ch.1-15 理想气体的熵
- 格式:ppt
- 大小:90.00 KB
- 文档页数:4
热力学公式总结热力学公式,作为热力学研究的基础,是描述能量转化和热力学过程的数学表达式。
它们通过简洁的符号和方程式,揭示了物质和能量之间的相互关系。
以下是几个常见的热力学公式及其含义,让我们一起来了解一下吧。
1. 热力学第一定律:ΔU = Q - W热力学第一定律是能量守恒定律在热力学中的表达,它说明了一个封闭系统内部能量的变化等于系统所吸收的热量减去对外界做功的大小。
这个公式告诉我们,能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式。
2. 熵的定义:ΔS = Q/T熵是描述系统无序程度的物理量,它是热力学中的一个重要概念。
熵的增加代表了系统的无序性增加,而熵的减少则代表了系统的有序性增加。
这个公式告诉我们,熵的变化与系统所吸收的热量和温度有关,系统吸收的热量越多,熵的增加越大。
3. 理想气体状态方程:PV = nRT理想气体状态方程是描述理想气体性质的基本公式,它将气体的压力、体积、摩尔数和温度联系在一起。
这个公式告诉我们,当气体的压力、体积和摩尔数一定时,温度越高,气体的体积越大。
4. 热力学第二定律:ΔS ≥ 0热力学第二定律是热力学中的一个基本原理,它表明在一个孤立系统中,系统的熵不会减小,或者说系统总是趋向于更高的熵。
这个公式告诉我们,自然界中熵的增加是不可逆的,系统的有序性总是会不可避免地变差。
以上是几个常见的热力学公式,它们揭示了能量转化和热力学过程的规律。
通过理解和运用这些公式,我们可以更好地理解和分析能量转化和热力学过程,为实际问题的解决提供依据。
热力学公式的应用广泛,涵盖了能源、化学、物理等多个领域,对于推动科学技术的发展和改善人类生活质量起到了重要的作用。
希望今天的介绍能让大家对热力学公式有更深入的了解,并在实际应用中发挥出更大的作用。
理想气体的比热和热量为了计算在状态变化过程中的吸热量和放热量,我们引入了比热容的概念。
一、比热容的定义比热容与我们前面所讲过的比容、比内能、比焓、比功等参数类似,它是一个比参数,那么它的广延参数就是热容,所以在讲比热容之前我们先看一下热容。
1.热容热容指的是物体在一定的准静态过程中,温度升高或降低1K 时吸收或放出的热量,用符号C 表示。
根据热容的定义,我们可以得到:若工质在一定的准静态过程中,温度变化了△T ,过程中热量为Q ,那么这个过程中的比热为:Q C T=∆ 而物体的比热容是随温度变化的,并不是一个常数,我们上面的表示方法仅仅表示的是工质在这一过程中的平均比热容,若我们精确的表示工质在某一温度处的热容,则:QC dT δ=单位为J/K2.比热容用符号c 表示,比热容是热容的比参数。
比参数是广延参数与质量的比值。
所以比热容的定义为:1kg 物体在一定的准静态过程中温度升高或降低1K 时吸收或放出的热量。
C q c m dTδ== 单位:J/(kgK)这个比容又叫比质量热容,除了比质量热容外,热容还有两种比参数,分别是容积比热和摩尔比热。
容积比热用符号c ’表示,指的是1Nm 3工质在一定的准静态过程中温度升高或降低1K 时吸收或放出的热量。
单位为J/( Nm 3K)。
摩尔比热用符号Mc 表示,指的是1mol 工质在一定的准静态过程中温度升高或降低1K 时吸收或放出的热量。
单位为J/( molK)。
三个比容之间的关系:'Mc M c Vm c =⋅=⋅二、理想气体的比热热量是过程参数,其数值的大小与所进行的热力过程有关,同样比热也是过程参数,也与工质所进行的热力过程有关,不同热力过程的比热值也是不相同的。
在我们工程热力学的研究范围中,最常用到的比热有两种:一个是定容过程的比热,一个是定压过程的比热。
定容过程:整个热力过程中工质的容积保持不变。
比如固定容器中的气体被加热。
定压过程:整个热力过程中工质的压力保持不变。
1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数κT 。
解:已知理想气体的物态方程为,pV nRT = (1)由此易得11,p V nR V T pV Tα∂⎛⎫=== ⎪∂⎝⎭ (2) 11,V p nR p T pV Tβ∂⎛⎫=== ⎪∂⎝⎭ (3) 2111.T T V nRT V p V p pκ⎛⎫⎛⎫∂⎛⎫=-=--= ⎪ ⎪ ⎪∂⎝⎭⎝⎭⎝⎭ (4)1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得:()ln T V =αdT κdp -⎰如果11,T T pακ==,试求物态方程。
解:以,T p 为自变量,物质的物态方程为(),,V V T p =其全微分为.p TV V dV dT dp T p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭ (1) 全式除以V ,有11.p TdV V V dT dp V V T V p ⎛⎫∂∂⎛⎫=+ ⎪ ⎪∂∂⎝⎭⎝⎭根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为.T dVdT dp Vακ=- (2) 上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有()ln .T V dT dp ακ=-⎰ (3)若11,T T pακ==,式(3)可表为11ln .V dT dp Tp ⎛⎫=- ⎪⎝⎭⎰ (4)选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体积由0V 最终变到V ,有000ln=ln ln ,V T pV T p - 即000p V pV C T T ==(常量), 或.pV CT = (5)式(5)就是由所给11,T T pακ==求得的物态方程。
确定常量C 需要进一步的实验数据。
1.3 在0C 和1n p 下,测得一铜块的体胀系数和等温压缩系数分别为51714.8510K 7.810.n p ακ----=⨯=⨯T 和T ακ和可近似看作常量,今使铜块加热至10C 。