2011相似三角形(含答案)
- 格式:doc
- 大小:526.00 KB
- 文档页数:8
2.如图,在△ABCABC,动点P以2m/s的速度从移动.同时,动点Q以1m/s的中,ACB90°,平分CDB点到达B点时,Q点随之的速度移动.如果P、Q同时出发,用<t<6)。
中,点A的坐标为(2,1),的图象与线段OA的夹角是45°,在△ABCAB=,为边在C建议收藏下载本文,以便随时学习!我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙,∠ACB=90°,点M是AC上的一轴上,.那么D点的坐标为()A. B.C. D.10..已知,如图,直线y=﹣2x+——A、X字型上一点,AD=AC,BC边上的AE交CD于F求证:求证:中,AB∥CD,AB=b,CD=a,E为边上的任意一点,EF∥AB,且EF交BC于点F,某同学在研究这一问题时,发现如下事实:(1)当时,EF=;当时,;(3)当时,EF=.当时,参照上述研究结论,请你猜已知:如图,在△ABC中,M是AC的中点,E、建议收藏下载本文,以便随时学习!我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙离等于该顶点对边上中线长的.)角平分线定理:三角形一个AB于点E、F.求证:.O,过O作EF//AB求证:.的四个顶点分别在△ABC 求证:.长为a.求证:.,点在平行延长线于点Q,S,交于点.求证:)如图2,图,当点在平行四边形ABCD的对角线或的延长线上时,是否仍然成立?若成立,试给出证明;若不成立,试说明理由(要求仅以图2为例进行证明或说明)建议收藏下载本文,以便随时学习!我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙建议收藏下载本文,以便随时学习!、G、H.求证:为直角.求证:求证:的延长线交于点E.))求证:.是BC的中点,连接、CG,AE与CG相交于点证:.分别是△ABC的两边上的高,过D作BA的延长线于F、H。
;(2)BG·CG=GF·GH交于点M,EF与AC交于点旋转,使得DE与BA三角形并证明你的结论.)请写出图中各对相似三角形(相似比为1除外)建议收藏下载本文,以便随时学习!我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙中,AD⊥BC 于D 。
经典练习题相似三角形(附答案)一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=_________ °,BC= _________ ;(2)判断△ABC与△DEC是否相似,并证明你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s 的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t 的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ 与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:_________ ;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)25.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.参考答案与试题解析一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=135°°,BC= ;(2)判断△ABC与△DEC是否相似,并证明你的结论.BC==22、,可得BC=∵BC=EC=;∴,∴8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.面积的面积的则有:(×3×6,即面积的因此有①,或t=(t=t=都符合题意,同时出发后,经过秒或9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.P=,即相似三角形的证明.还考查了相似三角形的判定.10.附加题:如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE.(1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.CE=.AE=∴sin∠AEF=,∴AF=AE•sin∠AEF=∴.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.∴QM=PM=AB=12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.∴CM=MD=∴PC=BC=AD=∴.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s 的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t 的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.(AB=∴tan∠ADP=tan∠C==∴=,∴t=∴tan∠APD=tan∠C==,∴=∴t=∴t=t=时,△PAD∴PD=∵CE=t QE=t∴QH=BE=8﹣t t∴PH=t﹣t=t∴PQ=,,,>∴t=t=14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?时,有:;时,有:∴经过15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ 与△ABC相似.=,即=,解得对应时,有=,即=16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.解:∵AC=∴CD==.要使这两个直角三角形相似,有两种情况:时,有=,∴AB==3时,有=,∴AB=.317.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.a①若△CDM∽△MAN,则=∴AN=②若△CDM∽△NAM,则AN=18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?或)当,∴x=;)当,∴x=.所以,经过秒或19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.∴=,∴=,∴=,∴=,∴=,∴AP=.AP=时,由BP=,∴=,、20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.∴∴中有21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.所以所以;=,即=,;=,即=,t=时,以点22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?∴,23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是:;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.∴∴,∴.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)∴,即与①类似得:∴∴,与①类似得:,∴,∴MN=r(25.(2007•白银)阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.AE∥BD,所以△ECA∽△DCB,则有∴∴26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离OO′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.∵∴∴解得:.∴,,即.∴同理可得:,∴=是定值.)可知,即,同理可得:∴,由等比性质得:∴,所以人影顶端在地面上移动的速度为27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.===∴∴28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.BC=∴==,==,∴BD=CD=;=BE•CD=∴BE==30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.)设=k,。
经典练习题相似三角形(附答案)一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF;(2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD的长.3.如图,点D,E在BC上,且FD∥AB,FE∥AC.求证:△ABC∽△FDE.4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD.5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三角形;(2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.如图,E是▱ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明.7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上.(1)填空:∠ABC=_________ °,BC= _________ ;(2)判断△ABC与△DEC是否相似,并证明你的结论.8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB方向以1cm/s 的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问: (1)经过多少时间,△AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似?若存在,求t的值;若不存在,请说明理由.9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)(2)请你任选一组相似三角形,并给出证明.10.如图△ABC中,D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD于E,连接AE. (1)写出图中所有相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对;若没有,请说明理由;(3)求△BEC与△BEA的面积之比.11.如图,在△ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论.12.已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点,试说明:△ADM∽△MCP.13.如图,已知梯形ABCD中,AD∥BC,AD=2,AB=BC=8,CD=10.(1)求梯形ABCD的面积S;(2)动点P从点B出发,以1cm/s的速度,沿B⇒A⇒D⇒C方向,向点C运动;动点Q从点C出发,以1cm/s的速度,沿C⇒D⇒A方向,向点A运动,过点Q作QE⊥BC于点E.若P、Q两点同时出发,当其中一点到达目的地时整个运动随之结束,设运动时间为t秒.问:①当点P在B⇒A上运动时,是否存在这样的t,使得直线PQ将梯形ABCD的周长平分?若存在,请求出t 的值;若不存在,请说明理由;②在运动过程中,是否存在这样的t,使得以P、A、D为顶点的三角形与△CQE相似?若存在,请求出所有符合条件的t的值;若不存在,请说明理由;③在运动过程中,是否存在这样的t,使得以P、D、Q为顶点的三角形恰好是以DQ为一腰的等腰三角形?若存在,请求出所有符合条件的t的值;若不存在,请说明理由.14.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点.若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形与△BDC相似?15.如图,在△ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时出发,问经过几秒钟,△PBQ与△ABC相似.16.如图,∠ACB=∠ADC=90°,AC=,AD=2.问当AB的长为多少时,这两个直角三角形相似.17.已知,如图,在边长为a的正方形ABCD中,M是AD的中点,能否在边AB上找一点N(不含A、B),使得△CDM与△MAN相似?若能,请给出证明,若不能,请说明理由.18.如图在△ABC中,∠C=90°,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动.若Q、P分别同时从B、C出发,试探究经过多少秒后,以点C、P、Q为顶点的三角形与△CBA相似?19.如图所示,梯形ABCD中,AD∥BC,∠A=90°,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置,使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似.20.△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证:△BEM∽△CNE;(2)如图2,将△DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是,除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论.21.如图,在矩形ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;点Q沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似.22.如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?23.阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是: _________ ;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x.24.问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立于平地,长为80cm的竹竿的影长为60cm.乙组:如图2,测得学校旗杆的影长为900cm.丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm.任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与⊙O相切于点M.请根据甲、丙两组得到的信息,求景灯灯罩的半径.(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)25.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.26.如图,李华晚上在路灯下散步.已知李华的身高AB=h,灯柱的高OP=O′P′=l,两灯柱之间的距离O O′=m.(1)若李华距灯柱OP的水平距离OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2.27.如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S 1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S 3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.28.已知:如图,△ABC∽△ADE,AB=15,AC=9,BD=5.求AE.29.已知:如图Rt△ABC∽Rt△BDC,若AB=3,AC=4.(1)求BD、CD的长;(2)过B作BE⊥DC于E,求BE的长.30.(1)已知,且3x+4z﹣2y=40,求x,y,z的值;(2)已知:两相似三角形对应高的比为3:10,且这两个三角形的周长差为560cm,求它们的周长.参考答案与试题解析一.解答题(共30小题)1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.考点:相似三角形的判定;平行线的性质。
类似三角形经典习题之杨若古兰创作例1 从上面这些三角形中,选出类似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,如果2cm 6=∆AEF S ,求CDF S ∆.例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.例4 以下命题中哪些是准确的,哪些是错误的?(1)所有的直角三角形都类似.(2)所有的等腰三角形都类似.(3)所有的等腰直角三角形都类似.(4)所有的等边三角形都类似. 例5 如图,D 点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ∆的边上,而且点D 、点E 和ABC ∆的一个顶点构成的小三角形与ABC ∆类似.尽可能多地画出满足条件的图形,并说明线段DE 的画法.例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 5.1=AC m ,小明的眼睛离地面的高度为1.6m ,请你帮忙小明计算一下楼房的高度(精确到0.1m ).例8格点图中的两个三角形是否是类似三角形,说明理由.例9 根据以下各组条件,判定ABC ∆和C B A '''∆是否类似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A .(2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,以下每个图形中,存不存在类似的三角形,如果存在,把它们用字母暗示出来,并简要说明识此外根据.例115、12、13例1226例13在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高米的竹竿竖立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时候目测旗杆顶部A 与竹竿顶部E恰好在同不断线上,又测得C、D两点的距离为3米,小芳的目高为米,如许即可晓得旗杆的高.你认为这类测量方法是否可行?请说明理由.例14.如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点EA,再在河的这一边选点B和C定BC与AE的交点为D岸之间AB的大致距离吗?例15.如图,为了求出海岛上的山峰AB的高度,在D和F处树立标杆DC 和FE,标杆的高都是3丈,相隔1000步(1步等于5尺),而且AB、CD 和EF在同一平面内,从标杆DC退后123步的G处,可看到山峰A和标杆顶端C在不断线上,从标杆FE退后127步的H处,可看到山峰A和标杆顶端E在不断线上.求山峰的高度AB及它和标杆CD的水平距离BD各是多少?(古代成绩)例16如图,已知△ABC的边AB AC=2,BC边上的高AD (1)求BC的长;(2)如果有一个正方形的边在AB上,另外两个顶点分别在AC,BC上,求这个正方形的面积.类似三角形经典习题答案例1.解①、⑤、⑥类似,②、⑦类似,③、④、⑧类似例2.1:3.例3分析证实例4.分析(1)不准确,因为在直角三角形中,两个锐角的大小不确定,是以直角三角形的外形分歧.(2)也不准确,等腰三角形的顶角大小不确定,是以等腰三角形的外形也分歧.(3)准确.设有等腰直角三角形ABCa、b、c(4答:(1)、(2)不准确.(3)、(4)准确.例5.解:画法略.例6.分析BCBC的长.解,∴,∴∽.∴杆的高为6米.例7.分析的类似关系就明确了.解m).例8.分析这两个图如果不是画在格点中,那是没法判断的.实际上格点有形中给图形增加了条件——长度和角度.解说明碰到格点的题目必定要充分发现其中的各种条件,勿使漏掉.例9.解(1(2(3两角相等;(2两角相等;例10.解(1(3(5角相等.例11.分析有一个角是65°的等腰三角形,它的底角是72°,而BD是底成比例推出线段之间的比例关系.∴说明(1)有两个角对应相等,那么这两个三角形类似,这是判断两个三角形类似最经常使用的方法,而且根据相等的角的地位,可以确定哪些边是对应边.(2方式.例12分析26,可以求解三边顺次为∴例13.分析判断方法是否可行,应考虑利用这类方法加之我们现有的常识能G,交CE于H,可知否求出旗杆的高.按这类测量方法,过FGF、HF、EH可求,如许可求得AG,故旗杆AB可求.F G,交CE于H所解(米)所以旗杆的高为米.说明在具体测量时,方法要理想、切实可行.例14.AB大致相距100米.例15.例16. 分析:请求BC的长,需画图来解,因AB、AC都大于高AD,那么有两种情况存在,即点D在BC上或点D在BC的耽误线上,所以求BC 的长时要分两种情况讨论.求正方形的面积,关键是求正方形的边长.解:(1)如上图,由AD⊥BC,由勾股定理得BD=3,DC=1,所以BC =BD+DC=3+1=4.如下图,同理可求BD=3,DC=1,所以BC=BD-CD=3-1=2.(2)如下图,由题目中的图知BC=4,ABC是直角三角形.由AE G F是正方形,设G F=x,则FC=2-x,∵G F∥AB,∴,即.∴,∴如下图,当BC=2,AC=2,△ABC是等腰三角形,作CP⊥AB于P,∴AP在Rt△APC中,由勾股定理得CP=1,∵GH∥AB,∴△C GH∽△CBA,∵,∴。
相似三角形典范习题之阳早格格创做例1 从底下那些三角形中,选出相似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,供AEF ∆取CDF ∆的周少的比,如果2cm 6=∆AEF S ,供CDF S ∆.例3 如图,已知ABD ∆∽ACE ∆,供证:ABC ∆∽ADE ∆.例4 下列命题中哪些是透彻的,哪些是过失的?(1)所有的曲角三角形皆相似.(2)所有的等腰三角形皆相似.(3)所有的等腰曲角三角形皆相似.(4)所有的等边三角形皆相似. 例5 如图,D 面是ABC ∆的边AC 上的一面,过D 面绘线段DE ,使面E 正在ABC ∆的边上,而且面D 、面E ABC ∆的一个顶面组成的小三角形取ABC ∆相似.尽大概多天绘出谦脚条件的图形,并道明线段DE 的绘法.例6 如图,一人拿着一收刻有厘米分绘的小尺,站正在距电线杆约30米的场合,把脚臂背前伸曲,小尺横曲,瞅到尺上约12个分绘恰佳遮住电线杆,已知脚臂少约60厘米,供电线杆的下.例7 如图,小明为了丈量一下楼MN 的下,正在离N 面20m 的A 处搁了一个仄里镜,小明沿NA 退却到C 面,正佳从镜中瞅到楼顶M 面,若5.1=AC m ,小明的眼睛离大天的下度为1.6m ,请您助闲小明估计一下楼房的下度(透彻到0.1m ).例8格面图中的二个三角形是可是相似三角形,道明缘由.例9 根据下列各组条件,判决ABC ∆战C B A '''∆是可相似,并道明缘由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A .(2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,下列每个图形中,存没有存留相似的三角形,如果存留,把它们用字母表示出去,并简要道明识别的根据.例11例125、12、1326S.例13正在一次数教活动课上,教授让共教们到操场上丈量旗杆的下度,而后回去接流各自的丈量要领.小芳的丈量要领是:拿一根下米的竹竿曲坐正在离旗杆27米的C处(如图),而后沿BC目标走到D处,那时目测旗杆顶部A取竹竿顶部E恰佳正在共背去线上,又测得C、D二面的距离为3米,小芳的目下为米,那样即可知讲旗杆的下.您认为那种丈量要领是可可止?请道明缘由.例14.如图,为了估算河的宽度,咱们不妨正在河对于岸选定一个目标动做E,使面A,再正在河的那一边选面B战CBC取AE的接面为D您能供出二岸之间AB的大概距离吗?例15.如图,为了供出海岛上的山峰AB的下度,正在D战F处横坐标杆DC战FE,标杆的下皆是3丈,相隔1000步(1步等于5尺),而且AB、CD战EF正在共一仄里内,从标杆DC退后123步的G处,可瞅到山峰A战标杆顶端C正在背去线上,从标杆FE退后127步的H处,可瞅到山峰A战标杆顶端E正在背去线上.供山峰的下度AB及它战标杆CD的火仄距离BD 各是几?(古代问题)例16如图,已知△ABC的边AB AC=2,BC边上的下AD (1)供BC的少;(2)如果有一个正圆形的边正在AB上,其余二个顶面分别正在AC,BC 上,供那个正圆形的里积.相似三角形典范习题问案例1.解①、⑤、⑥相似,②、⑦相似,③、④、⑧相似例2.1:3.例3分解道明例4.分解(1)没有透彻,果为正在曲角三角形中,二个钝角的大小没有决定,果此曲角三角形的形状分歧.(2)也没有透彻,等腰三角形的顶角大小没有决定,果此等腰三角形的形状也分歧.(3)透彻.设有等腰曲角三角形ABCa、b、c(4问:(1)、(2)没有透彻.(3)、(4)透彻.例5.解:绘法略.例6.分解BCBC的少.解,∴,∴∽.∴杆的下为6米.例7.分解的相似闭系便透彻了.解m).例8.分解那二个图如果没有是绘正在格面中,那是无法推断的.本量上格面无形中给图形删加了条件——少度战角度.解道明逢到格面的题目一定要充散创造其中的百般条件,勿使遗漏.例9.解(1(2(3例10.解(1二角相等;(2二角相等;(3二角相等;(4二边成比率夹角相等;6二边成比率夹(5角相等.例11.分解有一个角是65°的等腰三角形,它的底角是72°,而BD是底角的比率推出线段之间的比率闭系.∴道明(1)有二个角对于应相等,那么那二个三角形相似,那是推断二个三角形相似最时常使用的要领,而且根据相等的角的位子,不妨决定哪些边是对于应边.(2或者仄办法.例12分解26,不妨供解三边依次为∴例13.分解推断要领是可可止,应试虑利用那种要领加之咱们现有的知识是可供出旗杆的下.按那种丈量要领,过FG,接CE于H,可知GF、HF、EH可供,那样可供得AG,故旗杆AB可供.F G,接CE于H所解(米)所以旗杆的下为米.道明正在简曲丈量时,要领要现真、确真可止.例14.AB大概相距100米.例15.例16. 分解:央供BC的少,需绘图去解,果AB、AC皆大于下AD,那么有二种情况存留,即面D正在BC上或者面D正在BC的延少线上,所以供BC的万古要分二种情况计划.供正圆形的里积,闭键是供正圆形的边少.解:(1)如上图,由AD⊥BC,由勾股定理得BD=3,DC=1,所以BC =BD+DC=3+1=4.如下图,共理可供BD=3,DC=1,所以BC=BD-CD=3-1=2.(2)如下图,由题目中的图知BC=4,ABC是曲角三角形.由AE G F是正圆形,设G F=x,则FC=2-x,∵G F∥AB,∴,即.∴,∴如下图,当BC=2,AC=2,△ABC是等腰三角形,做CP⊥AB于P,∴AP正在Rt△APC中,由勾股定理得CP=1,∵GH∥AB,∴△C GH∽△CBA,∵,∴。
相似三角形压轴题含答案LT1、(2011学年度九年级第二学期普陀区期终调研)如图,四边形ABCD 中,BC AD //,点E 在CB 的延长线上,联结DE ,交AB 于点F ,联结DB ,AFD DBE ∠=∠,且2DE BE CE =⋅.(1) 求证:DBE CDE ∠=∠;(2)当BD 平分ABC ∠时,求证:四边形ABCD 是菱形. 答案:(1)证明:∵CE BE DE⋅=2, ∴DE BE CE DE =. …………………………………………(2分)∵E E ∠=∠, …………………………………………(1分) ∴DBE ∆∽CDE ∆.……………………………………… (1分)∴CDEDBE ∠=∠. ………………………………………21F E C A B ……(1分)(2) ∵CDE DBE ∠=∠, 又∵AFD DBE ∠=∠, ∴=∠CDE AFD ∠.………………………………………………(1分) ∴DC AB //. ………………………………………………(1分) 又∵BC AD //, ∴四边形ABCD 是平行四边形 ………………………………………(1分) ∵BC AD //, ∴ACB=90°,C D ⊥AB 于D ,E 是AC 的中点,ED 的延长线与CB 的延长线交于点F 。
(1) 求证:FD 2=F B ·FC 。
(2) 若G 是BC 的中点,连接GD ,GD 与EF 垂直吗?并说明理由。
【答案】证明:(1)∵E 是R t △ACD 斜边中点 ∴DE=EA∴∠A=∠2∵∠1=∠2∴∠1=∠A …∵∠FDC=∠CDB+∠1=90°+∠1,∠FBD=∠ACB+∠A=90°+∠A∴∠FDC=∠FBD∵F 是公共角∴△FB D ∽△FDC ∴FCFD FD FB = ∴FC FB FD •=2(2)GD⊥EF理由如下:∵DG是R t△CDB斜边上的中线,∴DG=GC∴∠3=∠4由(1)得∠4=∠1∴∠3=∠1∵∠3+∠5=90°∴∠5+∠1=90°∴DG⊥EF4、(2010 广东珠海)如图,在平行四边形ABCD 中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC(2)若AB=4,AD=33,AE=3,求AF的长.【答案】(1)证明:∵四边形ABCD 是平行四边形∴AD ∥BC AB ∥CD∴∠ADF=∠CED ∠B+∠C=180°∵∠AFE+∠AFD=180 ∠AFE=∠B ∴∠AFD=∠C∴△ADF ∽△DEC(2)解:∵四边形ABCD 是平行四边形∴AD ∥BC CD=AB=4又∵AE ⊥BC ∴ AE ⊥AD 在Rt △ADE 中,DE=63)33(2222=+=+AE AD∵△ADF ∽△DEC∴ CD AF DE AD = ∴4633AF = AF=325、(2010广东肇庆)如图5,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,CE与AB 交于F.(1)求证:△CEB≌△ADC;(2)若AD=9cm,DE=6cm,求BE和EF的长.【答案】解:(1)因为∠ACB=90°,所以∠BCE+∠ECA=90°.因为AD⊥CE于D,所以∠CAD+∠ECA=90°.所以∠BCE=∠CAD.因为BE⊥CE于E,所以∠BEC=∠CDA=90°. 又因为AC=BC,所以△CEB≌△ADC(AAS). (3)因为△CEB≌△ADC,所以CE=AD=9cm,CD=BE.因为DE=6cm,所以CD=CE-DE=3cm.所以BE=3cm.因为∠BEF=∠ADF=90°,∠EFB=∠DFA,所以△EFB ∽△DFA.所以BE EF =AD FD .设EF=x cm ,所以DF=(6-x)cm,所以3=96-x x ,所以x =32cm.6、.(2009年潍坊)已知ABC △,延长BC 到D ,使CD BC =.取AB 的中点F ,连结FD 交AC 于点E .(1)求AE AC 的值;(2)若AB a FB EC ==,,求AC 的长.解:(1)过点F 作FM AC ∥,交BC 于点M . F 为AB 的中点M∴为BC 的中点,12FM AC =. 由FM AC ∥,得CED MFD ∠=∠,ECD FMD FMD ECD ∠=∠∴,△∽△23DC EC DM FM ∴== 22113323EC FM AC AC ∴==⨯=1233AC ACAE AC EC AC AC AC --∴=== (2)1122AB a FB AB a =∴==,又12FB EC EC a =∴=, 13332EC AC AC EC a =∴==,.7、(2011•东莞市)21.如图(1),△ABC 与△EFD 为等腰直角三角形,AC 与DE 重合,AB=AC=EF=9,∠BAC=∠DEF=90º,固定△ABC ,将△DEF 绕点A 顺时针旋转,当DF 边与AB 边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE ,DF(或它们的延长线)分别交BC(或它的延长线) 于G ,H 点,如图(2)(1)问:始终与△AGC 相似的三角形有 及 ;(2)设CG=x ,BH=y ,求y 关于x 的函数关系题21图B HF AG CECBFA题21图式(只要求根据图(2)的情形说明理由) (3)问:当x 为何值时,△AGH 是等腰三角形. 【答案】解:(1)△HAB ,△HGA 。
因动点产生的相似三角形问题例1(2011年上海市闸北区中考模拟第25题)直线113y x =-+分别交x 轴、y 轴于A 、B 两点,△AOB 绕点O 按逆时针方向旋转90°后得到△COD ,抛物线y =ax 2+bx +c 经过A 、C 、D 三点.(1) 写出点A 、B 、C 、D 的坐标;(2) 求经过A 、C 、D 三点的抛物线表达式,并求抛物线顶点G 的坐标;(3) 在直线BG 上是否存在点Q ,使得以点A 、B 、Q 为顶点的三角形与△COD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.图1满分解答(1)A (3,0),B (0,1),C (0,3),D (-1,0).(2)因为抛物线y =ax 2+bx +c 经过A (3,0)、C (0,3)、D (-1,0) 三点,所以930,3,0.a b c c a b c ++=⎧⎪=⎨⎪-+=⎩ 解得1,2,3.a b c =-⎧⎪=⎨⎪=⎩所以抛物线的解析式为y =-x 2+2x +3=-(x -1)2+4,顶点G 的坐标为(1,4).(3)如图2,直线BG 的解析式为y =3x +1,直线CD 的解析式为y =3x +3,因此CD //BG .因为图形在旋转过程中,对应线段的夹角等于旋转角,所以AB ⊥CD .因此AB ⊥BG ,即∠ABQ =90°. 因为点Q 在直线BG 上,设点Q 的坐标为(x ,3x +1),那么22(3)10BQ x x x =+=±.Rt △COD 的两条直角边的比为1∶3,如果Rt △ABQ 与Rt △COD 相似,存在两种情况: ①当3B Q B A =时,10310x ±=.解得3x =±.所以1(3,10)Q ,2(3,8)Q --.②当13B Q B A=时,101310x ±=.解得13x =±.所以31(,2)3Q ,41(,0)3Q -.图2 图3考点伸展第(3)题在解答过程中运用了两个高难度动作:一是用旋转的性质说明AB ⊥BG ;二是22(3)10BQ x x x =+=±.我们换个思路解答第(3)题:如图3,作GH ⊥y 轴,QN ⊥y 轴,垂足分别为H 、N .通过证明△AOB ≌△BHG ,根据全等三角形的对应角相等,可以证明∠ABG =90°. 在Rt △BGH 中,1sin 110∠=,3cos 110∠=.①当3B Q B A=时,310B Q =.在Rt △BQN 中,sin 13QN BQ =⋅∠=,cos 19BN BQ =⋅∠=. 当Q 在B 上方时,1(3,10)Q ;当Q 在B 下方时,2(3,8)Q --. ②当13B Q B A=时,1103B Q =.同理得到31(,2)3Q ,41(,0)3Q -.例2(2011年上海市杨浦区中考模拟第24题)Rt △ABC 在直角坐标系内的位置如图1所示,反比例函数(0)k y k x =≠在第一象限内的图像与BC 边交于点D (4,m ),与AB 边交于点E (2,n ),△BDE 的面积为2.(1)求m 与n 的数量关系; (2)当tan ∠A =12时,求反比例函数的解析式和直线AB 的表达式;(3)设直线AB 与y 轴交于点F ,点P 在射线FD 上,在(2)的条件下,如果△AEO 与△EFP 相似,求点P 的坐标.图1满分解答(1)如图1,因为点D (4,m )、E (2,n )在反比例函数ky x =的图像上,所以4,2.m k n k =⎧⎨=⎩ 整理,得n =2m .(2)如图2,过点E 作EH ⊥BC ,垂足为H .在Rt △BEH 中,tan ∠BEH =tan ∠A =12,EH =2,所以BH =1.因此D (4,m ),E (2,2m ),B (4,2m +1).已知△BDE 的面积为2,所以11(1)2222B D E H m ⋅=+⨯=.解得m =1.因此D (4,1),E (2,2),B (4,3).因为点D (4,1)在反比例函数k y x=的图像上,所以k =4.因此反比例函数的解析式为4y x=.设直线AB 的解析式为y =kx +b ,代入B (4,3)、E (2,2),得34,22.k b k b =+⎧⎨=+⎩ 解得12k =,1b =.因此直线AB 的函数解析式为112y x =+.图2 图3 图4(3)如图3,因为直线112y x =+与y 轴交于点F(0,1),点D 的坐标为(4,1),所以FD // x 轴,∠EFP =∠EAO .因此△AEO 与△EFP 相似存在两种情况:①如图3,当E A EF A O F P =时,2552FP =.解得FP =1.此时点P 的坐标为(1,1).②如图4,当E A F P A OE F=时,2525F P =.解得FP =5.此时点P 的坐标为(5,1).考点伸展本题的题设部分有条件“Rt △ABC 在直角坐标系内的位置如图1所示”,如果没有这个条件限制,保持其他条件不变,那么还有如图5的情况:第(1)题的结论m 与n 的数量关系不变.第(2)题反比例函数的解析式为12y x=-,直线AB 为172y x =-.第(3)题FD 不再与x 轴平行,△AEO 与△EFP 也不可能相似.图5例3(2010年义乌市中考第24题)如图1,已知梯形OABC ,抛物线分别过点O (0,0)、A (2,0)、B (6,3). (1)直接写出抛物线的对称轴、解析式及顶点M 的坐标;(2)将图1中梯形OABC 的上下底边所在的直线OA 、CB 以相同的速度同时向上平移,分别交抛物线于点O 1、A 1、C 1、B 1,得到如图2的梯形O 1A 1B 1C 1.设梯形O 1A 1B 1C 1的面积为S ,A 1、 B 1的坐标分别为 (x 1,y 1)、(x 2,y 2).用含S 的代数式表示x 2-x 1,并求出当S =36时点A 1的坐标;(3)在图1中,设点D 的坐标为(1,3),动点P 从点B 出发,以每秒1个单位长度的速度沿着线段BC 运动,动点Q 从点D 出发,以与点P 相同的速度沿着线段DM 运动.P 、Q 两点同时出发,当点Q 到达点M 时,P 、Q 两点同时停止运动.设P 、Q 两点的运动时间为t ,是否存在某一时刻t ,使得直线PQ 、直线AB 、x 轴围成的三角形与直线PQ 、直线AB 、抛物线的对称轴围成的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.图1 图2(1)抛物线的对称轴为直线1x =,解析式为21184y x x =-,顶点为M (1,18-).(2) 梯形O 1A 1B 1C 1的面积12122(11)3()62x x S x x -+-⨯3==+-,由此得到1223s x x +=+.由于213y y -=,所以22212211111138484y y x x x x -=--+=.整理,得212111()()384x x x x ⎡⎤-+-=⎢⎥⎣⎦.因此得到2172x x S -=. 当S =36时,212114,2.x x x x +=⎧⎨-=⎩ 解得126,8.x x =⎧⎨=⎩ 此时点A 1的坐标为(6,3).(3)设直线AB 与PQ 交于点G ,直线AB 与抛物线的对称轴交于点E ,直线PQ 与x 轴交于点F ,那么要探求相似的△GAF 与△GQE ,有一个公共角∠G .在△GEQ 中,∠GEQ 是直线AB 与抛物线对称轴的夹角,为定值.在△GAF 中,∠GAF 是直线AB 与x 轴的夹角,也为定值,而且∠GEQ ≠∠GAF . 因此只存在∠GQE =∠GAF 的可能,△GQE ∽△GAF .这时∠GAF =∠GQE =∠PQD . 由于3tan 4G A F ∠=,tan 5DQ t PQD QPt∠==-,所以345t t=-.解得207t =.图3 图4考点伸展第(3)题是否存在点G 在x 轴上方的情况?如图4,假如存在,说理过程相同,求得的t 的值也是相同的.事实上,图3和图4都是假设存在的示意图,实际的图形更接近图3.例4(2010年上海市宝山区中考模拟第24题)如图1,已知点A (-2,4) 和点B (1,0)都在抛物线22y m x m x n =++上.(1)求m 、n ;(2)向右平移上述抛物线,记平移后点A 的对应点为A ′,点B 的对应点为B ′,若四边形A A ′B ′B 为菱形,求平移后抛物线的表达式;(3)记平移后抛物线的对称轴与直线AB ′ 的交点为C ,试在x 轴上找一个点D ,使得以点B ′、C 、D 为顶点的三角形与△ABC 相似.图1满分解答(1) 因为点A (-2,4) 和点B (1,0)都在抛物线22y m x m x n =++上,所以444,20.m m n m m n -+=⎧⎨++=⎩ 解得43m =-,4n =.(2)如图2,由点A (-2,4) 和点B (1,0),可得AB =5.因为四边形A A ′B ′B 为菱形,所以A A ′=B ′B = AB =5.因为438342+--=x x y ()2416133x =-++,所以原抛物线的对称轴x =-1向右平移5个单位后,对应的直线为x =4.因此平移后的抛物线的解析式为()3164342,+--=x y .图2(3) 由点A (-2,4) 和点B ′ (6,0),可得A B ′=45. 如图2,由AM //CN ,可得''''B N B C B MB A=,即2'845B C =.解得'5B C =.所以35AC =.根据菱形的性质,在△ABC 与△B ′CD 中,∠BAC =∠CB ′D .①如图3,当''A B B C A C B D =时,55'35B D=,解得'3B D =.此时OD =3,点D 的坐标为(3,0).②如图4,当''A B B D A CB C=时,5'355B D =,解得5'3B D =.此时OD =133,点D 的坐标为(133,0).图3 图4考点伸展在本题情境下,我们还可以探求△B ′CD 与△ABB ′相似,其实这是有公共底角的两个等腰三角形,容易想象,存在两种情况.我们也可以讨论△B ′CD 与△C B B ′相似,这两个三角形有一组公共角∠B ,根据对应边成比例,分两种情况计算.例5(2009年临沂市中考第26题)如图1,抛物线经过点A (4,0)、B (1,0)、C (0,-2)三点. (1)求此抛物线的解析式;(2)P 是抛物线上的一个动点,过P 作PM ⊥x 轴,垂足为M ,是否存在点P ,使得以A 、P 、M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的 点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线是有一点D ,使得△DCA 的面积最大,求出点D 的坐标.图1满分解答(1)因为抛物线与x 轴交于A (4,0)、B (1,0)两点,设抛物线的解析式为)4)(1(--=x x a y ,代入点C 的 坐标(0,-2),解得21-=a .所以抛物线的解析式为22521)4)(1(212-+-=---=x x x x y .(2)设点P 的坐标为))4)(1(21,(---x x x .①如图2,当点P 在x 轴上方时,1<x <4,)4)(1(21---=x x PM ,x AM -=4.如果2==CO AO PM AM ,那么24)4)(1(21=----xx x .解得5=x 不合题意.如果21==COAO PMAM ,那么214)4)(1(21=----xx x .解得2=x .此时点P 的坐标为(2,1).②如图3,当点P 在点A 的右侧时,x >4,)4)(1(21--=x x PM ,4-=x AM .解方程24)4)(1(21=---x x x ,得5=x .此时点P 的坐标为)2,5(-.解方程214)4)(1(21=---x x x ,得2=x 不合题意.③如图4,当点P 在点B 的左侧时,x <1,)4)(1(21--=x x PM ,x AM -=4.解方程24)4)(1(21=---x x x ,得3-=x .此时点P 的坐标为)14,3(--.解方程214)4)(1(21=---xx x ,得0=x .此时点P 与点O 重合,不合题意.综上所述,符合条件的 点P 的坐标为(2,1)或)14,3(--或)2,5(-.图2 图3 图4(3)如图5,过点D 作x 轴的垂线交AC 于E .直线AC 的解析式为221-=x y .设点D 的横坐标为m )41(<<m ,那么点D 的坐标为)22521,(2-+-m mm ,点E 的坐标为)221,(-m m .所以)221()22521(2---+-=m m mDE m m2212+-=.因此4)221(212⨯+-=∆m mS DAC m m 42+-=4)2(2+--=m .当2=m 时,△DCA 的面积最大,此时点D 的坐标为(2,1).图5 图6考点伸展第(3)题也可以这样解:如图6,过D 点构造矩形OAMN ,那么△DCA 的面积等于直角梯形CAMN 的面积减去△CDN 和△ADM 的面积.设点D 的横坐标为(m ,n ))41(<<m ,那么42)4(21)2(214)22(21++-=--+-⨯+=n m m n n m n S .由于225212-+-=m mn ,所以m m S 42+-=.例6(2009年上海市闸北区中考模拟第25题)如图1,△ABC 中,AB =5,AC =3,cos A =310.D 为射线BA 上的点(点D 不与点B 重合),作DE //BC 交射线CA 于点E ..(1) 若CE =x ,BD =y ,求y 与x 的函数关系式,并写出函数的定义域;(2) 当分别以线段BD ,CE 为直径的两圆相切时,求DE 的长度;(3) 当点D 在AB 边上时,BC 边上是否存在点F ,使△ABC 与△DEF 相似?若存在,请求出线段BF 的长;若不存在,请说明理由.图1 备用图备用图满分解答(1)如图2,作BH⊥AC,垂足为点H.在Rt△ABH中,AB=5,cosA=310A HA B=,所以AH=32=12AC.所以BH垂直平分AC,△ABC 为等腰三角形,AB=CB=5.因为DE//BC,所以A B A CD BE C=,即53y x=.于是得到53y x=,(0x>).(2)如图3,图4,因为DE//BC,所以D E A EB C A C=,M N A NB C A C=,即|3|53D E x-=,1|3|253xM N-=.因此5|3|3xD E-=,圆心距5|6|6xM N-=.图2 图3 图4在⊙M中,115226Mr B D y x===,在⊙N中,1122Nr C E x==.①当两圆外切时,5162x x+5|6|6x-=.解得3013x=或者10x=-.如图5,符合题意的解为3013x=,此时5(3)15313xD E-==.②当两圆内切时,5162x x-5|6|6x-=.当x<6时,解得307x=,如图6,此时E在CA的延长线上,5(3)1537xD E-==;当x>6时,解得10x=,如图7,此时E在CA的延长线上,5(3)3533xD E-==.图5 图6 图7(3)因为△ABC 是等腰三角形,因此当△ABC 与△DEF 相似时,△DEF 也是等腰三角形.如图8,当D 、E 、F 为△ABC 的三边的中点时,DE 为等腰三角形DEF 的腰,符合题意,此时BF =2.5.根据对称性,当F 在BC 边上的高的垂足时,也符合题意,此时BF =4.1.如图9,当DE 为等腰三角形DEF 的底边时,四边形DECF 是平行四边形,此时12534B F =.图8 图9 图10 图11考点伸展第(3)题的情景是一道典型题,如图10,如图11,AH 是△ABC 的高,D 、E 、F 为△ABC 的三边的中点,那么四边形DEHF 是等腰梯形.例7(2008年杭州市中考第24题)如图1,在直角坐标系xOy 中,设点A (0,t ),点Q (t ,b ).平移二次函数2tx y -=的图象,得到的抛物线F 满足两个条件:①顶点为Q ;②与x 轴相交于B 、C 两点(∣OB ∣<∣OC ∣),连结A ,B .(1)是否存在这样的抛物线F ,使得OC OB OA ⋅=2?请你作出判断,并说明理由;(2)如果AQ ∥BC ,且tan ∠ABO =23,求抛物线F 对应的二次函数的解析式.满分解答(1)因为平移2tx y -=的图象得到的抛物线F 的顶点为Q (t ,b ),所以抛物线F 对应的解析式为b t x t y +--=2)(.因为抛物线与x 轴有两个交点,因此0>b t .令0=y ,得-=t OB tb ,+=t OC tb .所以-=⋅t OC OB (|||||tb )( +t tb )|-=2|t22|OA ttb ==.即22b t t t-=±.所以当32t b =时,存在抛物线F 使得||||||2OC OB OA ⋅=.(2)因为AQ //BC ,所以t =b ,于是抛物线F 为t t x t y +--=2)(.解得1,121+=-=t x t x . ①当0>t 时,由||||OC OB <,得)0,1(-t B .如图2,当01>-t 时,由=∠ABO tan 23=||||OB OA =1-t t ,解得3=t .此时二次函数的解析式为241832-+-=x x y .如图3,当01<-t 时,由=∠ABO tan 23=||||OB OA =1+-t t ,解得=t 53.此时二次函数的解析式为-=y 532x +2518x +12548.图2 图3②如图4,如图5,当0<t 时,由||||OC OB <,将t -代t ,可得=t 53-,3-=t .此时二次函数的解析式为=y 532x+2518x -12548或241832++=x x y .图4 图5考点伸展第(2)题还可以这样分类讨论:因为AQ //BC ,所以t =b ,于是抛物线F 为2()y t x t t =--+.由3tan 2O A A B O O B∠==,得23O B O A =.①把2(,0)3B t 代入2()y t x t t =--+,得3t =±(如图2,图5).②把2(,0)3B t -代入2()y t x t t =--+,得35t =±(如图3,图4).。
学生做题前请先回答以下问题问题1:相似三角形的判定:①________________________________________;②________________________________________;③________________________________________;④_________________________________________________________.在证明两个三角形相似时,首先考虑角度信息,其次考虑对应边成比例.问题2:想一想相似三角形的判定与性质的区别是什么?问题3:如果两个图形___________,而且____________________________,那么这样的两个图形叫做位似图形,这个点叫做________;位似图形上__________________________________________________.相似三角形的判定一、单选题(共9道,每道11分)1.如图,下列条件不能判定△ADB∽△ABC的是( )A.∠ABD=∠ACBB.∠ADB=∠ABCC. D.答案:D解题思路:试题难度:三颗星知识点:相似三角形的判定2.如图,在△ABC中,DE∥BC,,则下列结论中正确的是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:相似三角形的判定与性质3.如图,在平行四边形ABCD中,点E在AD边上,连接CE并延长,交BA的延长线于点F,若,CD=3,则AF的长为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:相似三角形的判定与性质4.如图,已知AD为△ABC的角平分线,DE∥AB,交AC于点E,若,则的值为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:相似三角形的判定5.如图,在△ABC中,∠BAC=90°,D是BC中点,AE⊥AD交CB的延长线于点E,则下列结论正确的是( )A.△AED∽△ACBB.△AEB∽△ACDC.△BAE∽△ACED.△AEC∽△DAC答案:C解题思路:试题难度:三颗星知识点:相似三角形的判定6.如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB:FG=2:3,则下列结论正确的是( )A.2DE=3MNB.3DE=2MNC.3∠A=2∠FD.2∠A=3∠F答案:B解题思路:试题难度:三颗星知识点:位似变换7.如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大为原来的2倍,得到△.若点A的坐标是(1,2),则点的坐标是( )A.(2,4)B.(-1,-2)C.(-2,-4)D.(-2,-1)答案:C解题思路:试题难度:三颗星知识点:相似三角形的性质和判定8.如图,在△ABC中,AB=6,AC=4,P是AC的中点,过点P的直线交AB于点Q,若以A,P,Q为顶点的三角形和以A,B,C为顶点的三角形相似,则AQ的长为( )A.3B.3或C.3或D.答案:B解题思路:试题难度:三颗星知识点:相似三角形的性质和判定9.如图,在Rt△ABO中,∠AOB=90°,∠ABO=60°,,D为BO的中点,若E是线段AB上的一动点,连接DE,当△BDE与△AOB相似时,点E的坐标为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:相似三角形的性质和判定。
答:y关于x的函数关系式为y=81:x(0<x<)(2012年1月最新最细)2011全国中考真题解析120考点汇编相似三角形判定和性质一、选择题1.(2011湖北荆州,7,3分)如图,P为线段AB上一点,AD与BC交干E,∠CPD=∠A=∠B,BC交PD于E,AD交PC于G,则图中相似三角形有()A、1对B、2对C、3对D、4对考点:相似三角形的判定.专题:证明题.分析:根据题目提供的相等的角和图形中隐含的相等的角,利用两对应角对应相等的两三角形相似找到相似三角形即可.解答:解:∵∠CPD=∠A=∠B,∴△PCF∽△BCP△APG∽△BFP△APD∽△GPD故选B.点评:本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角.2.(2011江苏无锡,7,3分)如图,四边形ABCD的对角线AC、BD相交于O,且将这个四边形分成①、②、③、④四个三角形.若OA:OC=0B:OD,则下列结论中一定正确的是()答:y 关于x 的函数关系式为y=81:x (0<x <)A .①与②相似B .①与③相似C .①与④相似D .②与③相似 考点:相似三角形的判定。
分析:由OA :OC ﹣=0B :OD ,利用对顶角相等相等,两三角形相似,①与③相似,问题可求.解答:证明:∵OA :OC=0B :OD , ∠AOB=∠COD (对顶角相等), ∴①与③相似. 故选B .点评:本题解答的关键是熟练记住所学的三角形相似的判定定理,此题难度不大,属于基础题.3. (2011山西,11,2分)如图,△ABC 中,AB =AC ,点D 、E 分别是边AB 、AC 的中点,点G 、F 在BC 边上,四边形DEFG 是正方形.若DE =2㎝,则AC 的长为( ) A .33cm B . 4cm C . 23cm D . 25cm考点:三角形中位线,相似三角形的相似比 专题:相似三角形分析:由题意知DE 是等腰△ABC 的中位线,所以DE ∥BC ,DE =12BC , 因为DE =2第11题ABEF D G答:y关于x的函数关系式为y=81:x(0<x<)㎝,所以BC=4㎝.又DE∥BC,所以△ADE∽△ABC,且相似比为12.过点A作AM⊥BC于点M.则MC=2㎝,由点E是边AC的中点,EF∥AM,所以FC=1㎝.在△EFC中,因为正方形DEFG的边长是2㎝,所以根据勾股定理得EC5AC=)25cm,故选D.解答:D点评:此题是三角形中位线,等腰三角形的性质,勾股定理,相似三角形的相似比等的综合应用.过点A作AM⊥BC于点M,构造等腰三角形的高学生不易想到.4.(2011陕西,9,3分)如图,在□ABCD中,E、F分别是AD、CD边上的点,连接BE、AF,他们相交于点G,延长BE交CD的延长线于点H,则图中的相似三角形共有()A.2对 B.3对 C.4对 D.5对考点:相似三角形的判定;平行四边形的性质。
相似三角形总结一、如何证明三角形相似例1、如图:点G 在平行四边形ABCD 的边DC 的延长线上,AG 交BC 、BD 于点E 、F ,则△AGD ∽ ∽ 。
例2、已知△ABC 中,AB=AC ,∠A=36°,BD 是角平分线,求证:△ABC ∽△BCD例3:已知,如图,D 为△ABC 内一点连结ED 、AD ,以BC 为边在△ABC 外作∠CBE=∠ABD ,∠BCE=∠BAD求证:△DBE ∽△ABC例4、矩形ABCD 中,BC=3AB ,E 、F ,是BC 边的三等分点,连结AE 、AF 、AC ,问图中是否存在非全等的相似三角形?请证明你的结论。
二、如何应用相似三角形证明比例式和乘积式例5、△ABC 中,在AC 上截取AD ,在CB 延长线上截取BE ,使AD=BE ,求证:DF ∙AC=BC ∙FE例6:已知:如图,在△ABC 中,∠BAC=900,M 是BC 的中点,DM ⊥BC 于点E ,交BA 的延长线于点D 。
求证:(1)MA 2=MD ∙ME ;(2)MD MEADAE =22 例7:如图△ABC 中,AD 为中线,CF 为任一直线,CF 交AD 于E ,交AB 于F ,求证:AE :ED=2AF :FB 。
三、如何用相似三角形证明两角相等、两线平行和线段相等。
例8:已知:如图E 、F 分别是正方形ABCD 的边AB 和AD 上的点,且31==AD AF AB EB 。
求证:∠AEF=∠FBD例9、在平行四边形ABCD 内,AR 、BR 、CP 、DP 各为四角的平分线, 求证:SQ ∥AB ,RP ∥BC例10、已知A 、C 、E 和B 、F 、D 分别是∠O 的两边上的点,且AB ∥ED ,BC ∥FE ,求证:AF ∥CD例11、直角三角形ABC 中,∠ACB=90°,BCDE 是正方形,AE 交BC 于F ,FG ∥AC 交AB 于G ,求证:FC=FG例12、Rt △ABC 锐角C 的平分线交AB 于E ,交斜边上的高AD 于O ,过O 引BC 的平行线交AB 于F ,求证:AE=BFABCDEFGAB CD E M 12A B C DE FG 1234ABC D AB C D E FK A B CD E FABCDS PRQOAB CD EFA BCDEF O 123ABCDFE相似三角形总结(答案)例1分析:关键在找“角相等”,除已知条件中已明确给出的以外,还应结合具体的图形,利用公共角、对顶角及由平行线产生的一系列相等的角。
相似三角形性质知识精要一、相似三角形的性质1、(定义):相似三角形的对应角相等,对应边成比例。
2、性质定理1:相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比。
3、性质定理2:相似三角形的周长比等于相似比。
4、性质定理3:相似三角形的面积比等于相似比的平方。
二、相似三角形的应用例题讲解:例题:地图比例尺为1:2000,一块多边形地区在地图上周长为50cm,面积为100cm2,实际周长为1000 m,实际面积为40000m2。
变式:东海大桥全长32.5千米,如果东海大桥在某张地图上的长为6.5厘米,那么该地图上距离与实际距离的比为( )。
A.1:5000000B.1:500000C.1:50000D.1:5000答案:B例题:(1)两个相似三角形的面积之比为9:16,它们的对应高之比为3:4 。
(2)两个相似三角形的相似比为1:3,则它们的周长比为1:3 ,面积比为1:9 。
变式:(1)两个相似三角形面积之比是1:3,则他们对应边上的高之比为( )。
(A).1:3 (B) 3:1 (C) 1:3(D) 1:9(2)两个相似三角形的相似比是2:3,面积相差30厘米2,则它们的面积之和是( )。
(A)150厘米2(B) 65厘米2(C) 45厘米2(D) 78厘米2答案:(1) C (2)D。
例题:如图,已知DE//BC ,AD:DB=2:3,那么S △ADE :S △ECB = 4:15 。
变式:如图,在ABCD 中,AC 与DE 交于点F ,AE:EB=1:2,S △AEF =6cm 2,则S △CDF 的值为( )。
A.12cm 2B.15cm 2C.24cm 2D.54cm 2答案:D 。
例题:如图,已知梯形ABCD 中,AD//BC ,AD:BC=3:5, 求: (1)S △AOD :S △BOC 的值;(2)S △AOB :S △AOD 的值. 答案:(1)9:25 (2)5:3。
2011年中考相似三角形的判定与性质解答题11、(2011•遵义)如图,梯形ABCD中,AD∥BC,BC=20cm,AD=10cm,现有两个动点P、Q分别从B、D两点同时出发,点P以每秒2cm的速度沿BC向终点C移动,点Q以每秒1cm的速度沿DA向终点A移动,线段PQ与BD相交于点E,过E作EF∥BC交CD于点F,射线QF交BC的延长线于点H,设动点P、Q移动的时间为t(单位:秒,0<t<10).(1)当t为何值时,四边形PCDQ为平行四边形?(2)在P、Q移动的过程中,线段PH的长是否发生改变?如果不变,求出线段PH的长;如果改变,请说明理由.2、(2011•珠海)如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=AB=1,BC=2.将点A折叠到CD边上,记折叠后A点对应的点为P(P与D点不重合),折痕EF只与边AD、BC相交,交点分别为E、F.过P作PN∥BC交AB于N、交EF于M,连接PA、PE、AM,EF与PA相交于O.(1)指出四边形PEAM的形状(不需证明);(2)记∠EPM=a,△AOM、△AMN的面积分别为S1、S2.①求证:S1tana2=18PA2;②设AN=x,y=S1-S2tana2,试求出以x为自变量的函数y的解析式,并确定y的取值范围.3、(2011•株洲)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC 于Q.(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P 运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.4、(2011•重庆)如图,矩形ABCD中,AB=6,BC=23,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点发发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD 在射线PA的同侧.设运动的时间为t秒(t≥0).(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由.5、(2011•张家界)如图,在⊙O中,直径AB的两侧有定点C和动点P,点P在弧AB上运动(不与A、B重合),过点C作CP的垂线,与PB的延长线交于点Q.(1)试猜想:△PCQ与△ACB具有何种关系?(不要求证明);(2)当点P运动到什么位置时,△ABC≌△PCB,并给出证明.6、(2011•岳阳)如图1,将菱形纸片AB(E)CD(F)沿对角线BD(EF)剪开,得到△ABD和△ECF,固定△ABD,并把△ABD与△ECF叠放在一起.(1)操作:如图2,将△ECF的顶点F固定在△ABD的BD边上的中点处,△ECF绕点F在BD边上方左右旋转,设旋转时FC交BA于点H(H点不与B点重合),FE交DA于点G(G点不与D点重合).求证:BH•GD=BF2(2)操作:如图3,△ECF的顶点F在△ABD的BD边上滑动(F点不与B、D点重合),且CF始终经过点A,过点A作AG∥CE,交FE于点G,连接DG.探究:FD+DG= 请予证明.7、(2011•益阳)如图是小红设计的钻石形商标,△ABC是边长为2的等边三角形,四边形ACDE是等腰梯形,AC∥ED,∠EAC=60°,AE=1.(1)证明:△ABE≌△CBD;(2)图中存在多对相似三角形,请你找出一对进行证明,并求出其相似比(不添加辅助线,不找全等的相似三角形);(3)小红发现AM=MN=NC,请证明此结论;(4)求线段BD的长.8、(2011•义乌市)如图1,在等边△ABC中,点D是边AC的中点,点P是线段DC上的动点(点P与点C不重合),连接BP.将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,连接AA1,射线AA1分别交射线PB、射线B1B于点E、F.(1)如图1,当0°<α<60°时,在α角变化过程中,△BEF与△AEP始终存在关系(填“相似”或“全等”),并说明理由;(2)如图2,设∠ABP=β.当60°<α<180°时,在α角变化过程中,是否存在△BEF与△AEP全等?若存在,求出α与β之间的数量关系;若不存在,请说明理由;(3)如图3,当α=60°时,点E、F与点B重合.已知AB=4,设DP=x,△A1BB1的面积为S,求S关于x的函数关系式.9、(2011•宜昌)如图,D是△ABC的边BC的中点,过AD延长线上的点E作AD的垂线EF,E为垂足,EF与AB的延长线相交于点F,点O在AD上,AO=CO,BC∥EF.(1)证明:AB=AC;(2)证明:点O是△ABC的外接圆的圆心;(3)当AB=5,BC=6时,连接BE,若∠ABE=90°,求AE的长.10、(2011•扬州)在△ABC中,∠BAC=90°,AB<AC,M是BC边的中点,MN⊥BC交AC于点N.动点P从点B出发沿射线BA以每秒3厘米的速度运动.同时,动点Q从点N出发沿射线NC运动,且始终保持MQ丄MP.设运动时间为t秒(t>0).(1)△PBM与△QNM相似吗?以图1为例说明理由:(2)若∠ABC=60°,AB=43厘米.①求动点Q的运动速度;②设△APQ的面积为S(平方厘米),求S与t的函数关系式.21、(2011•宿迁)如图,在平面直角坐标系中,O为坐标原点,P是反比例函数y=6x(x>0)图象上的任意一点,以P为圆心,PO为半径的圆与x、y轴分别交于点A、B.(1)判断P是否在线段AB上,并说明理由;(2)求△AOB的面积;(3)Q是反比例函数y=6x(x>0)图象上异于点P的另一点,请以Q为圆心,QO半径画圆与x、y轴分别交于点M、N,连接AN、MB.求证:AN∥MB.22、(2011•苏州)已知四边形ABCD是边长为4的正方形,以AB为直径在正方形内作半圆,P是半圆上的动点(不与点A、B重合),连接PA、PB、PC、PD.(1)如图①,当PA的长度等于时,∠PAD=60°;当PA的长度等于时,△PAD是等腰三角形;(2)如图②,以AB边所在直线为x轴、AD边所在直线为y轴,建立如图所示的直角坐标系(点A即为原点O),把△PAD、△PAB、△PBC的面积分别记为S1、S2、S3.设P点坐标为(a,b),试求2S1S3-S22的最大值,并求出此时a、b的值.23、(2011•上海)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点P是AB边上任意一点,直线PE ⊥AB,与边AC或BC相交于E.点M在线段AP上,点N在线段BP上,EM=EN,sin∠EMP=1213.(1)如图1,当点E与点C重合时,求CM的长;(2)如图2,当点E在边AC上时,点E不与点A、C重合,设AP=x,BN=y,求y关于x的函数关系式,并写出函数的定义域;(3)若△AME∽△ENB(△AME的顶点A、M、E分别与△ENB的顶点E、N、B对应),求AP的长.24、(2011•泉州)如图,在直角坐标系中,点A的坐标为(0,8),点B(b,t)在直线x=b上运动,点D、E、F分别为OB、0A、AB的中点,其中b是大于零的常数.(1)判断四边形DEFB的形状.并证明你的结论;(2)试求四边形DEFB的面积S与b的关系式;(3)设直线x=b与x轴交于点C,问:四边形DEFB能不能是矩形?若能.求出t的值;若不能,说明理由.25、(2011•泉州)如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE 保持垂直平分PQ,且交PQ于点D,交折线QB-BO-OP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)求直线AB的解析式;(2)在点P从O向A运动的过程中,求△APQ的面积S与t之间的函数关系式(不必写出t的取值范围);(3)在点E从B向O运动的过程中,完成下面问题:①四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,请说明理由;②当DE经过点O时,请你直接写出t的值.26、(2011•青岛)如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,且BD=8cm.点M从点A出发,沿AC的方向匀速运动,速度为2cm/s;同时直线PQ由点B出发,沿BA的方向匀速运动,速度为1cm/s,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接PM,设运动时间为ts(0<t<5).(1)当t为何值时,四边形PQCM是平行四边形?(2)设四边形PQCM的面积为ycm2,求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形PQCM=916S△ABC?若存在,求出t的值;若不存在,说明理由;(4)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.27、(2011•莆田)已知菱形ABCD的边长为1.∠ADC=60°,等边△AEF两边分别交边DC、CB于点E、F.(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点.求证:菱形ABCD对角线AC、BD交点O即为等边△AEF的外心;(2)若点E、F始终分别在边DC、CB上移动.记等边△AEF的外心为点P.①猜想验证:如图2.猜想△AEF的外心P落在哪一直线上,并加以证明;②拓展运用:如图3,当△AEF面积最小时,过点P任作一直线分别交边DA于点M,交边DC的延长线于点N,试判断1DM+1DN是否为定值?若是,请求出该定值;若不是,请说明理由.28、(2011•盘锦)如图,在一个矩形空地ABCD上修建一个矩形花坛AMPQ,要求点M在AB上,点Q 在AD上,点P在对角线BD上.若AB=6m,AD=4m,设AM的长为xm,矩形AMPQ的面积为S平方米.(1)求S与x的函数关系式;(2)当x为何值时,S有最大值?请求出最大值.29、(2011•南京)如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC相似,那么就称P为△ABC的自相似点.(1)如图②,已知Rt△ABC中,∠ACB=90°,∠ABC>∠A,CD是AB上的中线,过点B作BE丄CD,垂足为E.试说明E是△ABC的自相似点;(2)在△ABC中,∠A<∠B<∠C.①如图③,利用尺规作出△ABC的自相似点P(写出作法并保留作图痕迹);②若△ABC的内心P是该三角形的自相似点,求该三角形三个内角的度数.30、(2011•南充)如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD 上.(1)求证:△ABF∽△DFE;(2)若sin∠DFE=13,求tan∠EBC的值.11、(2011•盐城)情境观察将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.观察图2可知:与BC相等的线段是,∠CAC′= 。
常考题型与知识点比例尺上海与南京的实际距离约350千米,在比例尺为1:5 000 000的地图上,上海与南京的图上距离约 厘米.比例性质1、已知31=y x ,那么yx x+= . 2、已知:线段a 、b 、c ,且234a b c==. (1)求a bb+的值; (2)如线段a 、b 、c 满足27a b c ++=,求a 、b 、c 的值.平行线截线段 概念1、如果点D 、E 分别在△ABC 边AB 、AC 的反向延长线上,一定能推出DE ∥BC 的条件是( )A .AC AE BC DE = ; B .AC AD AB AE =; C .AE AC AD AB =; D .BDADCE AC =.2、如图1,已知AB ∥CD ∥EF ,那么下列结论正确的是( ) A .AD BC DF CE =; B .BC DFCE AD =; C .CD BC EF BE =; D .CD AD EF AF=.计算3、如图l ,已知DE ∥BC , 2AD =,3BD =,1AE =,那么AC 的长是 .4、如图,在△ABC 中,点D 、E 分别在边BA 、CA 的延长线上,DE ∥BC ,若:3:4AD AB =,6AE =,则AC 等于 .5、如图8,在△ABC 中,BD 平分ABC ∠交AC 于点D ,BC DE //交AB 于点E ,4=DE ,6=BC ,5=AD .求DC 与AE 的长.6、菱形ABCD 边长为4,点E 在直线..AD 上,3DE =,联结BE 与对角线AC 交点M ,那么MCAM的值是重心1、在Rt △ABC 中,90ACB ∠=,点G 是△ABC 的重心,且2CG =,则AB 的长为( )A .2;B .3;C .4;D .6.2、如图2,已知:点P 是等边ABC ∆的重心,2PD =,那么AB = .3、已知在△ABC 中,5AB AC ==,8BC =,点G 为重心,那么GA = .4、在Rt ABC ∆中,∠ACB =90°,D 是Rt ABC ∆的重心,已知2CD =,3AC =, 则∠B = 度.A EC D图8相似三角形的性质1、已知△ABC与△DEF相似,且A D∠=∠,那么下列结论中,一定成立的是()A.B E∠=∠;B.AB ACDE DF=;C.相似比为ABDE;D.相似比为BCEF.2、如果两个相似三角形的面积比是1:4,那么它们的周长比为 .3、如果两个相似三角形的面积之比是9∶25,其中小三角形一边上的中线长是12cm,那么大三角形对应边上的中线长是cm.相似三角形的判定1、下列图形中一定相似的一组是()A.邻边对应成比例的两个平行四边形;B.有一个内角相等的两个菱形;C.腰长对应成比例的两个等腰三角形;D.有一条边相等的两个矩形.寻找相似三角形2、如图(18题图),在3×4的方格纸上,每个方格的边长为1个单位,△ABC的顶点都在方格的格点位置,若点D在格点位置上(与点A不重合),且使△DBC与△ABC相似,则符合条件的点D共有个.3、如图,A、B、C、P、Q、甲、乙、丙、丁都是方格纸中的格点,如果△RPQ∽△ABC,那么点R应是甲、乙、丙、丁四点中的()A.甲;B.乙;C.丙;D.丁.4、已知在△ABC 中,20AB =,12AC =,16BC =,点D 是射线BC 上的一点(不与端点B 重合),联结AD ,如果△ACD 与△ABC 相似,那么BD = .5、如图,D 是ABC ∆的边BC 上的一点,BAD C ∠=∠,ABC ∠的平分线分别与AC 、AD 相交于点E 、F 则图形中共有____对相似三角形(不添加任何辅助线)6、如图,在正方形ABCD 中,E 为BC 中点,3DF FC =,联结AE 、AF 、EF ,那么下列结果错误..的是( ) A .△ABE 与△EFC 相似; B .△ABE 与△AEF 相似; C .△ABE 与△AFD 相似; D .△AEF 与△EFC 相似.证明相似、线段比例式、乘积式7、如图12,ABC ∆是等边三角形,且AD ED BD CD ⋅=⋅(1)求证:△ABD ∽△CED ;(2)若6AB =,2AD CD =,求BE 的长.8、已知Rt △ABC 中,∠ACB =90°中,2AC =,4BC =,点D 在 BC 边上,且∠CAD =∠B .(1)求AD 的长.(2)取AD 、AB 的中点E 、F ,联结、CE 、EF , 求证:△CEF ∽△ADB .A E FDC(图12)9、如图,在正方形ABCD 中,点E ,F 分别是边CB 、DC 延长线上的点,且BE CF =,联结AE 、FB ,FB 的延长线交AE 于点M . 求证:(1)BEM ∆∽BFC ∆;(2)2CF FB ME =⋅.综合题1、如图,直角梯形ABCD 中,AB ∥DC ,∠DAB=90°,AD=2DC=4,AB=6.动点M 以每秒1个单位长的速度,从点A 沿线段AB 向点B 运动;同时点P 以相同的速度,从点C 沿折线C D A --向点A 运动.当点M 到达点B 时,两点同时停止运动.过点M 作直线l ∥AD ,与折线A C B --的交点为Q .点M 运动的时间为t (秒).(1)当0.5t =时,求线段QM 的长;(2)点M 在线段AB 上运动时,是否可以使得以C 、P 、Q 为顶点的三角形为直角三角形,若可以,请直接写出t 的值(不需解题步骤);若不可以,请说明理由. (3)若△PCQ 的面积为y ,请求y 关于出t 的函数关系式及自变量的取值范围;Q A B CDlMP 第25题图AB CD(备用图1)ABCD(备用图2)2、如图,在矩形ABCD 中,4AB =,2AD =,点M 是AD 的中点,点E 是边AB 上的一动点,联结EM 并延长交射线CD 于点F ,过M 作EF 的垂线交BC 的延长线于点G ,联结EG ,交边DC 于点Q 设AE 的长为x ,△EMG 的面积为y . (1)求MEG ∠的正切值;(2)求y 关于x 的函数解析式,并写出x 的取值范围;(3)线段MG 的中点记为点P ,联结CP ,若△PGC ∽△EFQ ,求y 的值.3、已知在梯形ABCD 中,DC AB //,PD AD 2=,PB PC 2=,PCD ADP ∠=∠,4==PC PD ,如图12. (1)求证:BC PD //;(2)若点Q 在线段PB 上运动,与点P 不重合,联结CQ 并延长交DP 的延长线于点O , 如图13,设x PQ =,y DO =,求y 与x 的函数关系式,并写出它的定义域; (3)若点M 在线段PA 上运动,与点P 不重合,联结CM 交DP 于点N ,当△PNM 是等腰三角形时,求PM 的值.A P D CB 图12 A P DC B 图13Q O A PD CB 备用图4、在△ABC 中,90ACB ∠=︒,4AC =,3BC =,D 是边AC 上一动点(不与端点A 、C 重合),过动点D 的直线l 与射线AB 相交于点E ,与射线BC 相交于点F . (1)设1CD =,点E 在边AB 上,△ADE 与△ABC 相似,求此时BE 的长度;(2)如果点E 在边AB 上,以点E 、B 、F 为顶点的三角形与以点E 、A 、D 为顶点的三角形相似,设CD x =,BF y =,求y 与x 之间的函数关系式并写出函数的定义域; (3)设1CD =,以点E 、B 、F 为顶点的三角形与以点E 、A 、D 为顶点的三角形相似,求:EBF EAD S S ∆∆的值.BCA BC A BCA常考相似三角形基本图形(一) 两组平行线型(平行四边形)1、如图,四边形ADEF 是菱形,如果30AC =,20AB =,则EF = .2、如图5,在平行四边形ABCD 中,点E 是DC 的中点,BE 与AC相交于点O ,如果△EOC 的面积是21cm ,那么平行四边形ABCD 的面积是 2cm .3、如图6,已知菱形ABCD ,点G 在BC 的延长线上,联结AG ,与边CD 交于点E ,与对角线BD 交于点F ,求证:2AF EF FG = .ABFCEG D4、已知:ABCD 中,E 是边BA 延长线上一点,CE 交DB 于点G ,交AD 于点F .求证:2CG GF GE =.5、如图:AD ∥EG ∥BC ,EG 分别交AB 、DB 、AC 于点E 、F 、G , 已知6AD =,10BC =,3AE =,5AB =,求EG 、FG 的长.第5题图GFE DA BCA B DCE O 图56、如图,在平行四边形ABCD 中,点E 是BC 延长线上一点,联结AE 分别交BD 、DC 于点F 、G .(1)求证:DG BCDC BE=; (2)若2AD =,6BE =,DBC BAE ∠=∠,求AF 的长.(二)交错截线型I1、如图,在△ABC 中,∠1=∠A ,如果2BD =,1DA =,那么BC= .2、如图,将ABE ∆沿直线AC 翻折,使点B 与AE 边上的点D 重合,若5AB AC ==,9AE =,则CE = .A B C DE (第18题图)(图10)3、已知:如图,在△ABC 中,AB AC =,DE ∥BC ,点F 在边AC 上,DF 与BE 相交于点G ,且∠EDF =∠ABE . 求证:(1)△DEF ∽△BDE ;(2)DG DF DB EF ⋅=⋅.4、如图10,ABC ∆是直角三角形,∠ACB =90°,CD AB ⊥ED 的延长线与CB 的延长线交于点F .求证:FCFDFD FB =.(三)射影定理型1、如图,AD 是△ABC 的边BC 上的高,且AD 是BD 与DC 的比例中项.求证:△ABC 是直角三角形.C(第23题图)2、已知:如图,在矩形ABCD 中,4AB =,6BC =,M 是边BC 的中点,DE AM ⊥,垂足为E .求:线段DE 的长.3、如图10,在△ABC 中,正方形EFGH 内接于△ABC ,点E 、F 在边AB 上,点G 、H 分别在BC 、AC 上,且FB AE EF ⋅=2.(1)求证:︒=∠90C ;(2)求证:FB AE CG AH ⋅=⋅.(四)一线三等角1、如图,点G 是等边△ABC 的重心,过点G 作BC 的平行线,分别交AB 、AC 于点D 、E ,在BC 边上确定一点M .使△BDM ∽△C E M (但不全等),则BDM CEM S S △△:= .A BCDME (第2题图)图102、如图,四边形ABCD 是正方形,点E 、F 分别在边DC 、BC 上,AE EF ⊥,如果53DE EC =,那么:AE EF 的值是 .3、如图,已知ABC ∆与BDE ∆都是等边三角形,点D 在边AC 上(不与A 、C 重合),DE 与AB 相交于点F .(1)求证:BCD ∆∽DAF ∆; (2)若1BC =,设CD x =,AF y =; ①求y 关于x 的函数解析式及定义域; ②当x 为何值时,79BEF BCD S S ∆∆=?A BCDE F(第3题图)4、如图,在梯形ABCD 中,AD ∥BC ,6AB CD BC ===,3AD =.点M 为边BC 的中点,以M 为顶点作EMF B ∠=∠,射线ME 交腰AB 于点E ,射线MF 交腰CD 于点F ,联结EF .(1)求证:△MEF ∽△BEM ; (2)若△BEM 是以BM 为腰的等腰三角形,求EF 的长; (3)若EF CD ⊥,求BE 的长.(五)交错截线型II1、如图,四边形ABCD 的对角线AC 与BD 相交于点D ,BAC BDC ∠=∠. 求证:△AOD ∽△BOC .2、如图,已知在四边形ABCD 中,AC 与BD 相交于点O ,AB ⊥AC ,CD ⊥BD . (1)求证:AOD ∆∽BOC ∆; (2)若32sin =∠ABO ,4=∆AOD S ,求BOC S ∆的值.3、如图,在△ABC 中,90BAC ∠=︒,AD 是BC 边上的高,点E 在线段DC 上,EF AB ⊥,EG AC ⊥,垂足分别为F 、G ,求证: (1)EG CGAD CD =; (2)FD DG ⊥.ABCDO(第22题图)中间比1、已知:如同,点E 、F 、G 分别在AB 、AC 、AD 上,且EG ∥BD ,FG ∥CD . (1)求证:EF ∥BC ;(2)求:三角形ABC 的面积.2、如图,在ABC ∆中,点D 是边AB 上的一点,过点D 作DE ∥BC 交边AC 于点E ,过点E 作EF ∥DC 交AD 于点F ,已知AD =8AB cm =. 求:(1)AE AC 的值;(2)AFAB的值.。
一、相似三角形中的动点问题1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB 于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.〔1〕当t为何值时,AD=AB,并求出此时DE的长度;〔2〕当△DEG与△ACB相似时,求t的值.2.如图,在△ABC 中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒.〔1〕①当t=2.5s时,求△CPQ的面积;②求△CPQ的面积S〔平方米〕关于时间t〔秒〕的函数解析式;〔2〕在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值.3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC于点E,EM ⊥BD,垂足为M,EN⊥CD,垂足为N.〔1〕当AD=CD时,求证:DE∥AC;〔2〕探究:AD为何值时,△BME与△E相似?4.如下列图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB以每秒4cm的速度向B点运动;同时点Q从C 〔1〕当x为何值时,PQ∥BC?〔2〕△APQ与△CQB能否相似?假如能,求出AP的长;假如不能说明理由.5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从A开始向点B以2cm/s的速度移动;点Q沿DA边从点D开始向点A 以1cm/s的速度移动.如果P、Q同时出发,用t〔s〕表示移动的时间〔0<t <6〕。
〔1〕当t为何值时,△QAP为等腰直角三角形?〔2〕当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?二、构造相似辅助线——双垂直模型6.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式.△ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长.△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB.9.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为〔1,3〕,将矩形沿对角线AC翻折B点落在D点的位置,且AD交y轴于点E.那么D点的坐标为〔〕A. B.C. D.10..,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第一象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。
相似三角形定义:如果两个三角形中,三角对应相等,三边对应成比例,那么这两个三角形叫做相似三角形。
几种特殊三角形的相似关系:两个全等三角形一定相似。
两个等腰直角三角形一定相似。
两个等边三角形一定相似。
两个直角三角形和两个等腰三角形不一定相似。
补充:对于多边形而言,所有圆相似;所有正多边形相似(如正四边形、正五边形等等);性质:两个相似三角形中,对应角相等、对应边成比例。
相似比:两个相似三角形的对应边的比,叫做这两个三角形的相似比。
如△ABC与△DEF相似,记作△ABC∽△DEF。
相似比为k。
判定:①定义法:对应角相等,对应边成比例的两个三角形相似。
②相似的预备定理:平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似。
三角形相似的判定定理:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.(此定理用的最多)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.直角三角形相似判定定理:1)斜边与一条直角边对应成比例的两直角三角形相似。
2)直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。
补充一:直角三角形中的相似问题:斜边的高分直角三角形所成的两个直角三角形与原直角三角形相似.射影定理:CD²=AD·BD,AC²=AD·AB,BC²=BD·BA(在直角三角形的计算和证明中有广泛的应用).补充二:三角形相似的判定定理推论推论一:顶角或底角相等的两个等腰三角形相似。
ABCDDABCDABCEAB C D E推论二:腰和底对应成比例的两个等腰三角形相似。
第27章:相似一、基础知识(一).比例1.第四比例项、比例中项、比例线段;2.比例性质:(1)基本性质:(2)合比定理:(3)等比定理:3.黄金分割:如图,若,则点P为线段AB的黄金分割点.4.平行线分线段成比例定理(二)相似1.定义:我们把具有相同形状的图形称为相似形.2.相似多边形的特性:相似多边的对应边成比例,对应角相等.3.相似三角形的判定(1)平行于三角形一边的直线与其它两边相交,所构成的三角形与原三角形相似。
(2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。
(3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
(4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
4.相似三角形的性质(1)对应边的比相等,对应角相等.(2)相似三角形的周长比等于相似比.(3)相似三角形的面积比等于相似比的平方.(4)相似三角形的对应边上的高、中线、角平分线的比等于相似比.5.三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线.三角形中位线性质: 三角形的中位线平行于第三边,并且等于它的一半。
6.梯形的中位线定义:梯形两腰中点连线叫做梯形的中位线.梯形的中位线性质: 梯形的中位线平行于两底并且等于两底和的一半.7.相似三角形的应用:1、利用三角形相似,可证明角相等;线段成比例(或等积式);2、利用三角形相似,求线段的长等3、利用三角形相似,可以解决一些不能直接测量的物体的长度。
如求河的宽度、求建筑物的高度等。
(三)位似:位似:如果两个图形不仅是相似图形,而且是每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形。
这个点叫做位似中心.这时的相似比又称为位似比.位似性质:位似图形上任意一对对应点到位似中心的距离之比等于位似位似比二、经典例题例1.如图在4×4的正方形方格中,△ABC和△DEF的顶点都在长为1的小正方形顶点上.(1)填空:∠ABC=______,BC=_______.(2)判定△ABC与△DEF是否相似?[考点透视]本例主要是考查相似的判定及从图中获取信息的能力.[参考答案] ①135°,2 ②能判断△ABC与△DEF相似,∵∠ABC=∠DEF=135°,=【点评】注意从图中提取有效信息,再用两对应边的比相等且它们两夹角相等来判断.例2. 如图所示,D、E两点分别在△ABC两条边上,且DE与BC不平行,请填上一个你认为适合的条件_________,使得△ADE∽△ABC.[考点透视]本例主要是考查相似的判定[参考答案] ∠1=∠B或∠2=∠C,或点评:结合判定方法补充条件.例3. 如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走2米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度等于( )A.4.5米 B.6米 C.7.2米 D.8米[考点透视]本例主要是考查相似的应用[参考答案] B【点评】在解答相似三角形的有关问题时,遇到有公共边的两对相似三角形,往往会用到中介比,它是解题的桥梁,如该题中“”.例4. 如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?[考点透视]本例主要是考查相似的实际应用[参考答案] 48mm【点评】解决有关三角形的内接正方形(或矩形)的计算问题,一般运用相似三角形“对应高之比等于相似比”这一性质来解答.例5.如图所示,在△ABC中,AB=AC=1,点D、E在直线BC上运动,设BD=x,CE=y.(1)如果∠BAC=30°,∠DAE=105°,试确定y与x之间的函数关系式;(2)如果∠BAC的度数为α,∠DAE的度数为β,当α、β满足怎样的关系式时,(1)中y与x之间的函数关系式还成立,试说明理由.[考点透视]本例主要是考查相似与函数的综合运用.[参考答案]解:在△ABC中,AB=AC=1,∠BAC=30°,∠ABC=∠ACB=75°,∠ABD=∠ACE=105°.又∠DAE=105°,∴∠DAB+∠CAE=75°.又∠DAB+∠ADB=∠ABC=75°,∴∠CAE=∠ADB,∴△ADB∽△EAC,∴,∴y=.当α1β满足β- =90°,y=仍成立.此时∠DAB+∠CAE=β-α,∴∠DAB+∠ADB=β-α,∴∠CAE=∠ADB.又∵∠ABD=∠ACE,∴△ADB∽△EAC,∴y=.【点评】确定两线段间的函数关系,可利用线段成比例、找相等关系转化为函数关系.例6. 一般的室外放映的电影胶片上每一个图片的规格为:3.5cm×3.5cm,放映的荧屏的规格为2m×2m,若放映机的光源距胶片20cm时,问荧屏应拉在离镜头多远的地方,放映的图象刚好布满整个荧屏?解析:胶片上的图象和荧屏上的图象是位似的,镜头就相当于位似中心,因此本题可以转化为位似问题解答.[考点透视]本例主要是考查位似的性质.[参考答案] m【点评】位似图形是特殊位置上的相似图形,因此位似图形具有相似图形的所有性质.三.适时训练(一)精心选一选1.梯形两底分别为m、n,过梯形的对角线的交点,引平行于底边的直线被两腰所截得的线段长为( )(A) (B) (C) (D)2.如图,在正三角形ABC中,D,E分别在AC,AB上,且=,AE=BE,则( )(A)△AED∽△BED(B)△AED∽△CBD(C)△AED∽△ABD(D)△BAD∽△BCD题2 题4 题53.P是Rt△ABC斜边BC上异于B、C的一点,过点P作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有( )(A)1条 (B)2条 (C)3条 (D)4条4.如图,∠ABD=∠ACD,图中相似三角形的对数是( )(A)2 (B)3 (C)4 (D)55.如图,ABCD是正方形,E是CD的中点,P是BC边上的一点,下列条件中,不能推出△ABP与△ECP相似的是( )(A)∠APB=∠EPC (B)∠APE=90°(C)P是BC的中点(D)BP ︰BC=2︰36.如图,△ABC中,AD⊥BC于D,且有下列条件:(1)∠B+∠DAC=90°;(2)∠B=∠DAC;(3)=;(4)AB2=BD·BC其中一定能够判定△ABC是直角三角形的共有( )(A)3个 (B)2个 (C)1个 (D)0个题6 题7 题87.如图,将△ADE绕正方形ABCD顶点A顺时针旋转90°,得△ABF,连结EF交AB于H,则下列结论中错误的是( )(A)AE⊥AF (B)EF︰AF=︰1(C)AF2=FH·FE (D)FB ︰FC=HB︰EC8.如图,在矩形ABCD中,点E是AD上任意一点,则有( )(A)△ABE的周长+△CDE的周长=△BCE的周长(B)△ABE的面积+△CDE的面积=△BCE的面积(C)△ABE∽△DEC(D)△ABE∽△EBC9.如图,在□ABCD中,E为AD上一点,DE︰CE=2︰3,连结AE、BE、BD,且AE、BD交于点F,则S△DEF︰S△EBF︰S△ABF等于( )(A)4︰10︰25 (B)4︰9︰25 (C)2︰3︰5 (D)2︰5︰25题9 题10 题1110.如图,直线a∥b,AF︰FB=3︰5,BC︰CD=3︰1,则AE︰EC为( ).(A)5︰12 (B)9︰5 (C)12︰5 (D)3︰2 11.如图,在△ABC中,M是AC边中点,E是AB上一点,且AE=AB,连结EM并延长,交BC的延长线于D,此时BC︰CD为( )(A)2︰1 (B)3︰2 (C)3︰1 (D)5︰212.如图,矩形纸片ABCD的长AD=9 cm,宽AB=3 cm,将其折叠,使点D与点B重合,那么折叠后DE的长和折痕EF的长分别为( )(A)4 cm、cm (B)5 cm、cm(C)4 cm、2 cm (D)5 cm、2 cm题12(二)细心填一填13.已知线段a=6 cm,b=2 cm,则a、b、a+b的第四比例项是_____cm,a+b与a-b的比例中项是_____cm.14.若===-m2,则m=______.15.如图,在△ABC中,AB=AC=27,D在AC上,且BD=BC=18,DE∥BC交AB于E,则DE=_______.16.如图,□ABCD中,E是AB中点,F在AD上,且AF=FD,EF交AC于G,则AG︰AC=______.题16 题17 题1817.如图,AB∥CD,图中共有____对相似三角形.18.如图,已知△ABC,P是AB上一点,连结CP,要使△ACP∽△ABC,只需添加条件______(只要写出一种合适的条件).19.如图,AD是△ABC的角平分线,DE∥AC,EF∥BC,AB=15,AF =4,则DE的长等于________.题19 题20 题2120.如图,△ABC中,AB=AC,AD⊥BC于D,AE=EC,AD=18,BE =15,则△ABC的面积是______.21.如图,直角梯形ABCD中,AD∥BC,AC⊥AB,AD=8,BC=10,则梯形ABCD面积是_________.22.如图,已知AD∥EF∥BC,且AE=2EB,AD=8 cm,AD=8 cm,BC=14 cm,则S梯形AEFD︰S梯形BCFE=____________.(三)认真答一答23.方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.请你在图示的10×10的方格纸中,画出两个相似但不全等的格点三角形,并加以证明(要求所画三角形是钝角三角形,并标明相应字母).24.如图,△ABC中,CD⊥AB于D,E为BC中点,延长AC、DE相交于点F,求证=.25.如图,在△ABC中,AB=AC,延长BC至D,使得CD=BC,CE⊥BD交AD于E,连结BE交AC于F,求证AF=FC.26.已知:如图,F是四边形ABCD对角线AC上一点,EF∥BC,FG∥AD.求证:+=1.27.如图,BD、CE分别是△ABC的两边上的高,过D作DG⊥BC于G,分别交CE及BA的延长线于F、H,求证:(1)DG2=BG·CG;(2)BG·CG=GF·GH.28.如图,∠ABC=∠CDB=90°,AC=a,BC=b.(1)当BD与a、b之间满足怎样的关系时,△ABC∽△CDB?(2)过A作BD的垂线,与DB的延长线交于点E,若△ABC∽△CDB.求证四边形AEDC为矩形(自己完成图形).29.如图,在矩形ABCD中,E为AD的中点,EF⊥EC交AB于F,连结FC(AB>AE).(1)△AEF与△EFC是否相似?若相似,证明你的结论;若不相似,请说明理由;(2)设=k,是否存在这样的k值,使得△AEF∽△BFC,若存在,证明你的结论并求出k的值;若不存在,说明理由.30.如图,在Rt△ABC中,∠C=90°,BC=6 cm,CA=8 cm,动点PC出发,以每秒2 cm的速度沿CA、AB运动到点B,则从C点出发多少秒时,可使S△BCP=S△ABC31. 如图,小华家(点A处)和公路(L)之间竖立着一块35m长且平 行于公路的巨型广告牌(DE).广告牌挡住了小华的视线,请在图中画出视点A的盲区,并将盲区内的那段公路设为BC.一辆以60km/h匀速行驶的汽车经过公路段BC的时间是3s,已知广告牌和公路的距离是40m,求小华家到公路的距离(精确到1m).32. 某老师上完“三角形相似的判定”后,出了如下一道思考题:如图所示,梯形ABCD中,AD∥BC,对角线AC、BD相交于O,试问:△AOB和△DOC是否相似?某学生对上题作如下解答:答:△AOB∽△DOC.理由如下:在△AOB和△DOC中,∵AD∥BC,∴,∵∠AOB=∠DOC,∴△AOB∽△DOC.请你回答,该学生的解答是否正确?如果正确,请在每一步后面写出根据;如果不正确,请简要说明理由.33. 如图:四边形ABCD中,∠A=∠BCD=90°,①过C作对角线BD的垂线交BD、AD于点E、F,求证:;②如图:若过BD上另一点E作BD的垂线交BA、BC延长线于F、G,又有什么结论呢?你会证明吗?34.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.35. (1)如图一,等边△ABC中,D是AB上的动点,以CD为一边,向上作等边△EDC,连结AE。
27.2.2 相似三角形的性质学习目标:1. 理解并掌握相似三角形中对应线段的比等于相似比,并运用其解决问题. (重点、难点)2.理解相似三角形面积的比等于相似比的平方,并运用其解决问题. (重点)【自主学习】一、知识链接1. 相似三角形的判定方法有哪几种?2. 三角形除了三个角,三条边外,还有哪些要素?【合作探究】一、要点探究探究点1:相似三角形对应线段的比思考如图,△ABC ∽△A′B′C′,相似比为k,它们对应高、对应中线、对应角平分线的比各是多少?证明如图,△ABC ∽△A′B′C′,相似比为k,求它们对应高的比.试一试仿照求高的比的过程,当△ABC ∽△A′B′C′,相似比为k 时,求它们对应中线的比、对应角平分线的比.【要点归纳】相似三角形对应高的比等于相似比.类似地,可以证明相似三角形对应中线、角平分线的比也等于相似比.一般地,我们有:相似三角形对应线段的比等于相似比.【典例精析】例1已知△ABC∽△DEF,BG、EH 分别是△ABC和△DEF 的角平分线,BC = 6 cm,EF = 4 cm,BG= 4.8 cm. 求EH 的长.【针对训练】1. 如果两个相似三角形的对应高的比为 2 : 3,那么对应角平分线的比是,对应边上的中线的比是.2. 已知△ABC ∽△A'B'C' ,相似比为3 : 4,若BC 边上的高AD=12 cm,则B'C' 边上的高A'D' =.思考如果△ABC ∽△A'B'C',相似比为k,它们的周长比也等于相似比吗?为什么?【要点归纳】相似三角形周长的比等于相似比.探究点2:相似三角形面积的比思考 如图,△ABC ∽△A ′B ′C ′,相似比为 k ,它们的面积比是多少?证明 画出它们的高,由前面的结论,我们有k C B BC ='',k D A AD='',22121k k k D A AD C B BC D A C B AD BC S S C B A ABC=⋅=''⋅''=''⋅''⋅='''△△【要点归纳】由此得出:相似三角形面积的比等于相似比的平方.【针对训练】1. 已知两个三角形相似,请完成下列表格:2. 把一个三角形变成和它相似的三角形,(1) 如果边长扩大为原来的 5 倍,那么面积扩大为原来的_____倍;相似比 2k ……周长比13……面积比10000……(2) 如果面积扩大为原来的 100 倍,那么边长扩大为原来的_____倍.3. 两个相似三角形的一对对应边分别是 35 cm 、14 cm ,(1) 它们的周长差 为60 cm ,这两个三角形的周长分别是___ ___; (2) 它们的面积之和是 58 cm 2,这两个三角形的面积分别是 .例2 如图,在 △ABC 和 △DEF 中,AB = 2 DE ,AC = 2 DF ,∠A = ∠D. 若 △ABC 的边 BC 上的高为 6,面积为512,求 △DEF 的边 EF 上的高和面积.【针对训练】如果两个相似三角形的面积之比为 2 : 7,较大三角形一边上的高为 7,则较小三角形对应边上的高为______.例3 如图,D ,E 分别是 AC ,AB 上的点,已知△ABC 的面积为100 cm 2,且53==AB AD AC AE ,求四边形 BCDE 的面积.【针对训练】如图,△ABC 中,点 D、E、F 分别在 AB、AC、BC 上,且 DE∥BC,EF∥AB. 当D 点为 AB 中点时,求 S四边形BFED : S△ABC的值.二、课堂小结当堂检测1. 判断:(1) 一个三角形的各边长扩大为原来的5 倍,这个三角形的周长也扩大为原来的5 倍( )(2) 一个四边形的各边长扩大为原来的9 倍,这个四边形的面积也扩大为原来的9 倍( )2. 在△ABC 和△DEF 中,AB=2 DE,AC=2 DF,∠A=∠D,AP,DQ 是中线,若AP =2,则DQ的值为( )1A.2 B.4 C.1 D.23. 连接三角形两边中点的线段把三角形截成的一个小三角形与原三角形的周长比等于______,面积比等于___________.4. 两个相似三角形对应的中线长分别是6 cm 和18 cm,若较大三角形的周长是42 cm,面积是12 cm2,则较小三角形的周长是__________cm,面积为__________cm2.5. △ABC 中,DE∥BC,EF∥AB,已知△ADE 和△EFC 的面积分别为4 和9,求△ABC 的面积.6. 如图,△ABC 中,DE∥BC,DE 分别交AB、AC 于点D、E,S△ADE=2 S△DCE,求S△ADE∶S△ABC.【分析】从题干分析可以得到△ADE∽△ABC,要证明它们面积的比,直接的就是先求出相似比,观察得到△ADE与△DCE是同高,得到AE与CE的比,进而求解.参考答案自主学习一、知识链接解:(1)定义:对应边成比例,对应角相等的两个三角形相似(2)平行于三角形一边,与另外两边相交所构成的三角形与原三角形相似 (3)三边成比例的两个三角形相似(4)两边成比例且夹角相等的两个三角形相似 (5)两角分别相等的两个三角形相似(6)一组直角边和斜边成比例的两个直角三角形相似 解:还有高,中线,平分线等等合作探究一、要点探究探究点1:相似三角形对应线段的比证明 解:如图,分别作出 △ABC 和 △A' B' C' 的高 AD 和 A' D' . 则∠ADB =∠A' D' B'=90°.∵△ABC ∽△A ′B ′C ′,∴∠B =∠B' . ∴△ABD ∽△A' B' D' .∴k B A ABD A AD =''=''. 【典例精析】解:∵ △ABC ∽△DEF ,∴EFBCEH BG =(相似三角形对应角平分线的比等于相似比), ∴468.4=EH ,解得 EH = 3.2.∴ EH 的长为 3.2 cm. 【针对训练】1. 2 : 3 2 : 3 2. 16cm思考 解:等于,如果 △ABC ∽△A'B'C',相似比为 k ,那么k AC CAC B BC B A AB =''=''='',因此AB =k A'B',BC =kB'C',CA =kC'A',从而k A C C B B A A C k C B k B A k A C C B B A CA BC AB =''+''+''''+''+''=''+''+''++. 探究点2:相似三角形面积的比 【针对训练】1.2. (1) 5 (2) 103. (1) 100cm ,40cm (2) 50cm 2,8cm 2解:在 △ABC 和 △DEF 中,∵ AB=2DE ,AC=2DF ,∴21==AC DF AB DE . 又 ∵∠D=∠A ,∴ △DEF ∽ △ABC ,相似比为21. ∵△ABC 的边 BC 上的高为 6,面积为512,∴△DEF 的边 EF 上的高为21×6 = 3, 面积为53512212=⨯⎪⎭⎫⎝⎛.【针对训练】14解:∵ ∠BAC = ∠DAE ,且53==AB AD AC AE ,∴ △ADE ∽△ABC. ∵ 它们的相似比为 3 : 5,∴ 面积比为 9 : 25.又∵ △ABC 的面积为 100 cm 2,∴ △ADE 的面积为 36 cm 2. ∴ 四边形 BCDE 的面积为100-36 = 64 (cm 2).【针对训练】解:∵ DE ∥BC ,D 为 AB 中点,∴ △ADE ∽ △ABC ,∴21==AB AD AC AE ,即相似比为 1 : 2,面积比为 1 : 4. 又∵ EF ∥AB ,∴ △EFC ∽ △ABC ,相似比为21=AC CE , ∴面积比为 1 : 4.设 S △ABC = 4,则 S △ADE = 1,S △EFC = 1, S 四边形BFED = S △ABC -S △ADE -S △EFC = 4-1-1 = 2, ∴ S 四边形BFED : S △ABC = 2 : 4 =21. 当堂检测1. (1) √ (2) ×2. C3. 1:1 1:44. 14 345. 解:∵ DE ∥BC ,EF ∥AB ,∴ △ADE ∽△ABC ,∠ADE =∠EFC ,∠A =∠CEF , ∴△ADE ∽△EFC.又∵S △ADE : S △EFC = 4 : 9,∴ AE : EC=2:3,则 AE : AC =2 : 5, ∴ S △ADE : S △ABC = 4 : 25,∴ S △ABC = 25.6. 解:过点 D 作 AC 的垂线,垂足为 F ,则22121==⋅⋅=EC AE DF EC DF AE S S DCEADE △△, ∴32=AC AE . 又∵ DE ∥BC ,∴ △ADE ∽△ABC. ∴943222=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=AC AE S S ABC ADE △△,即 S △ADE : S △ABC =4 : 9.。
第11题ABCEF DG 2011相似三角形判定和性质一、选择题1. (荆州)如图,P 为线段AB 上一点,AD 与BC 交干E , ∠CPD=∠A=∠B ,BC 交PD 于E ,AD 交PC 于G ,则图中相似三角形有( )A 、1对B 、2对C 、3对D 、4对2. (无锡)如图,四边形ABCD 的对角线AC 、BD 相交于O ,且将这个四边形分成①、②、③、④四个三角形.若OA :OC=0B :OD ,则下列结论中一定正确的是( ) A .①与②相似 B .①与③相似 C .①与④相似 D .②与③相似3. (山西)如图,△ABC 中,AB =AC ,点D 、E 分别是边AB 、AC 的中点,点G 、F 在BC 边上,四边形DEFG 是正方形.若DE =2㎝,则AC 的长为( ) A .33cm B .4cm C .23cm D .25cm4. (陕西)如图,在□ABCD 中,E 、F 分别是AD 、CD 边上的点,连接BE 、AF ,他们相交于点G ,延长BE 交CD 的延长线于点H ,则图中的相似三角形共有( )A .2对B .3对C .4对D .5对5. (乌鲁木齐)如图,等边三角形ABC 的边长为3,点P 为BC 边上一点,且BP =1,点D 为AC 边上一点,若∠APD =60°,则CD 的长为( )A 、21B 、32C 、43 D 、16.(江津)已知如图:(1)、(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB 、CD交于O 点,对于各图中的两个三角形而言,下列说法正确的是( ) A 、都相似 B 、都不相似 C 、只有(1)相似 D 、只有(2)相似 7. (沈阳)如图,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC 的边长为( ) A 、9 B 、12 C 、15 D 、188. (泰安)如图,点F 是▱ABCD 的边CD 上一点,直线BF 交AD 的延长线与点E , 则下列结论错误的是( )A .ABDFEA ED =B .FB EF BC DE = C .BEBFDE BC =D .AEBCBE BF =9. (泰安)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2, 则S 1+S 2的值为( ) A .16 B .17 C .18 D .1910. (威海)在▱ABCD 中,点E 为AD 的中点,连接BE ,交AC 于点F ,则AF :CF=( )A 、1:2B 、1:3C 、2:3D 、2:511. (达州)如图,在▱ABCD 中,E 是BC 的中点,且∠AEC =∠DCE ,则下列结论不正确的是( ) A 、s △AFD =2s △EFB B 、BF =12DF C 、四边形AECD 是等腰梯形 D 、∠AEB =∠ADC 12. (北京)如图,在梯形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O ,若AD =1,BC =3, 则CO AO 的值为( ) A .21B .31 C .41D .9113. (厦门)如图,铁道口的栏杆短臂OA 长1m ,长臂OB 长8m .当短臂外端A 下降0.5m 时,长臂外端B 升高( ) A 、2m B 、4m C 、4.5m D 、8m14. (漳州)如图,小李打网球时,球恰好打过网,且落在离网4m 的位置上,则球拍击球的高度h 为 A 、0.6m B 、1.2m C 、1.3m D 、1.4m ( ) 15. (天水)如图,有一块矩形纸片ABCD ,AB =8,AD =6.将纸片折叠,使得AD 边落在AB 边上,折痕为A E ,再将△A E D 沿D E 向右翻折,A E 与BC 的交点为F ,则C F 的长为( )A 、6B 、4C 、2D 、116. (遵义)如图,在直角三角形ABC 中(∠C =900),放置边长分别3, 4, x 的三个正方形,则x 的值为( ) A. 5 B. 6 C. 7 D. 1217. (河北)如图,在△ABC 中,∠C =90°,BC =6,D ,E 分别在 AB .AC 上,将△ABC 沿DE 折叠,使点A 落在点A ′处,若A ′为CE 的中点,则折痕DE 的长为( )A .B .2C .3D .418. (鸡西)如图,A 、B 、C 、D 是⊙O 上的四个点,AB =AC ,AD 交BC 于点E ,AE =3,ED =4,则AB 的长为 ( )A .3B .23 C.21 D .3519. (湖州)如图,已知AB 是⊙O 的直径,C 是AB 延长线上一点,BC =OB ,CE 是⊙O 的切线,切点为D ,过点A 作AE ⊥CE ,垂足为E ,则CD :DE 的值是( ) A.21B.1C.2D.320. (义乌)如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,四边形ACDE 是平行四边形,连接CE 交AD 于点F ,连接BD 交CE 于点G ,连接BE .下列结论中:①CE =BD ; ②△ADC 是等腰直角三角形; ③∠ADB =∠AEB ; ④CD •AE =EF •CG ;一定正确的结论有( ) A .1个 B .2个 C .3个 D .4个二、填空题 1. (宁夏)如图,在△ABC 中,DE ∥AB ,CD :DA=2:3,DE=4,则AB 的长为 .2. (日照)正方形ABCD 的边长为4, M 、N 分别是BC 、CD 上的两个动点,且始终保持AM ⊥MN . 当BM= 时,四边形ABCN 的面积最大.3. (凉山)已知菱形ABCD 的边长是8,点E 在直线AD 上,若DE =3,连接BE 与对角线AC 相交于点M ,则MCAM的值是 . 4. (青海)如图,△ABC 是一块锐角三角形的材料,边BC=120mm ,高AD=80mm ,要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,这个正方形零件的边长是 mm . 5.(河池)如图,在Rt △ABC 中,∠ABC 是直角,AB=3,BC=4,P 是BC 边上的动点,设BP=x ,若能在AC 边上找到一点Q ,使∠BQP=90°,则x 的取值范围是 .6.(台州)点D .E 分别在等边△ABC 的边AB .BC 上,将△BDE 沿直线DE 翻折,使点B 落在B 1处,DB 1.EB 1分别交边AC 于点F .G .若∠ADF =80°,则∠CGE =.7.(清远)如图,在□ABCD 中,点E 是CD 中点,AE ,BC 的延长线交于点F .若△ECF 的面积为1.则四边形ABCE 的面积为 .8.(丹东)已知:如图,DE 是△ABC 的中位线,点P 是DE 的中点,CP 的延长线交AB 于点Q , 那么S △DPQ :S △ABC = .9. (牡丹江)在△ABC 中,AB =6,AC =9,点D 在边AB 所在的直线上,且AD =2,过点D 作DE ∥BC 交边AC 所在直线于点E ,则CE 的长为 .10. (张家界)在△ABC 中,AB=8,AC=6,在△DEF 中,DE=4,DF=3,要使△ABC 与△DEF 相似, 则需添加的一个条件是 (写出一种情况即可). 三、解答题1. (南充)如图,点E 是矩形ABCD 中CD 边上一点,△BCE 沿BE 折叠为△BFE ,点F 落在AD 上. (1)求证:△ABF ∽△DFE (2)若sin ∠DFE=13,求tan ∠EBC 的值.2. (遂宁)已知AB 是⊙O 的直径,弦AC 平分∠BAD , AD ⊥CD 于D ,BE ⊥CD 于E . 求证:(1)CD 是⊙O 的切线;(2)CD 2=AD•BE . 3.(鄂州)在圆内接四边形ABCD 中,CD 为∠BCA 外角的平分线, F 为弧AD 上一点,BC=AF ,延长DF 与BA 的延长线交于E . ⑴求证△ABD 为等腰三角形. ⑵求证AC •AF=DF •FE第3题图BAF DC M4. (郴州)如图,Rt △ABC 中,∠A=30°,BC=10cm ,点Q 在线段BC 上从B 向C 运动,点P 在线段BA 上从B 向A 运动.Q 、P 两点同时出发,运动的速度相同,当点Q 到达点C 时,两点都停止运动.作PM ⊥PQ 交CA 于点M ,过点P 分别作BC 、CA 的垂线,垂足分别为E 、F . (1)求证:△PQE ∽△PMF ;(2)当点P 、Q 运动时,请猜想线段PM 与MA 的大小有怎样的关系?并证明你的猜想; (3)设BP=x ,△PEM 的面积为y ,求y 关于x 的函数关系式, 当x 为何值时,y 有最大值,并将这个值求出来.5. (眉山)如图,点P 是菱形ABCD 的对角线BD 上一点,连接CP 并延长,交AD 于E ,交BA 的延长线于F .(1)求证:∠DCP=∠DAP ;(2)若AB=2,DP :PB=1:2,且PA ⊥BF ,求对角线BD 的长.6. (襄阳)如图,点P 是正方形ABCD 边AB 上一点(不与点A ,B 重合),连接PD 并将线段PD 绕点P 顺时针方向旋转90°得到线段PE ,PE 交边BC 于点F ,连接BE ,DF . (1)求证:∠ADP =∠EPB ; (2)求∠CBE 的度数; (3)当ABAP的值等于多少时,△PFD ∽△BFP ?并说明理由.7.(怀化)如图,△ABC 是一张锐角三角形的硬纸片.AD 是边BC 上的高,BC =40cm ,AD =30cm . 从这张硬纸片剪下一个长HG 是宽HE 的2倍的矩形EFGH .使它的一边EF 在BC 上,顶点G ,H 分别在AC ,AB 上.AD 与HG 的交点为M . (1)求证:AM AD =HGBC; (2)求这个矩形EFGH 的周长.8.(益阳)如图是小红设计的钻石形商标,△ABC 是边长为2的等边三角形, 四边形ACDE 是等腰梯形,AC ∥ED ,∠EAC =60°,AE =1. (1)证明:△ABE ≌△CBD ;(2)图中存在多对相似三角形,请你找出一对进行证明,并求出其相似比 (不添加辅助线,不找全等的相似三角形); (3)小红发现AM =MN =NC ,请证明此结论; (4)求线段BD 的长.9. (枣庄) 如图,在平面直角坐标系中,把抛物线2y x =向左平移1个单位,再向下平移4个单位,得到抛物线2()y x h k =-+.所得抛物线与x 轴交于A B 、两点(点A 在点B 左边),与y 轴交于点C ,顶点为D . (1)写出h k 、的值;(2)判断ACD △的形状,并说明理由;(3)在线段AC 上是否存在点M ,使AOM △∽ABC △?若存在,求出点M 的坐标;若不存在,说明理由.ADCB O xy第9题图2011相似三角形判定和性质 参考答案一、选择题 BBDCB AACBA ABBDC CBCCD 二、填空题 10 258或118 48 3≤x≤4 80° 3 1:24 6或12 三、解答题1. (南充)22. 2. (四川遂宁) 3.(湖北鄂州) 4.(郴州)证明:(1)∵PE ⊥BC ,PF ⊥AC ,∠C=90°,∴∠PEQ=∠PFM=90°,∠EPF=90°, 即∠EPQ+∠QPF=90°,又∵∠FPM+∠QPF=∠QPM=90°,∴∠EPQ=∠FPM ,∴△PQE ∽△PMF ; (2)相等.∵PB=BQ ,∠B=60°,∴△BPQ 为等边三角形,∴∠BQP=60°,∵△PQE ∽△PMF ,∴∠PMF=∠BQP=60°, 又∠A+∠APM=∠PMF ,∴∠APM=∠A=30°,∴PM=MA ; (3)AB===20,BP=x ,则AP=20﹣x ,PE=xcos30°=x ,PF=(20﹣x )•,S △PEM =PE×PF ,∴y=•x•=(20x ﹣x 2)=﹣(x ﹣10)2+(0≤x≤10).∴当x=10时,函数的最大值为.5.(四川眉山)(1)证明:∵四边形ABCD 为菱形,∴CD=AD ,∠CDP=∠ADP , ∴△CDP ≌△ADP ,∴∠DCP=∠DAP ;(2)解:∵四边形ABCD 为菱形,∴CD ∥BA ,CD=BA ,∴△CPD ∽△FPB ,∴PF CP BF CD PB DP ===21,∴CD=21BF ,CP=21PF ,∴A 为BF 的中点, 又∵PA ⊥BF ,∴PB=PF ,由(1)可知,PA=CP ,∴PA=21PB ,在Rt △PAB 中,222)21(2PB PB +=解得PB=334,则PD=332,∴BD=PB+PD=23.6. (襄阳)证明:(1)∵四边形ABCD 是正方形.∴∠A =∠PBC =90°,AB =AD , ∴∠ADP +∠APD =90°,∵∠DPE =90°,∴∠APD +∠EPB =90°,∴∠ADP =∠EPB ;(2)过点E 作EG ⊥AB 交AB 的延长线于点G ,则∠EGP =∠A =90°, 又∵∠ADP =∠EPB ,PD =PE ,∴△P AD ≌△EGP ,∴EG =AP ,AD =AB =PG ,∴AP =EG =BG ,∴∠CBE =∠EBG =45°;(3)当AB AP =21时, △PFD ∽△BFP , 7.(湖南怀化)(1)证明:∵四边形EFGH 为矩形,∴EF ∥GH ,∴∠AHG =∠ABC , 又∵∠HAG =∠BAC ,∴△AHG ∽△ABC ,∴HG BC =AMAD; (2)解:由(1)HG BC =AMAD得:设HE =x ,则HG =2x ,AM =AD ﹣DM =AD ﹣HE =30﹣x , 可得3030x -=240x ,解得,x =12,2x =24 所以矩形EFGH 的周长为:2×(12+24)=72cm . 8.(湖南益阳)(1)证明△ABE ≌△CBD . (2)存在.答案不唯一.如△ABN ∽△CDN . (3)由(2)得AN CN =AB CD=2,∴CN =12AN =13AC ,同理AM =13AC ,∴AM =MN =NC .(4)作DF ⊥BC 交BC 的延长线于F ,∵∠BCD =120°,∴∠DCF =60°. 在Rt △CDF 中,∴∠CDF =30°,∴CF =12CD =12,∴DF =22CD CF += 2211()2+=3; 在Rt △BDF 中,∵BF =BC +CF =2+12=52,DF =3, ∴BD =22BF DF +=2253()()22+=7. 9.(1) 1h k =-,=-4. (2) 直角三角形.(3)存在.作OM ∥BC 交AC 于M ,M点即为所求点. 由(2)知,A O C △为等腰直角三角形,45B A C ∠=︒,1832A C ==.由A O M A B C △∽△, 得AO AMAB AC =.即333292432A M ⨯===,.过M 点作M G AB ⊥于点G,29248192164A G M G ⎛⎫ ⎪⎝⎭∴====,93344O G A O A G =-=-=. 又点M 在第三象限,所以39--44M (,).ADCB O x y M FE G。