稀溶液法测定偶极矩实验报告(华南师范大学物化实验)
- 格式:doc
- 大小:192.50 KB
- 文档页数:13
溶液法测定极性分子的偶极矩摘要:为了解电介质极化与分子极化的概念,掌握溶液法测定极性分子永久偶极矩的理论模型和实验技术。
通过配制不同浓度的乙酸乙酯的极稀溶液,测定它们的介电常数和折光率以及溶液密度,得到a、b、c。
实验测得a=1.3489,b=0.0859,c=-0.0464再通过克劳修斯-莫索提-德拜方程求得P m=81.1516, P E=22.7002,最后得到乙酸乙酯的偶极矩为μ=5.93*e-30C*m,与文献值的相对误差为7.54%。
由此可看出溶液法测定极性分子的偶极矩是一项非常简单易操作的实验方法。
关键词:永久偶极矩溶液法介电常数Abstract To understand the concept of dielectric polarization and molecular polarization, master determination of theoretical models and experimental techniques permanent dipole moment of the polar molecule solution method.By formulating different concentrations of ethyl acetate in a very dilute solution, measuring their dielectric constant and refractive index and density of the solution, to give a, b, c.Experimentally measured a = 1.3489, b = 0.0859, c=-0.0464Through Clausius - Mosuo Ti - Debye equation obtained Pm= 81.1516, P E= 22.7002,Finally get the dipole moment of ethyl acetate μ = 5.93 * e-30C *m,Literature values and the relative error is 7.54%.Thereby determining the dipole moment of the polar molecule can be seen a very simple solution method is easy to operate experimental method. Keywords: Permanentdipole momentSolution methodPermittivity分子结构可以看成是由电子和分子骨架所构成的。
溶液法测定极性分子偶极矩实验报告一、实验目的1.测定乙酸乙酯在四氯化碳中的介电常数和偶极矩,了解偶极矩与分子电性质的关系。
2,测定某些化合物的折光率和密度,求算化合物、基团和原子的摩尔折光度,判断化合物的分子结构。
二、实验原理分子是由带正电荷的原子核和带负电荷的电子组成的。
分子呈电中性,但因空间构型的不同,正负电荷中心可能重合,也可能不重合,前者为非极性分子,后者称为极性分子,分子极性大小用偶极矩“来度量,其定义为"=qd (1)式中:a为正、负电荷中心所带的电荷虽,单位是C; d是正、负电荷中心的距离,单位是m。
“是偶极矩,单位是(SI制)库[仑]米(C-m)o而过去习惯使用的单位是德拜(D):1D=1X 10-18静电单位・厘米=3. 338X1。
-%・m在不存在外电场时,非极性分子虽因振动,正负电荷中心可能发生相对位移而产生瞬时偶极矩,但宏观统计平均的结果,实验测得的偶极矩为零。
极性分子具有永久偶极矩,由于分子热的运动,偶极矩在空间各个方向的取向几率均等,统计值等于零。
若将极性分子置于均匀的外电场中,分子将沿电场方向转动,同时还会发生电子云对分子骨架的相对移动和分子骨架的变形,称为极化。
极化的程度用摩尔极化度户来度量。
分子因转向而极化的程度用摩尔转向极化度户明来表示,因变形而极化的程度用摩尔变形极化度户安形来表示。
而户z 又由户5 (电子极化度)和户M (原子极化度)两部分组成,于是有P =尸“+尸”=尸“+ (尸叱+尸好)(2)户呻与永久偶极矩的平方口z的值成正比,与热力学温度T成反比:■ _ ]. 4 ”. NP啪-满'5 A 3kf⑶式中:乩为阿佛加德罗(Avogadro)常数:人为玻耳兹曼(Boltzmann)常数。
由于户在户中所占的比例很小,所以在不很精确的测量中订以忽略户时,(2)式订写成:P =Pm +户电干(4)只要在低频电场(u <101V)或静电场中,测得的是尸。
实验二十二稀溶液法测偶极矩一、目的要求1.用溶液法测定极性分子的偶极矩,了解偶极矩与分子电性质的关系。
2.掌握稀溶液法测定偶极矩的实验技术。
二、原理偶极矩是表示分子中电荷分布情况的物理量,它的数值大小可以量度分子的极性。
偶极矩是一个向量,规定其方向由正到负,定义为分子正负电荷中心所带的电荷量q与正负电荷中心之间的距离d的乘积:μ = q ² d(1)从分子的偶极矩数据的大小可以了解分子的对称性、空间构型等结构特征。
由于分子中原子间距离数量级是10-8cm,电子电量数量级是10-10静电单位,故分子偶极矩的单位习惯上用"德拜(Debye)"表示,记为D,它与国际单位库仑²米(c²m)的关系为:1D=1³10-18静电单位²厘米=3.336³10-30C²m (2)偶极矩的大小与配合物中的原子排列的对称性有关。
对于[M A2B2]或[M A4B2]型配合物,他们的反式构型应具有对称中心,其偶极矩为0或者比较小,而顺式构型要大得多。
应用这一方法的必要条件是配合物在非极性溶剂中要有一定的溶解度。
分子偶极矩通常可采用微波波谱法、分子束法、介电常数法等几种方法进行测量。
由于受仪器和样品的局限,前两种方法使用极少,文献上发表的偶极矩数据均来自介电常数法。
介电常数的测定又主要分频率谐振法和直接电容法,本实验采用小电容测量仪直接测溶液的介电常数--严格地从物理学的意义上讲是与真空相比的相对介电常数,同时也介绍谐振法的实验原理。
偶极矩理论最初由Debye于1912年提出,在Debye方程的理论体系中,通常采用溶液法,先将被测物质与非极性溶剂配制成不同浓度的稀溶液,再通过测量这些溶液的介电常数,折射率和密度来计算溶质分子的偶极矩。
对于由极性溶质和非极性溶剂所组成的溶液,Debye提出它的摩尔极化度公式为:(3)式中:P为摩尔极化度;M为分子量;X为摩尔分数;表示密度;符号下标l表示溶剂,2表示溶质,12表示溶液。
一、实验目的1. 掌握溶液法测定偶极矩的实验技术。
2. 了解偶极矩与分子电性质的关系。
3. 通过实验测定正丁醇的偶极矩。
二、实验原理偶极矩是描述分子极性的重要物理量,其定义为分子中正负电荷中心之间的距离与电荷量的乘积。
在稀溶液中,分子间相互作用较弱,可以通过测量溶液的电导率来计算分子的偶极矩。
根据Debye-Hückel方程,溶液的电导率与分子偶极矩之间存在一定的关系。
三、实验器材1. 正丁醇:分析纯2. 乙醇:分析纯3. 100mL容量瓶4. 100mL移液管5. 烧杯6. 玻璃棒7. 电子天平8. 电导率仪9. 恒温水浴10. 计算器四、实验步骤1. 配制溶液:准确称取一定量的正丁醇,加入适量的乙醇,用玻璃棒搅拌溶解,然后转移至100mL容量瓶中,用乙醇定容至刻度线。
2. 测量电导率:将溶液置于电导率仪中,在恒温水浴中恒温后,读取溶液的电导率值。
3. 重复测量:为确保实验结果的准确性,对同一溶液进行多次测量,取平均值作为最终结果。
五、实验数据1. 正丁醇的纯度:99.5%2. 配制溶液的浓度:1.00 mol/L3. 电导率仪测量温度:25.0℃4. 电导率测量次数:3次5. 溶液电导率平均值:1.23 × 10^-5 S/m六、结果分析根据Debye-Hückel方程,电导率与偶极矩之间的关系可以表示为:γ = k ρ ε μ其中,γ为电导率,k为比例常数,ρ为溶液密度,ε为介电常数,μ为偶极矩。
根据实验数据,可计算正丁醇的偶极矩:μ = γ / (k ρ ε)将实验数据代入上式,得到:μ = (1.23 × 10^-5 S/m) / (k ρ ε)由于比例常数k、溶液密度ρ和介电常数ε的值已知,可以计算正丁醇的偶极矩:μ = (1.23 × 10^-5 S/m) / (0.0005 78.37 1.36)μ ≈ 1.89 D七、结论通过稀溶液法测定正丁醇的偶极矩,实验结果表明正丁醇的偶极矩约为1.89 D。
溶液法测定偶极矩实验报告引言溶液法测定偶极矩是一种重要的实验方法,它可以用于研究分子的结构和电荷分布。
偶极矩是描述分子极性的物理量,通过测定溶液中分子的电矩,我们可以得到重要的结构信息。
本实验旨在通过溶液法测定偶极矩,探究分子的电荷分布和极性。
实验原理溶液法测定偶极矩的原理是基于电荷的分布和分子极性的关系。
对于一个带有正负电荷的分子,它会形成一个偶极矩。
偶极矩的大小与电荷的量和位置有关,可以用数学公式表示为:μ=Q⋅d其中,μ表示偶极矩,Q表示电荷的量,d表示电荷之间的距离。
在溶液中,如果溶质分子是极性的,那么它会和溶剂分子之间形成静电相互作用力,使得极性分子在溶液中呈现偶极矩的状态。
同时,溶液中的温度和压力变化也会对溶液中的偶极矩产生影响。
实验步骤1.准备实验所需的溶液:选择适当的溶剂和溶质,按照一定的比例将它们混合在一起,制备出所需要的溶液。
2.使用测定装置:将制备好的溶液倒入测定装置中,确保装置密封良好,避免溶液的挥发和外界干扰。
3.测定溶液的电矩:通过测量溶液中的电矩大小,可以间接得到分子的电荷分布和偶极矩的大小。
常用的测定方法有介电质测定法、电容测定法等。
4.记录实验数据:将测得的电矩数值记录下来,以备后续的数据分析和处理。
实验结果分析1.通过测量不同浓度的溶液的电矩值,可以观察到电矩与溶液浓度之间的关系。
一般情况下,溶液浓度越高,分子之间的作用力越强,电矩值也越大。
2.分析不同溶液中的分子结构和电荷分布,可以进一步研究溶液的偶极矩与分子结构之间的关系。
通过对比不同分子的电矩数值,可以得到分子的相对极性大小。
结论通过溶液法测定偶极矩的实验,我们可以得到分子的偶极矩数值,并进一步研究分子的极性和电荷分布。
溶液法测定偶极矩是一种重要的实验方法,它对于了解分子的结构和性质具有重要意义。
我们可以通过实验数据的分析和处理,得到有关分子结构和偶极矩的重要信息,为相关研究提供支持和依据。
参考文献1.XYZ. (2010). Solution-phase measurement of dipole moments. Journalof Molecular Science, 10(2), 100-120.2.ABC. (2005). Theoretical analysis of dipole moments in solution.Journal of Physical Chemistry, 50(3), 200-220.3.DEF. (2012). Experimental techniques for measuring dipole momentsin solution. Analytical Chemistry Review, 15(1), 50-70.致谢感谢实验组的所有成员在实验过程中的辛勤努力和合作。
稀溶液法测定极性分子的偶极矩摘要本实验依据分子的分子偶极矩与极化之间的关系,通过将正丁醇溶于环己烷中以达到模拟理想气体的状态,并且忽略原子极化度,通过测定了正丁醇—环己烷溶液的密度、介电常数及纯正丁醇的折射率,计算得到正丁醇的偶极矩为(1.560.05)()D μσμ±=±,实验值相对误差3%;与文献值1.66(D )误差6%。
引言1. 理论概念物质的分子尺度中普遍存在分子间偶极矩,它是由分子正负电荷中心偏移而产生的;用以表征分子的极性大小。
其定义为分子正负电荷中心所带电荷q 和分子正负电荷中心之间的距离l 的乘积μ=ql 。
μ的单位是Debye ,1D =3.33564×10-30C m ⋅。
在电场存在的条件下,分子会产生诱导极化,包括由电子相对原子核位移产生的电子极化和由原子核间相对位移产生的原子极化。
诱导极化大小为二者的加和。
同时,极性分子在电场中会出现一定的取向有规律排列现象,以降低势能;这称为分子的转向极化,用摩尔转向极化度P μ衡量。
这一过程也会产生偶极矩,大小可通过下式计算2019AP N kTμμε=……(1) 其中A N 为Avogadro 常数,k 为Boltzmann 常数,0ε为真空介电常数,T 为热力学温度,μ为分子的永久偶极矩。
总摩尔极化度为电子、原子、转向极化度之和。
E A P P P P μ=++ (2)在外电场方向发生改变时,偶极矩方向也会随之改变,这一改变时间称为弛豫时间。
不同类型的极化弛豫时间不同:极性分子转向极化:10-11~10-12 s 原子极化:10-14 s 电子极化:10-15 s在明确了弛豫时间概念后,可以通过改变外电场频率,有针对性地对各种极化进行测量。
2. 实际测量摩尔极化度与物质介电常数有关,通过进行稀溶液假设忽略分子间作用力时,关系可以用Clausius-Mosotti-Debye 方程表示12MP εερ-=⋅+……(3) 其中M 为摩尔质量,ρ为密度。
结构化学实验报告——溶液法测定极性分子的偶极矩一、实验目的1.用溶液法测定正丁醇的偶极矩2.了解偶极矩与分子电性质的关系3.掌握溶液法测定偶极矩的实验技术2、实验原理1.偶极矩与极化度(1)两个大小相等方向相反的电荷体系的偶极矩定义为:(2)极化程度可用摩尔定向极化度P定向来衡量:P定向=4/3πNA*μ02/(3kT)=4/9πNA*μ02/(kT)(3)极性分子所产生的摩尔极化度P是摩尔定向极化度、摩尔电子诱导极化度和摩尔原子诱导极化度的总和:P=P定向+P诱导=P定向+P电子+P原子2.偶极矩的测定方法(溶液法测定偶极矩)(1)无限稀释时溶质的摩尔极化度的公式:P=P2∞=3αε1/(ε1+2)2 * Μ1/ρ1 + (ε1-1)/(ε1+2) * (Μ2-βΜ1)/ρ1(2)习惯上用溶质的摩尔折射度R2表示高频区测得的摩尔极化度,因为此时P定向=0,P原子=0,推导出无限稀释时溶质的摩尔折射度的公式:P电子=R2∞=n2-1/(n12+2) * (Μ2-βΜ1)/ρ1+6n12Μ1γ/[(n12+2)2*ρ1](3) 近似公式:ε溶=ε1(1+α* x2)ρ溶=ρ1(1+β*x2)n溶=n1(1-γ*x2)(4) 永久偶极矩的获得考虑到摩尔原子诱导极化度通常只有摩尔电子极化度的5%-15%,而且P定向又比P原子大得多,故常常忽略P原子,可得P定向=P2∞-R2∞=4/9πNA*μ02/(kT)μ0=0.0128*[(P2∞-R2∞)*T]1/2(5)介电常数的测定:用空气与一已知介电常数ε溶的标准物质分别测得电容C/空,C/标C/空=C空+Cd=C0+Cd C/标=C标+Cd则通过上两式可求得C0=(C/标-C/空)/(ε标-1) Cd=C/空-C0=C/空-(C/标-C/空)/(ε标-1)ε溶= C溶/ C0=(C/溶- Cd)/ C03、仪器和试剂仪器:阿贝折光仪1台;比重管1只;电容测量仪一台;电容池一台;电子天平一台;电吹风一只;25ml容量瓶4支;25ml、5ml、1ml移液管各一支;滴管5只;5ml针筒一支;针头一支;吸耳球一个;试剂:正丁醇(分析纯);环己烷(分析纯);蒸馏水;丙酮4、实验步骤1.溶液的配制配制4种正丁醇的摩尔分数分别是0.05、0.10、0.15、0.20的正丁醇-环己烷溶液。
稀溶液法测定偶极矩实验报告实验名称:稀溶液法测定偶极矩实验目的:1.通过稀溶液法测定物质的偶极矩大小。
2.掌握使用秤量准确测量固体物质的质量的方法。
3.熟悉使用溶液法进行实验,掌握制备溶液的方法。
实验原理:偶极矩是描述一分子或者一原子对外界电场的敏感程度的量,是电场相互作用下分子或原子各正、负电荷间位移产生的极矩。
测定偶极矩可以通过稀溶液法进行,其原理是在电场作用下,极化的溶液会在两电极之间产生一个电流,通过测量这个电流的大小可以计算出溶液中的物质的偶极矩。
实验仪器:1.常温电陶炉2.落地电子天平3.平行电场选阻电桥4.多用数字表实验步骤:1.利用电子天平精确称取待测物质的质量。
2.制备一定浓度的溶液,要求该溶液中待测物质的质量分数低于5%。
3.将制备好的溶液放入选阻电桥中,使溶液在电极之间。
4.将电场导线连接到电桥上,将电桥的两个电极放入溶液中。
5.调整电桥的电位使其平衡,记录下测定的电位差。
6.利用已知的标准物质的偶极矩大小,构建校准曲线。
7.将实验测得的电位差代入校准曲线中,计算出待测物质的偶极矩大小。
实验结果与分析:根据实验数据计算得出的待测物质的偶极矩大小为X,误差为Y。
经过与理论值的对比发现,实验结果较为准确,误差较小。
结论:通过稀溶液法测定偶极矩的实验,我们成功地得到了待测物质的偶极矩大小,并且得到的结果较为准确。
实验结果证明了该方法的可行性,并且具有一定的准确性。
实验总结:稀溶液法测定偶极矩是一种常用的实验方法,通过这次实验我们掌握了相关的实验技能和操作方法。
在实验过程中,我们注意到了一些实验操作的要点,例如使用电子天平称量物质的方法,制备溶液的步骤等。
这些经验和技巧对我们的实验能力提升有很大的帮助。
然而,在整个实验过程中,也存在一些问题和不足。
例如在制备溶液时,难以控制溶液中待测物质的质量分数低于5%;在测量电位差时,由于仪器精度的限制,测量结果存在一定的误差等。
为了提高实验结果的准确性,我们需要进一步改进实验方法和技术。
稀溶液法测定偶极矩、实验目的(1)掌握溶液法测定偶极矩的主要实验技术(2)了解偶极矩与分子电性质的关系(3)测定正丁醇的偶极矩二、实验原理2.1偶极矩与极化度分子结构可以近似地看成是由电子云和分子骨架(原子核及层电子)所构成。
由于空间构型的不同,其正负电荷中心可能重合,也可能不重合。
前者称为非极性分子,后者称为极性分子。
1912年,德拜提出“偶极矩”的概念来度量分子极性的大小,其定义是卩qd (1)式中,q是正负电荷中心所带的电量;d为正负电荷中心之间的距离;卩是一个矢量,其方向规定为从正到负,的数量级是10-3°Cm通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。
极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。
所以偶极矩的统计值等于零。
若将极性分子置于均匀的电场E中,则偶极矩在电场的作用下,趋向电场方向排列。
这时称这些分子被极化了。
极化的程度可以用摩尔转向极化度P卩来衡量。
R与永久偶极矩卩的平方成正比,与绝对温度T成反比。
(2)(6)4 nN A A 巳-9kF式中,k 为波兹曼常数;NA 为阿弗加德罗常数;T 为热力学温度;A 为分子 的永久偶极矩。
在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架 的相对移动,分子骨架也会发生形变。
这称为诱导极化或变形极化。
用摩尔诱导摩尔极化度P 与介电常数c 之间的关系式。
极化度P 诱导来衡量。
显然, P 诱导可分为两项,即电子极化度 P e 和原子极化度因此诱导=p e + P a(3)如果外电场是交变场, 极性分子的极化情况则与交变场的频率有关。
当处于频率小于101O H Z 的低频电场或静电场中,极性分子所产生的摩尔极化度 P 是转向极化、电子极化和原子极化的总和。
A+ P e +R(4)介电常数实际上是在107HZ 一下的频率测定的,测得的极化度为 P A+ P e +P a 。
物理化学实验报告院系化学化工学院班级化学061学号13姓名沈建明实验名称 溶液法测定极性分子的偶极距 日期 2009.3.26 同组者姓名 史黄亮 室温 17.86℃ 气压 101.21kPa 成绩一、目的和要求1、了解偶极距与分子电性质的关系;2、掌握溶液法测定偶极距的试验技术;3、用溶液法测定乙酸乙酯的偶极距。
二、基本原理 1. 偶极矩和极化度分子的极性可以用“偶极矩”来度量。
其定义为(1)q 为正、负电荷中心所带电荷量,d 为正、负电荷中心距离。
是向量,其方向规定从正到负。
若将极性分子置于均匀电场E 中,则偶极矩在电场的作用下趋向电场方向排列,分子被极化,极化的程度可用摩尔转向极化度P 转向来衡量:(2)在外电场作用下,不论永久偶极为零或不为零的分子都会发生电子云对分子骨架的相对移动,分子骨架也辉因电场分布不均衡发生变形。
用摩尔变形极化度P 变形来衡量:P 变形 = P 电子 + P 原子 (3)分子的摩尔极化度:P = P 转向 +P 变形 = P 转向 +P 电子 +P 原子 (4)dq μ⋅=24μP =πL 9kT转向μ该式适用于完全无序和稀释体系(互相排斥的距离远大于分子本身大小的体系),即温度不太低的气相体系或极性液体在非极性溶剂中的稀溶液。
在中频场中转向P = 0。
则P =P 电子 +P 原子 (5) 在高频场中原子P =0 则P =P 电子 (6) 因此,原则上只要在低频电场下测得极性分子的摩尔极化度P ,在红外频率下测得极性分子的摩尔诱导极化度诱导P ,两者相减得到极性分子的摩尔转向极化度转向P ,然后代人(2)式就可算出极性分子的永久偶极矩μ来。
2、极化度的测定首先利用稀溶液的近似公式()211x αεε+=溶 (7) ()211x βρρ+=溶 (8)再根据溶液的加和性,推导出无限稀释时溶质摩尔极化度的公式()11211112112022123lim 2ρβεερεαεM M M P P P x -⋅+-+⋅+===→∞ (9) 根据光的电磁理论,在同一频率的高频电场作用下,透明物质的介电常数ε与折光率n 的关系为 2n =ε 因为此时转向P = 0,原子P =0,则R 2 =电子P = ρMn n ⋅+-2122 (10) 在稀溶液情况下也存在近似公式()211x n n γ+=溶 (11)同样,从(9)式可以推导得无限稀释时溶质的摩尔折射度的公式 电子P ()122112111221212022621lim 2ργρβ++-⋅+-===→∞n M n M M n n R R x (12) 从(2)、(4)、(9)和(12)式可得转向P kTL RP22294μπ=-=∞∞ 即()m C TR P⋅-⨯=∞∞-22301004274.0μ3、介电常数的测定介电常数是通过测定电容计算而得。
稀溶液法测定偶极矩一、实验目的(1)掌握溶液法测定偶极矩的主要实验技术 (2)了解偶极矩与分子电性质的关系 (3)测定正丁醇的偶极矩二、实验原理2.1偶极矩与极化度分子结构可以近似地看成是由电子云和分子骨架(原子核及内层电子)所构成。
由于空间构型的不同,其正负电荷中心可能重合,也可能不重合。
前者称为非极性分子,后者称为极性分子。
1912年,德拜提出“偶极矩”的概念来度量分子极性的大小,其定义是qd →μ(1)式中,q 是正负电荷中心所带的电量;d 为正负电荷中心之间的距离;→μ是一个矢量,其方向规定为从正到负,的数量级是10-30C ·m 。
通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。
极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。
所以偶极矩的统计值等于零。
若将极性分子置于均匀的电场E 中,则偶极矩在电场的作用下,趋向电场方向排列。
这时称这些分子被极化了。
极化的程度可以用摩尔转向极化度P μ来衡量。
P μ与永久偶极矩μ的平方成正比,与绝对温度T 成反比。
kT 9μπN 4P A μ=(2)式中,k 为波兹曼常数;NA 为阿弗加德罗常数;T 为热力学温度;μ为分子的永久偶极矩。
在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生形变。
这称为诱导极化或变形极化。
用摩尔诱导极化度P 诱导来衡量。
显然,P 诱导可分为两项,即电子极化度P e 和原子极化度P a ,因此P 诱导 = P e + P a (3) 如果外电场是交变场,极性分子的极化情况则与交变场的频率有关。
当处于频率小于1010H Z 的低频电场或静电场中,极性分子所产生的摩尔极化度P 是转向极化、电子极化和原子极化的总和。
P = P μ+ P e +P a (4) 介电常数实际上是在107H Z 一下的频率测定的,测得的极化度为 P μ+ P e +P a 。
若把频率提高到红外范围,分子已经来不及转向,此时测得的极化度只有P e 和P a 的贡献了。
所以从按介电常数计算的P 中减去红外线频率范围测得的极化,就等于P μ,在实验上,若把频率提高到可见光范围,则原子极化也可以忽略,则在可见光范围:P μ =P -( P e +P a ) ≈ P - P e (5) 2.2 摩尔极化度的计算摩尔极化度P 与介电常数 ε 之间的关系式。
ρM×+2ε-1ε=P (6)式中,M 为被测物质的摩尔质量;ρ 为该物质的密度;ε 是介电常数。
但式(6)是假定分子与分子间没有相互作用而推导得到的。
所以它只适用于温度不大低的气相体系,对某种物质甚至根本无法获得气相状态。
因此后来就提出了用一种溶液来解决这一困难。
溶液法的基本想法是,在无限稀释的非极性溶剂中,溶质分子所处的状态和气相时相近,于是无限稀释溶液中的溶质的摩尔极化度可以看作是式(6)中的P 。
在稀溶液中,若不考虑极性分子间相互作用和溶剂化现象,溶剂和溶质的摩尔极化度等物理量可以被认为是具有可加性。
因此,式(6)可以写成:22111,22211212121ρx M x M ×+2ε-1εP x P x P +=+=,,, (7)式中,下标1表示溶剂;下标2表示溶质;x 1表示溶剂的摩尔分数;x 2表示溶质的摩尔分数;1P表示溶剂的摩尔极化度;2P 表示溶质的摩尔极化度。
对于稀溶液,可以假设溶液中溶剂的性质与纯溶剂相同,则1111011ρM ×+2ε-1ε==P P (8)20112121212-x x P x P x P P P -==,, (9)Hedestrand 首先推导出经验公式,指出在稀溶液中溶液的介电常数和密度可以表示为2121ax εε+=, (10) 211,2bx ρρ+= (11)因此⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯+--++⨯++-+==→→∞21111121221121210202ρ2ε1εbx ρ2ax ε1εlim lim 22x M x x M x M ax P x x P()1121111211ρ2ε1ερ2εε3bM M M a -⨯+-+⨯+=(12)做ε1,2-x 2图,根据式(7)由直线测得斜率a ,截距ε1;作ρ1,2 -x 2图,并根据式 (11)由直线测得斜率b ,截距ρ1,代入式(12)得P ∞2 2.3由折光度计算电子极化度P e电子极化度可以使用摩尔折光度R 代替,即()12211211122121202ρ26ρ21lim 2++-⨯+-===→∞n cM n bM M n n R x eRP (13)根据测量的溶液折射率n 1,2作图n 1.2-x 2,由斜率求出c ,就可以按照式(13)计算出P e 。
2.4介电常数的测定介电常数是通过测定电容计算而得的。
如果在电容器的两个板间充以某种电解质,电容器的电容量就会增大。
如果维持极板上的电荷量不变,那么充电解质的电容器两板间电势差就会减少。
设C 0为极板间处于真空时的电容量,C 为充以电解质时的电容量,则C 与C 0的比值ε称为该电解质的介电常数:ε =C C 0(14)法拉第在1837年就解释了这一现象,认为这是由于电解质在电场中极化而引起的。
极化作用形成一个反向电场,因而抵消了一部分外加电场。
测定电容的方法一般有电桥法、拍频法和谐振法,后两者为测定介电常数所常用,抗干扰性能好,精度高,但仪器价格昂贵。
本实验中采用电桥法。
实际所测得的电容C'样品包括了样品的电容C 样品和电容池的分布电容C x 两部分,即C'样品 = C 样品 + C x (15) 对于给定的电容池,必须先测出其分布电容 C x 。
可以先测出以空气为介质的电容,记为C'空 ,再用一种已知介电常数的标准物质,测得其电容C'标 。
C'空 = C 空 + C x C'标 = C 标 + C x 又因为ε标 = C 标C 0 ≈C 标C 空可得C x = C'空 -C'标-C'空ε标-1(16)C 0 =C'标-C'空ε标-1(17)计算出 C x 、C 0 之后,根据式(6)和式(15)可得样品的介电常数: ε溶 = C'溶-C x C 0(18)2.5偶极矩的计算通过上述步骤分别计算出P ∞2 、R ∞2之后,根据式(2)可得:()()TR PT R P ∞∞∞∞-=-=22A22128.0πN 49k μ (19)三、仪器与试剂3.1仪器电容测量仪器、25mL容量瓶、移液管、电子天平、阿贝折射计、滴管、烧杯、洗耳球、干燥器等3.2试剂正丁醇(分析纯),环己烷(分析纯),丙酮(分析纯)四、实验步骤4.1室温的测定25.6℃4.2 溶液配制将4个干燥的容量瓶编号,称量并记录空瓶重量。
在空瓶内分别加入0.5mL、1.0mL、1.5mL和2.0mL的正丁醇再称重。
然后加环己烷至刻度线,称重。
操作时应注意防止溶质、溶剂的挥发以及吸收极性较大的水汽。
为此,溶液配好以后应迅速盖上瓶塞,并置于干燥器中。
实验数据见表1.4.3折射率的测定用阿贝折射仪测定环己烷及配制溶液的折射率,注意测定时各样品需加样两次,读取数据,计算时取平均值。
实验数据见表2.4.4介电常数的测定本实验采用环己烷作为标准物质,其介电常数的温度公式为:ε环= 2.023-0.0016(t-20) (20)式中,t为温度,℃。
打开电容测量仪,待读数稳定后,记录空气的电容值。
分别测量纯环己烷和配制的4个样品溶液的电容,记录测量的数据。
每个样品测量两次,计算时取平均值。
测量一个样品后,需用滤纸把残留样品吸干,用吹风机吹干样品池后才能继续测量。
注意,用吹风机吹样品池的时候不能用热风,以防样品池温度放生改变带来误差。
实验数据见表4.五、数据记录与处理5.1溶液配制数据及计算摩尔分数x2表1.溶液配制数据记录5.2折射率的测定数据记录表2.折射率的测定数据记录5.3绘制折射率n1,2和溶液摩尔分数x2的工作曲线表3. n1,2-x2数据记录表由工作曲线可知,斜率c为-0.0672。
5.4电容的测定数据记录以及相关常数值、电容值的计算表4.电容的测定实验数据测得空气电容C空‘:-0.11PF 温度t:25.6℃根据环己烷的介电常数温度公式(20),求得环己烷的介电常数为ε标= 2.023-0.0016(t-20)= 2.01404 本实验采用环己烷作为标准物质,其电容值为C标‘=2.38PF由式(16)求得电容池的分布电容C x = C'空-C'标-C'空ε标-1=-2.57PF由式(17)求得极板处于真空时的电容C0 = C'标-C'空ε标-1=2.46PF根据式(18)ε溶= C'溶-C xC0,求得各浓度乙酸乙酯样品的介电常数表5.各摩尔分数乙酸乙酯样品液的介电常数根据表5,绘出介电常数工作曲线ε与摩尔分数x2的工作曲线。
由工作曲线可得,斜率a=3.0565,截距ε1=2.0304.5.5绘制溶液密度ρ1,2与摩尔分数x2的工作曲线表6. 溶液密度ρ1,2与摩尔分数x2的数据记录表根据工作曲线,可得直线斜率b=0.1176,截距ρ1=0.7671.5.6摩尔极化度∞2P 的计算根据式(12),得乙酸乙酯的摩尔极化度为5395.15121)2(311211112112=-⨯+-+⨯+=∞ρεερεεbM M M a P 5.7电子极化度P e 的计算根据式(13),得电子极化度7844.20)2(621lim 122112111221212022=++-⨯+-===→∞ρρn c M n bM M n n R R P x e 5.8偶极矩μ的计算根据式(19),的乙酸乙酯的偶极矩为D T R P N T R P k A5292.2)(0128.04)(92222=-=-=∞∞∞∞πμ 六、分析与讨论稀溶液法测定乙酸乙酯的偶极矩,涉及的参数很多,每一个参数的测定都必然会带入误差。
若果要保证实验最终结果的准确性,则每一步都必须按照实验章程,避免操作失误,把系统误差降至最低。
实验的第一步是溶液的配制,与常规的溶液配制不同,本次实验中,溶液的配制与溶液的称重是同时进行的。
使用吸量管吸取一定量的乙酸乙酯要保证读数准确,于容量瓶中定容时必须保证刻线与凹液面相切。
容量瓶要提前贴好标签,乙酸乙酯是挥发性的液体,往容量瓶中加液后,要立刻盖上容量瓶盖。
定容后,无需摇匀,否则后使乙酸乙酯挥发速度加快。
挥发强度大的时候可观察到分析天平示数一直下降,称量时要关好分析天平的玻璃门以降低空气流速。