x+1≤0的解集是∅;命题q:函数f(x)=(a+1)x在定义域内是增函数.如果p∧q为假命题,p∨q为真命题,求a的取值范围.跟踪训练3本例中其它条件不变,把“p∧q为假命题,p∨q为真命题”改为“p∨q为真命题”,求a的取值范围.【当堂检测】1.“p∧q是真命题”是“p∨q是真命题”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.给出下列命题:①2>1或1>3;②方程x2-2x-4=0的判别式大于或等于0;③25是6或5的倍数;④集合A∩B是A的子集,且是A∪B的子集.其中真命题的个数为()A.1 B.2 C.3 D.43.“p是假命题”是“p或q为假命题”的___________条件.4.p:1x-3<0,q:x2-4x-5<0,若p且q为假命题,则x的取值范围是_______________________.【课堂小结】1.正确理解逻辑联结词是解题的关键,日常用语中的“或”是两个中任选一个,不能都选,而逻辑联结词中的“或”两个中至少选一个.2.一个复合命题,从字面上看不一定是“或”、“且”字样,这样需要我们掌握一些词语、符号或式子与逻辑联结词的关系,如“或者”,“x=±3”、“≤”的含义为“或”;“并且”,“綊”的含义为“且”.§1.3.3非(not) 导学案【学习要求】1.理解逻辑联结词“非”的含义,能写出简单命题的“綈p”命题.2.逻辑联结词“或”“且”“非”的初步应用.【学法指导】从逻辑联结词“非”的含义理解命题的否定(非命题),也可以利用补集来理解命题的否定,培养批判思维能力.【知识要点】1.命题的否定一般地,对一个命题p,就得到一个新命题,记作綈p,读作“”或“”.2.命题綈p的真假若p是真命题,则綈p必是;若p是假命题,则綈p必是.【问题探究】探究点一綈p命题问题1观察下列两组命题,看它们之间有什么关系?(1)p:5是25的算术平方根;q:5不是25的算术平方根.(2)p:y=tan x是偶函数;q:y=tan x不是偶函数.问题2逻辑联结词“非”的含义是什么?例1写出下列命题的否定,并判断其真假.(1)p:3是有理数;(2)p:5不是75的约数;(3)p:7<8;(4)p:5+6≠11;(5)p:空集是任何非空集合的真子集.跟踪训练1写出下列命题的否定形式.(1)面积相等的三角形都是全等三角形;(2)若m2+n2+a2+b2=0,则实数m、n、a、b全为零;(3)若xy=0,则x=0或y=0.探究点二命题的否定与否命题问题1已知命题p:平行四边形的对角线相等,分别写出命题p的否命题和命题p的否定,并加以辨析. 问题2填写下表中常见词语的否定形式:例2写出下列各命题的否定及其否命题,并判断它们的真假.(1)若x、y都是奇数,则x+y是偶数;(2)若xy=0,则x=0或y=0.跟踪训练2写出下列各命题的非(否定).(1)p:100既能被4整除,又能被5整除;(2)q:三条直线两两相交;(3)r:一元二次方程至多有两个解;(4)s:2<x≤3.探究点三p∨q、p∧q、綈p命题的综合应用问题对涉及命题的真假且含参数的问题,参数范围怎样确定?例3设命题p:函数f(x)=log a|x|在(0,+∞)上单调递增,命题q:关于x的方程x2+2x+log a32=0的解集只有一个子集.若“p或q”为真,“綈p或綈q”也为真,求实数a的取值范围.跟踪训练3已知a>1,命题p:a(x-2)+2>0,命题q:(x-1)2>a(x-2)+1.若p∨綈q为真,綈q为假,求实数x的取值范围.【当堂检测】1.已知命题p:3≥3,q:3>4,则下列判断正确的是()A.p∨q为真,p∧q为真,綈p为假B.p∨q为真,p∧q为假,綈p为真C.p∨q为假,p∧q为假,綈p为假D.p∨q为真,p∧q为假,綈p为假2.已知命题p:所有有理数都是实数,命题q:正数的对数都是负数,则下列命题为真命题的是() A.(綈p)∨q B.p∧q C.(綈p)∧(綈q) D.(綈p)∨(綈q)3.已知命题p1:函数y=2x-2-x在R上为增函数.p2:函数y=2x+2-x在R上为减函数.则在命题q1:p1∨p2,q2:p1∧p2,q3:(綈p1)∨p2和q4:p1∧(綈p2)中,真命题是()A.q1,q3B.q2,q3C.q1,q4D.q2,q44.若命题p:2n-1是奇数,n Z∈,q:2n+1是偶数,n Z∈.则p,q,綈p,綈q,p∧綈p,p∨綈p,p∧綈q,p∨綈q,綈p∧綈q,綈p∨綈q中真命题的个数是________.【课堂小结】1.若命题p为真,则“綈p”为假;若p为假,则“綈p”为真,类比集合知识,“綈p”就相当于集合p在全集U 中的补集∁U p.因此(綈p)∧p为假,(綈p)∨p为真.2.命题的否定只否定结论,否命题既否定结论又否定条件,要注意区别.§1.4.1全称量词~§1.4.2存在量词导学案【学习要求】1.通过具体实例理解全称量词和存在量词的含义.2.会判断全称命题和特称命题的真假.【学法指导】通过实例体会全称命题、特称命题的形式及含义,运用类比的思想学习两个概念,找出它们的异同,体会数学、文字语言与符号语言的统一,加深对命题与量词描述客观事实和数学问题的认识.【知识要点】1.全称量词定义:短语“”“”在逻辑中通常叫做全称量词,并用符号“”表示.全称命题:含有的命题,叫做全称命题.形式:.读作:“对任意x属于M,有p(x)成立”.2.存在量词定义:短语“”“”在逻辑中通常叫做存在量词,并用符号“”表示.特称命题:含有的命题,叫做特称命题.形式:.读作:“存在一个x0属于M,使p(x0)成立”.【问题探究】探究点一全称量词与全称命题问题1下列语句是命题吗?(1)与(3),(2)与(4)之间有什么关系?(1)x>3;(2)2x+1是整数;(3)对所有的x R∈,x>3;(4)对任意一个x Z∈,2x+1是整数.问题2怎样判定一个全称命题的真假?例1判断下列全称命题的真假:(1)所有的素数是奇数;(2)∀x R∈,x2+1≥1;(3)对每一个无理数x,x2也是无理数.跟踪训练1试判断下列全称命题的真假:(1)∀x R∈,x2+2>0;(2)∀x N∈,x4≥1.探究点二存在量词与特称命题问题1下列语句是命题吗?(1)与(3),(2)与(4)之间有什么关系?(1)2x+1=3;(2)x能被2和3整除;(3)存在一个x0R∈,使2x0+1=3;(4)至少有一个x0Z∈,x0能被2和3整除.问题2怎样判断一个特称命题的真假?例2判断下列特称命题的真假:(1)有一个实数x0,使x20+2x0+3=0;(2)存在两个相交平面垂直于同一条直线;(3)有些整数只有两个正因数.跟踪训练2判断下列命题的真假:(1)∂x0Z∈,x30<1;(2)存在一个四边形不是平行四边形;(3)有一个实数α,tan α无意义.探究点三全称命题、特称命题的应用问题不等式有解和不等式恒成立有何区别?例3(1)已知关于x的不等式x2+(2a+1)x+a2+2≤0的解集非空,求实数a的取值范围;(2)令p(x):ax2+2x+1>0,若对∀x R∈,p(x)是真命题,求实数a的取值范围.跟踪训练3(1)对于任意实数x,不等式sin x+cos x>m恒成立,求实数m的取值范围;(2)存在实数x,不等式sin x+cos x>m有解,求实数m的取值范围.【当堂检测】1.下列命题中特称命题的个数是()①有些自然数是偶数;②正方形是菱形;③能被6整除的数也能被3整除;④对于任意x∈R,总有|sin x|≤1. A.0 B.1 C.2 D.32.下列命题中的假命题是()A.∂x R∈,lg x=0 B.∂x R∈,tan x=1 C.∀x R∈,x3>0 D.∀x R∈,2x>0 3.用量词符号“∀”“∂”表述下列命题:(1)凸n边形的外角和等于2π.(2)有一个有理数x0满足x20=3.(3)对任意角α,都有sin2α+cos2α=1.【课堂小结】1.判断命题是全称命题还是特称命题,主要是看命题中是否含有全称量词和存在量词,有些全称命题虽然不含全称量词,可以根据命题涉及的意义去判断.2.要确定一个全称命题是真命题,需保证该命题对所有的元素都成立;若能举出一个反例说明命题不成立,则该全称命题是假命题.3.要确定一个特称命题是真命题,举出一个例子说明该命题成立即可;若经过逻辑推理得到命题对所有的元素都不成立,则该特称命题是假命题.§1.4.3含有一个量词的命题的否定导学案【学习要求】1.能正确地对含有一个量词的命题进行否定.2.理解全称命题与特称命题之间的关系.【学法指导】要正确地对含有一个量词的全称命题或特称命题进行否定,我们一方面要充分理解量词的含义,另一方面应充分利用原先的命题与它的否定在形式上的联系.通过探究观察,总结规律,容易得到全称命题的否定是特称命题,以及特称命题的否定是全称命题的结论. 【知识要点】1.全称命题的否定:全称命题p:∀x∈M,p(x),它的否定綈p:2.特称命题的否定:特称命题p:∂x0∈M,p(x0),它的否定綈p:3.全称命题的否定是命题.特定命题的否定是命题.【问题探究】探究点一全称命题的否定问题1我们在上一节中学习过逻辑联结词“非”.对给定的命题p,如何得到命题p的否定(或綈p),它们的真假性之间有何联系?问题2你能尝试写出下面含有一个量词的命题的否定吗?(1)所有矩形都是平行四边形;(2)每一个素数都是奇数;(3)∀x R∈,x2-2x+1≥0.这些命题和它们的否定在形式上有什么变化?例1写出下列全称命题的否定:(1)p:所有能被3整除的整数都是奇数;(2)p:每一个四边形的四个顶点共圆;(3)p:对任意x Z∈,x2的个位数字不等于3.跟踪训练1写出下列命题的否定:(1)三个给定产品都是次品;(2)数列{1,2,3,4,5}中的每一项都是偶数;(3)∀a,b R∈,方程ax=b都有惟一解;(4)可以被5整除的整数,末位是0.探究点二特称命题的否定问题1你能写出下列特称命题的否定吗?(1)有些实数的绝对值是正数;(2)某些平行四边形是菱形;(3)∂x0R∈,x20+1<0.这些命题和它们的否定在形式上有什么变化?例2写出下列特称命题的否定:(1)p:∂x0R∈,x20+2x0+2≤0;(2)p:有的三角形是等边三角形;(3)p:有一个素数含三个正因数.跟踪训练2写出下列特称命题的否定,并判断其真假.(1)p:∂x0>1,使x20-2x0-3=0;(2)p:若a n=-2n+10,则∂n∈N,使S n<0.探究点三特称命题、全称命题的综合应用例3已知函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]上至少存在一个实数c,使得f(c)>0.求实数p的取值范围.跟踪训练3已知下列三个方程:(1)x2+4ax-4a+3=0;(2)x2+(a-1)x+a2=0;(3)x2+2ax-2a=0.若至少有一个方程有实数解,求实数a的取值范围.【当堂检测】1.命题:对任意x R∈,x3-x2+1≤0的否定是()A.不存在x0R∈,x30-x20+1≤0B.存在x0R∈,x30-x20+1≥0C.存在x0R∈,x30-x20+1>0 D.对任意x R∈,x3-x2+1>02.对下列命题的否定说法错误的是()A.p:能被2整除的数是偶数;綈p:存在一个能被2整除的数不是偶数B.p:有些矩形是正方形;綈p:所有的矩形都不是正方形C.p:有的三角形为正三角形;綈p:所有的三角形不都是正三角形D.p:∂x R∈,x2+x+2≤0;綈p:∀x R∈,x2+x+2>03.命题“对任何x R∈,|x-2|+|x-4|>3”的否定是____________________________4.命题“零向量与任意向量共线”的否定为______________________【课堂小结】。
第三章 推理与证明 §3综合法与分析法基础自主预习1.综合法:从命题的条件出发,利用定义、公理、定理及运算法则,通过演绎推理,一步一步地接近证明的结论,直到完成命题的证明,这样的思维方法称为综合法。
若P 表明命题的条件,已有的定义、定理、公理等,Q 表示所要证明的结论,则综合法可以用以下的框图表示:它是从“已知”看“可知”,逐步推向“未知”,由因导果,其逐步推理实际上是寻找它的必要条件。
2.分析法:从求证的结论出发,一步一步地探索保证前个结论成立的充分条件。
直到归结为这个命题的条件,或者归结为定义、公理、定理等,这样的思维方法称为分析法。
若用Q 表示要证明的结论,则分析法可以用以下的框图表示:它是综合法的逆过程,即从“未知”看“需知”。
执果索因,逐步靠拢“已知”。
3.综合法与分析法的区别与联系:①综合法证明是“由因索果”,分析法证明是“执果索因”;②分析法便于寻找解题思路,而综合法便于叙述;③分析法的缺点是表述易错(注意分析法独特的表述!)综合法缺点是探路艰难,易生枝节;④对于难题,常把二者交互使用,互补优缺,形成了分析综合法.练习:设R b a ∈,,且b a >,则( )A.22b a >B.1<a bC.0)lg(>-b aD.ba⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛2121 【答案】D练习: ) A.综合法 B.分析法 C.间接证法 D.合情推理法 【答案】Btan(A分析法由要证明的结论Q思考,一步步知能达标训练1.命题“如果数列}{n a 的前n 项和n n S n -=2,那么数列}{n a 一定是等差数列”是否成立( )A.不成立B.成立C.不能判定 D 能判定. 【答案】B【解析】当2≥n 时,221-=-=-n S S a n n n ,当1=n 时,011211=-==S a 也满足上式,故)1(21≥=--n a a n n ,所以}{n a 是等差数列.2.(2010—2011学年度上学期中山市镇区高中高三联考文,3)已知a R ∈,则“2a >”是“22a a >”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【解析】a a a 222>⇒> ,但222>⇒>a a a 或0<a .∴“2a >”是“22a a >”的充分不必要条件.3.已知函数xxx f +-=11lg )(,若b a f =)(,则)(a f -等于( ) A.a B.b - C.b 1 D. b1-【答案】B【解析】易证xxx f +-=11lg)(为奇函数,.)()(b a f a f -=-=-∴ 4.已知平面αβ,和直线m ,给出条件:①m α∥;②m α⊥;③m α⊂;④αβ⊥;⑤αβ∥.(1)当满足条件_____时,有m β∥,(2)当满足条件_____时,有m β⊥.(填所选条件的序号) 【答案】③⑤,②⑤ 【解析】对于(1),是据面面平行来证线面平行而得出的;对于(2),是据“一条直线垂直于两个平行平面中的一个,则其与另一个平面也垂直”这个结论来得的. 5.已知a b c +∈R ,,,且1a b c ++=,求证:.8)11)(11)(11(≥---cb a 证明过程如下:∵a b c +∈R ,,,且1a b c ++=,110b c a a +-=>∴,110a c b b +-=>,110a bc c+-=>,.)11)(11)(11(ac b c b a +=---8a c a b b c ++=·, 当且仅当a b c ==时取等号,∴不等式成立.这种证法是_________.(综合法、分析法或反证法) 【答案】综合法【解析】据综合法的证明思路便可得出.智能提升作业1.设a b c d ,,,,m n +∈R ,,P =Q = ) A.P Q ≥ B.P Q ≤ C.P Q > D.P Q < 【答案】B 【解析】cd ab abcd cd ab nadm m ncb cd ab n d m b nc ma Q +=++≥+++=+⋅+=22.若π04αβ<<<,sin cos a αα+=,sin cos b ββ+=,则( ) A.a b < B.a b > C.1ab < D.2ab > 【答案】A【解析】)4sin(2cos sin ),4sin(2cos sin πβββπααα+=+=+=+=b a且结合已知,有2444ππβπαπ<+<+<,故有a b <.3.已知函数1()2xf x ⎛⎫= ⎪⎝⎭,a b +∈R ,,2a b A f +⎛⎫= ⎪⎝⎭,B f =,ab C f a b ⎛⎫= ⎪+⎝⎭,则A B C ,,的大小关系( )A.A B C ≤≤ B.A C B ≤≤ C.B C A ≤≤ D.C B A ≤≤【答案】A【解析】据不等式的性质知b a ab ab b a +≥≥+2,又1()2xf x ⎛⎫= ⎪⎝⎭为单调递减函数,故有 A B C ≤≤.4.在ABC ∆中,有:①;BC AC AB =- ②;0=++CA BC AB ③若0)()(=-⋅+AC AB AC AB ,则A B C ∆为等腰三角形;④若,0>⋅AC AB 则ABC ∆为锐角三角形.上述说法正确的是( )A. ①②B. ①④C. ②③D. ②③④ 【答案】C【解析】=-,故①错;若,0>⋅则只能说明A 为锐角,ABC ∆不一定为锐角三角形,因为其它角可能不是锐角,故④错;据向量的运算规律与性质易知②③正确. 5.012<-+ax ax 恒成立,则a 的取值范围是( )A.0≤aB.4-<aC.04<<-aD. 04≤<-a 【答案】D【解析】需讨论:当0=a 时,有01<-,显然成立;当0≠a 时,只能0<a ,且042<+=∆a a 才成立,综合知04≤<-a .6.(昆明一中2011届高三年级第二次月考理,4)已知向量且)1,(sin ),2,(cos αα=-=∥4tan(πα-则)等( )A .3B .-3C .31D .-31【答案】B【解析】3tan 11tan )4tan(,21tan 0sin 21cos //-=+-=--=⇒=+⋅⇒ααπαααα. 7.三次函数3()1f x ax =-在),(+∞-∞内是减函数,则a 的取值范围是_______. 【答案】0a <【解析】因为3()1f x ax =-是减函数,只能3ax 是递减的,而3x y =是一个递增函数,故只能是0a <才行.8.若抛物线2y mx =与椭圆22195x y +=有一个共同的焦点,则m =_______.【答案】8±【解析】因为椭圆22195x y +=的焦点是)0,2(),0,2(-,故抛物线2y mx =中应有24±=m ,故8±=m .9.设函数()f x 对任意∈R ,x y ,都有()()()f x y f x f y +=+,且0x >时,()0f x <. (1)证明()f x 为奇函数;(2)证明()f x 在R 上为减函数.【证明】(1),,R y x ∈ ()()()f x y f x f y +=+,∴令0x y ==,(0)(0)(0)f f f =+,(0)0f =∴,令y x =-,代入()()()f x y f x f y +=+,得(0)()()f f x f x =+-, 而(0)0f =,()()()f x f x x -=-∈R ∴, ()f x ∴是奇函数;(2)任取12x x ∈R ,,且12x x <, 则210x x x ∆=->,21()()0f x f x x ∆=-<∴.又2121()()()f x x f x f x -=+-,()f x ∵为奇函数,11()()f x f x -=-∴,21()()()0f x f x f x ∆=-<∴,即21()()0f x f x -<, ()f x ∴在R 上是减函数.10.已知:a 2+b 2=1,x 2+y 2=1,求证:ax +by ≤1. 证法1:用综合法.∵2ax ≤a 2+x 2,2by ≤b 2+y 2, ∴2(ax +by )≤a 2+b 2+x 2+y 2. 又a 2+b 2=1,x 2+y 2=1, ∴2(ax +by )≤2, ∴ax +by ≤1. 证法2:用分析法.要证ax +by ≤1成立,只要证1-(ax +by )≥0. 只要证2-2ax -2by ≥0. 又∵a 2+b 2=1,x 2+y 2=1,∴只要证:a 2+b 2+x 2+y 2-2ax -2by ≥0. 即证:(a -x )2+(b -y )2≥0, 上式显然成立. ∴ax +by ≤1成立.教学参考本节主要学习证明问题的两种直接证法:综合法与分析法,从而为同学们熟练证明数学问题提供方向,所以同学们必须熟练掌握这两种证题方式,以能灵活运用. 一、教学内容分析通过本节内容的学习,结合已学过的数学实例,正确认识综合法和分析法在证明过程中的重要作用,针对具体问题选择合适的证明方法,养成勤于观察、善于思考的数学品质,实现自己数学学习的又一次飞跃. 二、教学重点难点教学重点:结合已学过的数学实例,了解直接证明的两种基本方法:综合法与分析法,以及其各自的思考过程、特点.教学难点:根据问题的特点,对照综合法与分析法各自的思考过程、特点,选择适当的方法来证明,或将两种不同的方法结合起来使用. 三、教学建议学生们对综合法与分析法在平时的证明问题中并不陌生,因为经常会用到它们来证明问题,但他们对这些证明方法的基本内涵和特点不一定非常清楚,为了帮助同学们理清证题思路,现归纳如下:分析法是从求证的结论出发,一步一步地探索保证前个结论成立的充分条件,此法解题 方向较为明确,利于寻找解题思路;综合法是从命题的条件出发,利用定义、公理、定理及运算法则,通过演绎推理,一步一步地接近证明的结论,直到完成命题的证明,综合法形式简捷,条理清晰,宜于表述.因此,在实际解题时,常常把分析法和综合法结合起来运用,先以分析法为主寻求解题思路,再用综合法有条理地表述解题过程.为了让学生们认识和理解两种方法的相似之处和内在联系以及用它们来熟练解决问题的方式,必须充分动用学生已有的数学活动和生活经验,在此基础上进行概括和总结,在理解证明方法的基础上,对证明的规范要有严格的要求,要重视证明的表述.作为重要的思维方法,综合法和分析法也是两种重要的探索方法,在教学中要注意解题思路的探索过程,要重视方法的运用,并相信学生会在今后的运用过程中,会深化对方法的认识,并提高能力.。
命题、定理、证明
学习目标:
(1)了解命题的概念以及命题的构成(如果……那么……的形式).(2)知道什么是真命题和假命题.
(3) 知道什么是定理和证明。
学习重点:对命题结构的认识
一、学法指导:
1、会判定一个语句是否为命题,注意两条:
(1)命题必须是一个完整的句子,通常是陈述句(包括肯定句和否定句);
(2)必须对某件事情作出肯定或者否定的判断。
2、要能找出命题的条件和结论,一般情况下,命题也可写成“如果……,那么……”或“若……,则……”等形式。
其中“如果”或“若”引出的部分是条件,有时这些字样前面还有前提条件。
这个前提条件也属于条件,“那么”或“则”引出的部分是结论。
对于条件和结论不明显的命题,要经过分析,先把它改写成“如果……,那么……”的形式,然后再确定条件和结论。
3、要会判定一个命题是真命题还是假命题。
真命题需要依据公理、定理等推理证明,假命题需要举出反例加以说明。
4、公理是人们在长期的实践中总结出来的公认的正确的命题,是判定其他命题真假的根据;定理是经过推理论证为真命题的命题。
1.判断下列语句是不是命题?
(1)两点之间,线段最短;()
(2)请画出两条互相平行的直线;()
(3)过直线外一点作已知直线的垂线;()
(4)如果两个角的和是90º,那么这两个角互余.()
2.下列语句是命题吗?如果是,请将它们改写成“如果……,那么……”的形式.
(1)两条直线被第三条直线所截,同旁内角互补;
(2)等式两边都加同一个数,结果仍是等式;
(3)互为相反数的两个数相加得0;
(4)同旁内角互补;
(5)对顶角相等.
3.下列哪些命题是正确的,哪些命题是错误的?
(1)两条直线被第三条直线所截,同旁内角互补;
(2)等式两边都加同一个数,结果仍是等式;
(3)互为相反数的两个数相加得0;
(4)同旁内角互补;
(5)对顶角相等.。