勘查地球化学新进展
- 格式:pdf
- 大小:70.85 KB
- 文档页数:1
地球化学技术在勘查中的应用与前景展望地球化学技术是一种综合利用地球化学、地质学、环境科学等相关学科知识和方法,通过对地球表层物质的成分、结构、性质及其变化规律的研究,来揭示地球内部构造、矿产资源分布、环境污染等信息的一门技术。
地球化学技术在勘查中的应用已经取得了显著的成果,并且具有广阔的前景。
首先,地球化学技术在矿产资源勘查中发挥着重要作用。
通过分析矿石、岩石和土壤样品中的元素含量和组成,可以确定矿床的类型、规模和储量等关键信息。
例如,通过对矿石中金属元素的分析,可以判断出金矿床的存在与否,并进一步评估其开采潜力。
此外,地球化学技术还可以帮助确定矿床的成因和演化过程,为矿床的勘探和开发提供科学依据。
其次,地球化学技术在环境监测和污染治理中具有重要意义。
随着工业化进程的加快和人类活动的增加,环境污染问题日益突出。
地球化学技术可以通过分析土壤、水体和大气中的有害物质含量,评估环境污染的程度和影响范围。
同时,地球化学技术还可以追踪污染物的来源和迁移路径,为环境治理提供科学依据。
例如,通过对土壤中重金属元素的分析,可以确定污染源,并制定相应的治理措施。
此外,地球化学技术在水资源勘查和管理中也发挥着重要作用。
水是人类生活和经济发展的基础资源,而地球化学技术可以通过分析水体中的溶解物质、微量元素和同位素组成,判断水源的类型、水质的优劣以及水资源的可持续利用性。
例如,通过对地下水中同位素的分析,可以判断水源的补给方式和水体的循环过程,为合理开发和管理水资源提供科学依据。
未来,随着地球化学技术的不断发展和创新,其在勘查中的应用前景将更加广阔。
一方面,随着分析技术的提高和仪器设备的更新,地球化学技术可以更加精确地分析样品中的元素含量和组成,提供更可靠的勘查数据。
另一方面,随着数据处理和模型建立技术的进步,地球化学技术可以更好地揭示地球内部构造、矿产资源分布和环境演变规律,为勘查工作提供更全面的信息。
总之,地球化学技术在勘查中的应用已经取得了显著的成果,并且具有广阔的前景。
矿产资源勘查中的化学分析与地球化学在矿产资源勘查中,化学分析与地球化学起着至关重要的作用。
化学分析通过对矿石样品中元素、成分的测定和分析,可以为勘查人员提供宝贵的信息,为矿产资源的合理开发提供科学依据。
而地球化学则通过研究矿石样品中元素的分布、浓度等地球化学特征,揭示矿床的形成和演化规律,为勘查人员指导勘查钻探和选矿工作。
本文将从化学分析和地球化学两个方面探讨在矿产资源勘查中的应用。
一、化学分析在矿产资源勘查中的应用化学分析是矿产资源勘查的重要环节之一。
通过对样品中的元素、成分进行测定和分析,可以帮助勘查人员了解矿石的组成、含量和性质,为后续的勘查工作提供科学依据。
1. 岩石矿物成分的分析岩石矿物成分的分析是矿产资源勘查的首要任务。
通过采集样品进行化学分析,可以确定岩石中各种矿物的含量和种类,进而判断该岩石属于哪一类矿床类型。
例如,通过对铜矿石样品的化学分析,可以确定其中铜的含量,评估矿石的成矿价值。
2. 元素含量的测定元素含量的测定是化学分析的核心内容之一。
通过测定样品中元素的含量,可以了解矿石中各种元素的丰度和分布规律。
这对于评估矿石的品位、选矿的合理性以及矿床的成因解析等具有重要意义。
例如,对一些含金矿石进行化学分析,可以确定其中金的含量,为后续的选矿工作提供依据。
3. 有机物和无机物的鉴定在矿产勘查中,不仅需要对矿石样品进行元素和成分的分析,还需要对相关的有机物和无机物进行鉴定。
有机物和无机物的鉴定可以帮助勘查人员了解矿石的某些特性,比如有机质含量、有机质类型等,为矿产资源的评估和开发提供依据。
二、地球化学在矿产资源勘查中的应用地球化学研究矿石样品中元素的地球化学特征,可以揭示矿床的形成和演化规律,为勘查人员提供有价值的信息,指导勘查钻探工作和选矿过程。
1. 元素分布的研究通过对矿石样品中元素分布情况的研究,可以揭示矿床的成因和矿石形成过程。
地球化学研究可以帮助勘查人员了解矿床附近地质环境的演化过程,为确定勘查区域和勘查深度提供科学依据。
稳定同位素地球化学研究进展随着科学技术的进步,稳定同位素地球化学研究日益受到重视。
稳定同位素是某种元素的同位素,其原子核中的中子和质子的数量均相同,但质子数不确定。
与放射性同位素不同,稳定同位素不会衰变,因此能够在地球化学和生物地球化学等领域中广泛应用。
本文将从研究意义、研究方法、应用领域等方面进行探讨。
一、研究意义稳定同位素研究在地球科学、环境科学、生物地球化学等学科领域中有着重要的作用。
其中,稳定同位素地球化学的主要研究内容是掌握地球化学过程和环境演化的规律及机制。
例如,在构造地质学中,稳定同位素可以用于推测岩浆源区的成分和动力学过程;在古环境学中,稳定同位素可以用于重现气候变化和环境演化过程;在地球化学污染评价中,稳定同位素可以用于追踪污染物来源和迁移路径。
另外,在生物地球化学中,稳定同位素也发挥着重要的作用。
例如,在动物和植物的生物地球化学循环中,利用稳定同位素可以探究其食物链和生长状态;在微生物地球化学中,通过稳定同位素的应用,可以研究氮、硫、铁、碳等元素的循环和代谢规律。
综上,稳定同位素地球化学研究的意义在于提高对地球化学过程和环境演变规律的认识,为生态保护和资源管理提供科学依据。
二、研究方法稳定同位素研究主要依靠仪器分析技术和数据统计方法。
目前,应用最广泛的稳定同位素测量仪器为质谱仪,在气体、液体和固体样品的分析中均有广泛应用。
根据不同的研究对象和分析场合,稳定同位素分析方法有以下几种:1. 气体-稳定同位素分析法:适用于大气、水体、土壤及生物样品中的小分子有机化合物、气态元素、气体分子等的同位素分析。
2. 液体-稳定同位素分析法:适用于水体、沉积物、岩石、矿物等大分子有机化合物和元素化合物的同位素分析。
3. 固体-稳定同位素分析法:适用于岩石、矿物、古生物化石等固体样品中的元素同位素分析。
另外,数据统计方法也是稳定同位素研究的重要手段之一,例如稳定同位素分馏和稳定同位素混合模型等。
盐湖硼、锂、锶、氯同位素地球化学研究进展盐湖硼、锂、锶、氯同位素地球化学研究进展盐湖是一类独特的地质环境,以其丰富的地球化学元素和同位素组成而著名。
在盐湖研究中,硼、锂、锶和氯等元素同位素研究在现代地球科学中变得越来越重要。
本文将对盐湖硼、锂、锶和氯同位素地球化学研究的进展进行综述。
盐湖硼同位素地球化学研究的进展盐湖中硼同位素是独特的,同时还被广泛用于岩石圈和生物圈的研究。
硼同位素的成分和分布与年代、成因、大气环境和地质环境密切相关。
通过硼同位素研究,可以了解盐湖的成因、演化过程和地球系统的环境变化。
近年来,盐湖硼同位素的研究工作得到了很大的发展,主要有以下几个方面:1. 盐湖硼同位素地球化学的理论研究:针对盐湖硼同位素地球化学的特点,其物理化学性质和化学成分进行系统的探究和分析,为下一步研究提供了理论基础。
2. 盐湖硼同位素应用于环境和气候变化:硼同位素可以间接记录大气二氧化碳浓度、环境变化及过去气候变化的历史。
硼同位素在盐湖研究中的应用也在逐渐扩大,以探究地球系统的环境变化和气候变化过程。
3. 盐湖中硼同位素与盐生生物的研究:盐湖是一种充满活力和独特性的生态系统,硼同位素记录了盐湖中不同生物形态的进化和生态系统的形成及演化过程。
盐湖锂同位素地球化学研究的进展盐湖中的锂同位素是表征盐湖成因、演化和环境变化的重要指标。
锂同位素对环境变化、大气二氧化碳浓度和岩浆过程有很强的响应性,因此在盐湖研究中有着广泛的应用。
近年来,盐湖锂同位素的研究工作主要集中在以下几个方面:1. 盐湖锂同位素的分析方法:随着技术的发展,越来越多的研究者使用了新的分析方法,如热离子化质谱技术、电感耦合等离子体质谱技术等。
2. 盐湖锂同位素的地球化学特征和环境变化:研究表明,盐湖锂同位素组成和形成环境和历史、盐湖深度、微生物作用等因素都有关系。
因此,盐湖锂同位素在探究盐湖成因、演化和环境变化过程中具有重要意义。
盐湖锶同位素地球化学研究的进展盐湖中的锶同位素是记录盐湖成因、演化过程以及与其他构造单元的联系的重要指标。
地球化学中的新技术和新方法地球化学是研究地球物质化学性质和地球化学现象的学科,旨在揭示地球形成、演化和资源分布等方面的科学问题。
随着时代的发展和科技的进步,地球化学研究方法和技术也在不断更新和改进。
本文将介绍一些地球化学中的新技术和新方法,包括新型分析仪器、新型样品处理技术、地球化学模拟等方面。
一、新型分析仪器1. 电感耦合等离子体质谱仪(ICP-MS)ICP-MS是一种高灵敏度和高分辨率的质谱仪,可同时测定多种元素的同位素比值和元素浓度。
它广泛应用于地球化学、环境科学、生物科学等领域,可用于研究地球内部构造、大气环境污染、生物元素代谢等问题。
2. 微区分析仪(SIMS)SIMS是一种高分辨率、高分析能力的微区分析仪,可对小至微米级别的样品进行分析。
它能够测定元素同位素比值、化合价及缺陷等信息,广泛应用于天然矿物、岩石、陨石等地球化学样品的分析。
3. X射线荧光光谱仪(XRF)XRF是一种能量色散X射线分析技术,可快速分析大量元素的浓度和组分。
它广泛应用于生态环境、地质矿产勘探等领域,能够快速确定样品的元素组成和浓度,提高分析效率和准确度。
二、新型样品处理技术1. 等离子体预处理技术等离子体预处理技术是一种采用等离子体辅助化学反应或等离子体评论去除质谱分析的前处理技术。
它可以清除样品中的干扰物质,提高元素的检测灵敏度和准确度,广泛应用于地球化学、环境科学等领域。
2. 全自动样品制备技术全自动样品制备技术是一种快速、精确、高通量的地球化学样品处理技术。
它可以实现样品的自动加样、预处理、分离、纯化、浓缩和转移等多个步骤,并能自动完成数据处理和结果输出等过程。
三、地球化学模拟地球化学模拟是一种利用计算机技术和数学方法对地球化学现象进行模拟和预测的技术。
它可以模拟地球表层环境中多种化学物质的扩散、反应、转运、生物利用等过程,为环境保护、资源开发等工作提供科学依据。
四、结语地球化学是一个复杂的科学领域,涉及的问题范围广泛而深奥。
斑岩型铜矿勘查地球化学研究现状及进展胡树起;马生明;刘崇民【摘要】斑岩型铜矿是我国最重要的铜矿床类型,随着矿业开发的不断深入,勘查地球化学在矿产勘查中的作用变得愈来愈重要.为此,在收集整理有关文献的基础上,对过去斑岩型铜矿勘查地球化学研究的成果进行了总结,包括地球化学特征、勘查方法、异常评价及找矿标志等方面.以富家坞铜矿为例,介绍斑岩型铜矿的最新研究进展.%Porphyry copper deposit is the most important copper deposit type in China. With the deepening of mineral exploitation, exploration geochemistry in mineral exploration has become increasingly important. Based on related literature, this paper sums up the exploration geochemical research results of porphyry copper deposits, which include such aspects as geochemical characteristics, exploration methods, anomaly evaluation and prospecting indicators. Exemplified by the Fujiawu copper deposit, this paper reports the latest advances in the study of porphyry copper deposits.【期刊名称】《物探与化探》【年(卷),期】2011(035)004【总页数】7页(P431-437)【关键词】斑岩型铜矿;地球化学特征;异常评价;勘杳方法;找矿标志【作者】胡树起;马生明;刘崇民【作者单位】中国地质科学院地球物理地球化学勘查研究所,河北廊坊065000;中国地质科学院地球物理地球化学勘查研究所,河北廊坊 065000;中国地质科学院地球物理地球化学勘查研究所,河北廊坊 065000【正文语种】中文【中图分类】P632斑岩型铜矿床是世界最主要的铜矿床,占世界铜矿总探明储量的55%左右[1],也是我国最主要的铜矿床类型之一,其探明铜金属储量占我国铜储量的35.53%[2],在各类型的资源储量中居第一位,是我国铜金属生产中最主要的开采对象。
锂同位素地球化学研究新进展研究摘要:锂(Li)属碱金属元素,与镁离子半径相近(在四面配位体中Li+与Mg2+半径相差0.02Å)、地球化学行为相似,聚酯在矿物晶体中的镁,在不同的岩石和相应的大气材料中广泛分布,因为具有很强的氧相容性,且锂在流体相关的地球化学过程中具有很高的活性,在地质流体(如岩浆、热液)中可以达到一定程度,锂的水层等同位素相对较弱,在自然环境中,这是同位素变化的基本要素,在储存和迁移过程中不受环境氧化还原条件的影响,因此可以观察到许多地质实践。
本文对锂同位素地球化学研究新进展进行分析,以供参考。
关键词:锂同位素;分馏机制;成矿机制引言锂(Li)是周期表的第一个主要族中最轻的金属,具有较高的热容、较高的电离能和碱性元素,在陶瓷、布线、冶金、医疗、光学和其他领域中使用的锂沸点在过去20年中已成为战略性新兴矿物的重要来源,而新型锂能源电池的制造主要来自岩浆,三氧化二锂透明度已成为锂的主要来源,卤水型锂矿可进一步分为盐湖卤水型和深层地下卤水型锂矿,世界上主要的卤水型锂矿包括美国的西尔斯湖、索尔顿海湖盐湖卤水和克莱顿峡谷地下卤水、玻利维亚的乌尤尼盐湖、智利的阿塔卡玛盐湖、阿根廷的翁布雷穆埃尔托盐湖、澳大利亚盐湖以及中国西藏的扎布耶和当雄错盐湖、青海的察尔汗和台吉乃尔盐湖。
1锂同位素概述1.1锂同位素的基本性质锂是连续3号碱金属,是稳定同位素家族中较轻的元素,具有两种稳定同位素:6Li和7Li,它们在自然界中具有7.5%的丰富元素,92.5%的锂具有特殊的地球化学性质1)锂离子半径(760.59×10-10m)与镁离子半径(760.57×10-10m)相近,因此在矿物晶体结构中,Li+通常被mg2 +,类似于2)锂元素在部分熔融和熔岩晶体中是不相容的元素因此,它可以在地幔和地壳之间扩展,并且在地壳3中更丰富)锂在与流体相关的许多过程中非常活跃,如贝壳侵蚀、板块俯冲等,并且在这种情况下会发生大的同位素分裂()(6li和7Li的锂同位素质量都很高(约16.7%),这使得同位素的大量分布对不同的地质作用产生了良好的地球化学痕迹。
矿产资源勘探技术的新进展近年来,随着科技的不断进步,矿产资源勘探技术也不断取得了新的突破和进展。
新的勘探技术不仅提高了矿产资源的开发效率,还为矿产资源的保护和可持续利用提供了更多可能。
本文将介绍几个目前取得突破性进展的矿产资源勘探技术。
一、遥感技术的应用遥感技术是通过人造卫星或无人机载荷获取地表信息的技术手段。
在矿产资源勘探中,遥感技术可以通过获取地表的遥感图像来推测地下的矿产资源分布情况。
这一技术能够大幅度减少传统勘探方法的成本和时间,提高勘探效率。
例如,在探测矿产资源时,可以通过卫星遥感图像来观察地表的地貌特征和植被分布,推断潜在的矿产资源点位。
与传统的野外调查相比,遥感技术不受地形、气候等自然条件的限制,具有更高的数据获取效率和准确性。
二、地球物理探测技术的创新地球物理探测技术是利用地球物理学原理进行地下资源勘探的一种技术手段。
其中,重力法、磁法、雷达技术等被广泛应用于矿产资源勘探。
近年来,这些技术不断进行创新和改进,提高了勘探效果。
比如,采用三维磁法勘探方法可以精确测量地下的磁场变化,从而精准地掌握矿产资源的分布情况。
此外,地震勘探技术也得到了广泛应用,通过地震波的传播和反射特性,可以推断地下矿层的存在和性质,提高勘探准确度。
三、地球化学探测技术的发展地球化学探测技术是通过对矿物、岩石、土壤等样品进行化学分析,以确定矿产资源存在的技术手段。
近年来,随着仪器设备的更新和分析方法的改进,地球化学探测技术得到了显著发展。
例如,高分辨率、高精度的质谱仪、光谱仪的应用,使得对样品中微量元素的分析更为准确,有助于判断矿产资源的矿化程度以及储量大小。
此外,化学勘探中的地下水探测技术也取得了重要突破,通过掌握地下水的矿化程度和成分,可以判断矿产资源富集的可能性。
四、智能化技术的新应用随着人工智能和大数据技术的发展,矿产资源勘探也迎来了智能化的新应用。
人工智能可以通过海量的数据进行模式识别和数据挖掘,提取出与矿产资源勘探相关的关键特征。
地球化学在古地磁学研究中的新进展地球,这颗我们赖以生存的蓝色星球,承载着无尽的奥秘和历史。
古地磁学作为一门探索地球过去磁场变化的学科,为我们揭示了地球演化的诸多关键信息。
而地球化学这一研究地球化学组成和化学过程的学科,在古地磁学研究中也发挥着日益重要的作用,并不断取得新的进展。
在过去,古地磁学主要依赖于对岩石中磁性矿物的测量和分析来重建过去的地磁场。
然而,这种方法存在一定的局限性。
随着科学技术的不断发展,地球化学的相关技术和理论被引入到古地磁学研究中,为其注入了新的活力。
地球化学在古地磁学中的一个重要应用是对磁性矿物的成因和演化进行更深入的研究。
磁性矿物的形成和变化往往受到周围环境的化学条件影响。
通过地球化学分析,我们可以了解这些磁性矿物形成时的温度、压力、化学组成等条件,从而更准确地解释它们所记录的地磁信息。
比如说,通过对磁铁矿和赤铁矿等磁性矿物中的微量元素进行分析,科学家们能够推断出这些矿物形成的环境。
某些微量元素在不同的化学环境中具有不同的分布特征,这为我们了解磁性矿物的形成机制提供了重要线索。
此外,地球化学还可以帮助我们确定磁性矿物的来源。
是原生形成的还是后期改造形成的?这对于准确解读古地磁信号至关重要。
另一个新进展是利用地球化学方法来进行年代测定。
在古地磁学研究中,准确确定岩石的年龄是非常关键的。
传统的放射性同位素测年方法在某些情况下可能存在局限性。
而地球化学中的一些新兴技术,如微量元素扩散年代学,为解决这一问题提供了新的途径。
微量元素在矿物中的扩散速度与温度和时间有关。
通过测量矿物中微量元素的分布和浓度,结合实验确定的扩散系数,就可以计算出矿物形成以来所经历的时间。
这种方法在一些地质过程较快、传统测年方法难以适用的情况下,发挥了重要作用。
同时,地球化学在古环境重建方面也为古地磁学研究提供了有力支持。
地球磁场的变化与地球的气候、环境等因素可能存在着某种关联。
通过对沉积物中的地球化学指标,如稳定同位素、有机地球化学标志物等的分析,可以了解当时的气候条件、海平面变化等环境信息。
1999年第1期 矿产与地质第13卷1999年2月M I N ERAL R ESOU RCES AND GEOLO GY总第69期
勘查地球化学新进展
(江西有色地质矿产勘查开发院 林 春)
1998年9月21日至25日在湖南省张家界市召开了第六届全国勘查地球化学学术讨论会。
出席会议有地矿、有色、冶金、黄金、石油、核工业、中科院和院校等系统的代表,共121人。
大会收到科技论文110余篇,其中固体矿产地球化学勘查99篇,能源矿产地球化学勘查14篇,环境与农业地球化学9篇在会议上进行了交流。
反映了自五届会议(1993年)以来,勘查地球化学工作者所取得的成果,积累的工作经验,反映了我国勘查地球化学的科学技术水平。
1 勘查地球化学工作成果
国土资源部地调局牟绪赞副总工程师报告了地矿部自“六五”以来,完成区域化探扫面575万km2,发现各类元素异常4.3万处,异常检查发现工业矿床580处。
有色物化探管理中心李幸凡教授介绍了有色地质地球化学勘查工作,在30个重点成矿区带上完成1 5万水系地球化学普查65万km2,7千km2土壤加密和5千km2详查地球化学,发现大型、特大型矿床12处,中型矿床21处,小型矿床100余处。
武警黄金部队地质处郭瑞栋高级工程师回顾了武警黄金部队地球化学找金工作,1992年以来,重视区域化探和矿区异常评价工作,共完成区带化探20万km2,获得5千个金或金为主的异常,发现30个矿产地,找到大中小型矿床16个。
2 地球化学勘查技术方法经验
(1)区带普查与重点评价结合,优选异常与地物化、遥感综合查证结合的工作方法。
(2)有色系统以“有色地质成矿区带地球化学普查技术规定”指导研究区域地球化学特征,结合地质物探成果,划分不同级次地球化学区,选定找矿靶区进行验证的工作方法。
(3)统计我国63个典型金矿床原生晕轴向分带序列,总结了金矿不同类型、不同规模成矿成晕规律,建立金矿原生晕理想分带序列,建立金矿成矿成晕的多期多阶段叠加成晕模式和用于“反分带”的盲矿预测准则的工作经验。
(4)研究地壳物质垂直迁移规律,即地壳内存在纳米级物质的垂向迁移,形成与深部矿化相对应的地气异常,应用于发现和查明深部或隐伏矿化地段、查明隐伏含矿构造等。
3 勘查地球化学的发展与展望
中国地质矿产信息研究院施俊法副研究员从区域性矿产勘查、隐伏区的化探新方法、环境地球化学三个方面论述90年代以来国际勘查地球化学的发展。
(1)在区域农业规划、地方病防治、区域环境背景评价等应用进行十分缓慢。
(2)取样代表性、重现性、时间序列等问题仍是地球化学填图中的重要研究课题。
(3)地球化学工程学的环境技术和环境调查:衰变、分解或中和、富集或分散、隔离作用等。
(4)转变以往研究评价单个地化异常特征的方法,应研究区域地球化学场来揭示矿床周围的地球化学环境及探矿的地质因素。
(5)研制和开发具有较大深度的地球化学方法,深穿透地球化学方法,活动态金属离子法
(I M M)、酶浸析法、地电化学法(CH I M)、地气法、元素分子形式法(M FE)和离子晕法等。
5。