专题10 指数函数(解析版)
- 格式:docx
- 大小:735.53 KB
- 文档页数:10
专题10 基本初等函数(知识梳理)一、指数与指数函数(一)指数式的化简与求值1、化简原则:①化根式为分数指数幂;②化负指数幂为正指数幂; ③化小数为分数; ④注意运算的先后顺序。
提醒:有理数指数幂的运算性质中,其底数都大于零,否则不能用性质来运算。
2、结果要求:①题目以根式形式给出,则结果用根式表示;②题目以分数指数幂形式给出,则结果用分数指数幂形式表示;③结果不能同时含有根式和分数指数幂,也不能既有分母又有负分数指数幂。
例1-1.已知41<a ,则化简42)14(-a 的结果是( )。
A 、a 41-- B 、14--a C 、14-a D 、a 41- 【答案】D【解析】a a a 41)41()14(4242-=-=-,故选D 。
变式1-1.化简3a a ⋅-的结果是( )。
A 、65a - B 、65a -- C 、65a - D 、52a -【答案】B【解析】∵0≤a ,则656565312131213)()()()()(a a a a a a a a a --=--=--=-⋅--=⋅-=⋅-,故选B 。
变式1-2.已知31=+-x x ,求下列各式的值:(1)2121-+xx ;(2)22-+x x ;(3)2323-+xx 。
【解析】(1)∵52)(2)()(1221212122122121=++=+⋅+=+----x x xxx x xx ,∴52121±=+-x x ,又由31=+-x x 得0>x ,∴52121=+-xx ;(2)72)(2122=-+=+--x x x x ; (3)]1))[((])())[(()()(12121221212122121213213212323-++=+⋅-+=+=+-------x x xx xxx x xx xx xx52)13(5=-=。
(二)指数函数的图像和性质1、定义:一般地,函数x a x f =)((0>a 且1≠a )叫做指数函数,其中x 是自变量。
专题10 解析几何专题(新定义)一、单选题1.(2023春·浙江·高三校联考开学考试)2022年卡塔尔世界杯会徽(如图)正视图近似于伯努利双纽线,定义在平面直角坐标系xOy 中(O 为坐标原点),把到定点1(,0)F c −和2(,0)F c 距离之积等于2(0)c c >的点的轨迹称为双纽线,记为Γ,已知()00,P x y 为双纽线Γ上任意一点,有下列命题: ①双纽线Γ的方程为()()2222222x y c x y +=−; ②12F PF △面积最大值为212c ;③022c c y −≤≤;④PO .其中所有正确命题的序号是( )A .①②B .①②③C .②③④D .①②③④【答案】D【分析】由已知212PF PF c ⋅=,代入坐标整理即可得出方程,判断①;根据正弦定理,结合已知条件,即可判断②;根据面积公式,结合②的结论,即可判断③;根据余弦定理,以及向量可推得222212||cos 2PO c c F PF c ∠=+≤,即可判断④.【详解】对于①,由定义212PF PF c ⋅=2c =, 即()()222222400000022x y c cx x y c cx c +++⋅++−=,整理可得()()22222200002x y c x y +=−,所以双纽线Γ的方程为()()2222222x y c x y +=−,故①正确; 对于②,1212121sin 2F PF SPF PF F PF ∠=221211sin 22c F PF c ∠=≤,故②正确;对于③,因为12212001122F PF SF F y c y c =⨯=≤,所以022c cy −≤≤,故③正确; 对于④,12F PF △中,由余弦定理可得222121212122cos F F PF PF PF PF F PF =+−⋅⋅∠, 所以2222121242cos PF PF c c F PF ∠+=+. 又因为122PO PF PF =+,所以()()22122POPF PF =+uu u ruuu r uuu r 2212122PF PF PF PF =++⋅uuu r uuu r uuu r uuu r 221212122cos PF PF PF PF F PF =++⋅∠uuu r uuu r uuu r uuu r.所以,()22122PO F F +22212212121221212c 2cos os PF PF PF PF PF PF PF F PF F P PF F =++⋅∠++−⋅⋅∠()22122PF PF =+,即()22221244242cos PO c c c F PF ∠+=⨯+,整理可得222212||cos 2PO c c F PF c ∠=+≤,所以||PO ≤,故④正确.故选:D.2.(2023春·四川达州·高二四川省宣汉中学校考开学考试)定义: 椭圆 22221(1)x y a b a b +=>>中长度为整数的焦点弦(过焦点的弦)为 “好弦”. 则椭圆221259x y +=中所有 “好弦” 的长度之和为( )A .162B .166C .312D .364【答案】B【分析】根据题意分类讨论结合韦达定理求弦长的取值范围,进而判断“好弦” 的长度的取值可能,注意椭圆对称性的应用.【详解】由已知可得 5,3a b ==, 所以4c =,即椭圆221259x y +=的右焦点坐标为()4,0,对于过右焦点的弦AB ,则有:当弦AB 与x 轴重合时,则弦长210AB a ==,当弦AB 不与x 轴重合时,设()()1122:4,,,,AB x my A x y B x y =+,联立方程2241259x my x y =+⎧⎪⎨+=⎪⎩,消去x 得:()2292572810m y my ++−=,则()()()()2221212227281Δ72492581810010,,925925m m m m x x x x m m =−+⨯−=+>+=−=−++,故()22290116101925925m AB m m +⎛⎫==− ⎪++⎝⎭, ∵20m ≥,则221192525,092525m m +≥<≤+,可得21616025925m −≤−<+,即29161125925m ≤−<+, ∴18,105AB ⎡⎫∈⎪⎢⎣⎭,综上所述:18,105AB ⎡⎤∈⎢⎥⎣⎦,故弦长为整数有4,5,6,7,8,9,10,由椭圆的对称性可得:“好弦” 的长度和为 ()445678910166⨯++++++=. 故选 :B .3.(2023秋·湖南郴州·高二校考期末)城市的许多街道是互相垂直或平行的,因此往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.如果按照街道的垂直和平行方向建立平面直角坐标系,对两点()()1122,,,A x y B x y ,定义两点间“距离”为()1212,d A B x x y y =−+−,则平面内与x 轴上两个不同的定点12,F F 的“距离”之和等于定值(大于()12,d F F )的点的轨迹可以是( )A .B .C .D .【答案】A【分析】分横坐标在1F 、2F 之外(内)的区域两种情况讨论,结合所给距离公式判断即可. 【详解】解:根据题意,横坐标在1F 、2F 之外的区域,不能出现与x 轴垂直的线段, 否则该线段上的点与1F 、2F 的“距离”之和不会是定值;横坐标在1F 、2F 之内的区域,则必须与x 轴平行,否则该线段上的点与1F 、2F 的“距离”之和不会是定值. 故选:A.4.(2022·江苏·高二专题练习)画法几何的创始人——法国数学家加斯帕尔·蒙日发现:与椭圆相切的两条垂直切线的交点的轨迹是以椭圆中心为圆心的圆.我们通常把这个圆称为该椭圆的蒙日圆.已知椭圆C :()222210x y a b a b +=>>的蒙日圆方程为2222x y a b +=+,1F ,2F 分别为椭圆C 的左、右焦点.,M 为蒙日圆上一个动点,过点M 作椭圆C 的两条切线,与蒙日圆分别交于P ,Q 两点,若MPQ 面积的最大值为36,则椭圆C 的长轴长为( )A .B .C .D .【答案】B【分析】利用椭圆的离心率可得a =,分析可知PQ 为圆2223x y b +=的一条直径,利用勾股定理得出222236MP MQ PQ c +==,再利用基本不等式即可求即解【详解】因为椭圆C 的离心率5c e a ==,所以a =. 因为222a b c =+,所以2b c =,所以椭圆C 3c =. 因为MP MQ ⊥,所以PQ 为蒙日圆的直径, 所以6PQ c =,所以222236MP MQ PQ c +==.因为222182MP MQMP MQ c +⋅≤=,当MP MQ ==时,等号成立, 所以MPQ 面积的最大值为:2192MP MQ c ⋅=.由MPQ 面积的最大值为36,得2936c =,得2c =,进而有24b c ==,a =,故椭圆C 的长轴长为 故选:B5.(2023·全国·高三专题练习)加斯帕尔·蒙日(图1)是18~19世纪法国著名的几何学家,他在研究圆锥曲线时发现:椭圆的任意两条互相垂直的切线的交点都在同一个圆上,其圆心是椭圆的中心,这个圆被称为“蒙日圆”(图2).则椭圆 22:154x y C +=的蒙日圆的半径为( )A .3B .4C .5D .6【答案】A【分析】由蒙日圆的定义,确定出圆上的一点即可求出圆的半径.【详解】由蒙日圆的定义,可知椭圆 22:154x y C +=的两条切线2x y =的交点在圆上,所以3R ==, 故选:A6.(2021秋·四川成都·高二树德中学校考阶段练习)若将一个椭圆绕其中心旋转90°,所得椭圆短轴两顶点恰好是旋转前椭圆的两焦点,这样的椭圆称为“对偶椭圆”.下列椭圆中是“对偶椭圆”的是( ) A .22184x y +=B .22135x y +=C .22162x y +=D .22169x y +=【答案】A. 【详解】由“对偶椭圆”定义得:短半轴长b 与半焦距c 相等的椭圆是“对偶椭圆”, 对于A ,22844c b =−==,即b c =,A 是“对偶椭圆”; 对于B ,22532c b =−=≠,即b c ≠,B 不是“对偶椭圆”; 对于C ,22624c b =−=≠,即b c ≠,C 不是“对偶椭圆”; 对于D ,22963c b =−=≠,即b c ≠,D 不是“对偶椭圆”. 故选:A7.(2021春·上海闵行·高二闵行中学校考期末)若曲线0(),f x y =上存在两个不同点处的切线重合,则称这条切线为曲线的自公切线,下列方程的曲线有自公切线的是( )A .210x y +−=B .10x =C .2210x y x x +−−−=D .2310x xy −+=【分析】通过图象,观察其图象是否满足在其图象上存在两个不同点处的切线重合,从而确定是否存在自公切线,进而得到结论.【详解】A :因为210x y +−=,即21y x =−是抛物线,没有自公切线,故A 错误;B :因为10x =,表示的是图形中的实线部分,没有自公切线,故B 错误;C :因为2210x y x x +−−−=,表示的是图形中的实线部分,由两圆相交,可知公切线,故有自公切线,故C 正确;D :因为2310x xy −+=,即13y x x=+是双勾函数,没有自公切线,故D 错误; 故选:C.8.(2021·辽宁沈阳·东北育才学校校考模拟预测)在平面直角坐标系中,定义x y +称为点(,)P x y 的“δ和”,其中O 为坐标原点,对于下列结论:(1)“δ和”为1的点(,)P x y 的轨迹围成的图形面积为2;(2)设P 是直线240x y −−=上任意一点,则点(,)P x y 的“δ和”的最小值为2;(3)设P 是直线0ax y b −+=上任意一点,则使得“δ和”最小的点有无数个”的充要条件是1a =;(4)设P 是椭圆2212y x +=上任意一点,则“δ和”的最其中正确的结论序号为( ) A .(1)(2)(3) B .(1)(2)(4) C .(1)(3)(4)D .(2)(3)(4)【解析】根据新定义“δ和”,通过数形结合判断(1)正确,通过研究函数最值对选项(2)(3)(4)逐一判断即可.【详解】(1)当1x y +=时,点(,)P x y 的轨迹如图,其面积为2,正确;(2)P 是直线240x y −−=上的一点,24y x ∴=−,24x y x x ∴+=+−43,0,4,02,34,2,x x x x x x −≤⎧⎪=−<<⎨⎪−≥⎩可知,0x ≤,02x <<时递减,2x ≥时递增,故x y +的最小值在2x =时取得,min ()2x y +=,正确;(3)同(2),x y x ax b +=++,可知当1a =±时,都满足,“δ和”最小的点有无数个,故错误;(4)可设椭圆参数方程为,,x y θθ=⎧⎪⎨⎪⎩cos x y θθ∴+=,. 故选:B.【点睛】本题的解题关键是认真读题,理解新定义“δ和”,再通过数形结合和函数最值的研究逐一判断即突破难点.9.(2022秋·四川成都·高二成都外国语学校校考期中)若椭圆或双曲线上存在点P ,使得点P 到两个焦点12,F F 的距离之比为2:1,且存在12PF F △,则称此椭圆或双曲线存在“Ω点”,下列曲线中存在“Ω点”的是( )A .2213632x y +=B .2211615x y +=C .22154x y −=D .22115y x −=【答案】C【分析】求出满足条件1221PF PF =时的1PF 和2PF ,再求出12F F ,验证1PF ,2PF ,12F F能否是三角形的三边长,即可得. 【详解】1221PF PF =,则122PF PF =,若是椭圆,则12232PF PF PF a +==,223a PF =,143a PF =, 若是双曲线,则1222PF PF PF a −==,14PF a =,A 中椭圆,6,2a c ==,24PF =,18PF =,124F F =,不存在12PF F △;B 中椭圆,4,1a c ==,183PF =,1163PF =,122F F =,不存在12PF F △C中双曲线,3a c ==,双曲线上点到到右焦点距离的最小值是233ac a −=<,2PF =1PF =126F F =,构成12PF F △,存在“Ω点”,D 中双曲线,1a =,4c =,22PF =,14PF =,128F F =,不存在12PF F △ 故选:C .【点睛】本题考查新定义“Ω点”,解题方法是弱化条件,求出满足部分条件的P 点具有的性质,验证是否满足另外的条件:构成三角形.从而完成求解.10.(2022秋·广西钦州·高二校考阶段练习)已知椭圆22:14x C y +=的焦点为1F 、2F ,若点P 在椭圆上,且满足212PO PF PF =⋅(其中O 为坐标原点),则称点P 为“★”点.下列结论正确的是( ) A .椭圆C 上的所有点都是“★”点 B .椭圆C 上仅有有限个点是“★”点 C .椭圆C 上的所有点都不是“★”点D .椭圆C 上有无穷多个点(但不是所有的点)是“★”点 【答案】B【分析】设点(),P x y ,由212PO PF PF =⋅得出关于x 、y 的等式,由2214xy =−,求出方程的解,即可得出结论.【详解】设点(),P x y ,则2214x y =−,()1F、)2F ,122PF x ===+,21442222PF PF ⎛⎫=−=−+=− ⎪ ⎪⎝⎭,由212PO PF PF =⋅,得222222x y ⎛⎫⎛⎫+=+− ⎪⎪ ⎪⎪⎝⎭⎝⎭,即22331444x x +=−,解得x =2y =±, 所以,椭圆C 上有且只有4个点是“★”点. 故选:B.【点睛】本题考查椭圆中的新定义,考查椭圆方程的应用,考查化归与转化思想的应用,属于中等题. 11.(2019秋·北京·高二北京市第十三中学校考期中)已知两定点()1,0M −,()1,0N ,若直线上存在点P ,使||||4PM PN +=,则该直线为“A 型直线”,给出下列直线,其中是“A 型直线”的是( ) ①1y x =+;②2y =;③3y x =−+;④23y x =−+ A .①③ B .①②C .③④D .①④【答案】D【分析】易得点P 在以M 、N 为焦点的椭圆22143x y +=上,“A 型直线”和椭圆有公共点,逐个选项联立方程由判别式验证即可.【详解】两定点()1,0M −,()1,0N ,||||4PM PN +=, P ∴在以M 、N 为焦点的椭圆上,且22,1,3a c b ===,故椭圆的方程为22143x y +=,满足题意的“A 型直线”和椭圆有公共点,联立1y x =+和22143x y+=,消y 整理可得27880x x −−=,故0∆>,即直线与椭圆有公共点,即为“A 型直线”,联立2y =和22143x y+=,显然无交点,故不是“A 型直线”,联立3y x =−+和22143x y +=,消y 整理可得2724240x x −+=,故Δ0<,故不是“A 型直线”,联立23y x =−+和22143x y +=消y 整理可得21948240x x −+=,故0∆>,即直线与椭圆有公共点,即为“A 型直线”, 故选:D【点睛】本题考查了椭圆的定义以及椭圆的标准方程,此题属于圆锥曲线的新定义题目,同时考查了直线与椭圆位置关系的判断,属于中等题.12.(2017春·吉林·高一统考期末)已知平面上一点M (5,0),若直线上存在点P 使|PM |≤4,则称该直线为“ 切割型直线” , 下列直线中是“ 切割型直线” 的是( ) ①1y x =+;②2y =;③43y x =;④21y x =+. A .①③ B .①②C .②③D .③④【答案】C【分析】根据已知条件,利用点到直线的距离公式进行计算.【详解】对于①,点M 到直线y =x +1的距离14d ==,故不存在点P 使|PM |≤4,故①不是;对于②,点M 到直线y =2的距离d 2=2<4,故存在点P 使|PM |≤4,故②是; 对于③,直线方程为4x -3y =0,点M 到直线4x -3y =0的距离3543045d ⨯−⨯== ,故存在点P 使|PM |≤4,故③是;对于④,点M 到直线y =2x +1的距离44d =,故不存在点P 使|PM |≤4,故④不是. 综上可知符合条件的有②③.故A ,B ,D 错误. 故选:C.二、多选题13.(2022秋·福建厦门·高三厦门双十中学校考阶段练习)2021年3月30日,小米正式开始启用具备“超椭圆”数学之美的新logo .设计师的灵感来源于曲线C :||1n nx y +=.其中星形线E :22331x y =+常用于超轻材料的设计.则下列关于星形线说法正确的是( ) A .E 关于y 轴对称B .E 上的点到x 轴、y 轴的距离之积不超过18C .E 上的点到原点距离的最小值为14D .曲线E 所围成图形的面积小于2 【答案】ABD【分析】A 由(,)x y 、(,)x y −均在曲线上即可判断;B 应用基本不等式2233x y ≥+即可判断;C 由22223333()()x y x y +=+,结合立方和公式及B 的结论即可判断;D 根据2233x y +与||||x y +图形的位置关系判断.【详解】若(,)x y 在星形线E 上,则(,)x y −也在E 上,故E 关于y 轴对称,A 正确;由12233312||x y xy =≥=+,则1||8xy ≤当且仅当||||x y =时等号成立,B 正确;由222222222233233333333()1()())3()31([(])4x y x y x y x y xy xy +=+=+=−+−≥,当且仅当||||x y =时等号成立,故E 上的点到原点距离的最小值为12,C 错误;曲线E 过(1,0)±,(0,1)±,由2233||||1x y x y ++≥=,则2233x y +在||||x y +所围成的区域内部,而||||1x y +=所围成的面积为2,故曲线E 所围成图形的面积小于2,D 正确. 故选:ABD【点睛】关键点点睛:应用基本不等式有2233x y ≥+由22223333()()x y x y +=+及立方和公式求两点距离,利用2233x y +与||||x y +图形的位置判断面积大小.14.(2022·全国·高三专题练习)已知曲线C 的方程为0(),F x y =,集合{}(,)|() 0,T x y F x y ==,若对于任意的11(,)x y T ∈,都存在22(,)x y T ∈,使得12120x x y y +=成立,则称曲线C 为Σ曲线.下列方程所表示的曲线中,是Σ曲线的有( )A .22143x y +=B .221x y −=C .22y x =D .1y x =+ 【答案】AC【分析】问题转化为11(,)P x y T ∈,存在22(,)Q x y T ∈,使得OP OQ ⊥,根据这一条件逐一判断即可.【详解】A :22143x y +=的图象既关于x 轴对称,也关于y 轴对称,且图象是封闭图形.所以对于任意的点11(,)P x y T ∈,存在着点Q (x 2,y 2)使得OP OQ ⊥,所以满足;B :221x y −=的图象是双曲线,且双曲线的渐近线斜率为±1,所以渐近线将平面分为四个夹角为90°的区域,当P ,Q 在双曲线同一支上,此时90POQ ∠<︒,当P ,Q 不在双曲线同一支上,此时90POQ ∠>︒,所以90,POQ OP OQ ∠≠︒⊥不满足;C :22y x =的图象是焦点在x 轴上的抛物线,且关于x 轴对称,设P 为抛物线上一点,过O 点作OP 的垂线,则垂线一定与抛物线交于Q 点,所以90,POQ ∠=︒,所以OP OQ ⊥D :取P (0,1),若OP OQ ⊥,则有20y =显然不成立,所以此时OP OQ ⊥不成立, 故选:AC【点睛】关键点睛:运用圆锥曲线的性质是解题的关键.15.(2021秋·河北保定·高二顺平县中学校考阶段练习)在平面内,若曲线C 上存在点P ,使点P 到点()3,0A ,()3,0B −的距离之和为10,则称曲线C 为“有用曲线”,以下曲线是“有用曲线”的是( )A .5x y +=B .229x y +=C .221259x y +=D .216x y =【答案】ACD【分析】利用有用曲线的定义逐项判断即可. 【详解】解:设点P 的坐标为(),x y ,因为点P 到点()3,0A ,()3,0B −的距离之和为10,由椭圆的定义可得点P 的轨迹方程为:2212516x y +=,对A ,由22512516x y x y +=⎧⎪⎨+=⎪⎩整理得2412502250x x −+=2Δ250441225256000=−⨯⨯=>因此曲线5x y +=上存在点P 满足条件,所以5x y +=是“有用曲线”,故A 正确;对B ,因为曲线229x y +=在曲线2212516x y +=的内部,无交点,所以229x y +=不是“有用曲线”,故B 错误;对C ,曲线221259x y +=与2212516x y +=有交点()5,0与()5,0−,所以221259x y +=是“有用曲线”,故C 正确;对D ,曲线216x y =与2212516x y +=也有交点,所以216x y =是“有用曲线",故D 正确. 故选:ACD.【点睛】关键点睛:本题利用所给曲线的定义进行判断,关键是由题意得出点P 满足的方程,所给选项中的曲线只要与点P 满足的方程有交点即符合题意.16.(2021秋·辽宁·高二辽宁实验中学校考期中)双纽线也称伯努利双纽线,是指定线段AB 长度为2a ,动点M 满足2MA MB a ⋅=,那么M 的轨迹称为双纽线.已知曲线1C =为双纽线,下列选项判断正确的是( ) A .曲线C 过点()0,0B.曲线C上的点的纵坐标的取值范围是⎡⎣ C .曲线C 关于x 轴对称D .P 为曲线C 上的动点,,A B 的坐标为()0,1和()0,1−,则PAB 面积的最大值为2【答案】ABC【分析】将点()0,0代入曲线C 方程可知A 正确;1y ≥−1y ≥+可求得211y −≤,进而求得y 的范围,知B 正确;设曲线C 上的点(),x y 关于x 轴的对称点(),x y −代入曲线C 方程可知C 正确; 由1sin 2PABSPA PB θ=⋅知当PA PB ⊥时,PAB 面积最大,验证可知曲线C 上存在点P 使得PA PB ⊥,可知()max 12PAB S=,D 错误. 【详解】对于A ,将()0,0代入曲线C 方程,知方程成立,∴曲线C 过点()0,0,A 正确; 对于B ,(21x y y +≥=−(当且仅当0x =时取等号),1y =+(当且仅当0x =时取等号), 2111y y y ≥−⋅+=−(当且仅当0x=时取等号),即211y −≤,2111y ∴−≤−≤,解得:y ≤即曲线C 上的点的纵坐标的取值范围是⎡⎣,B 正确;对于C ,设曲线C 上任一点为(),x y ,则其关于x 轴对称的点为(),x y −, 1==,即点(),x y −也在曲线C 上,∴曲线C 关于x 轴对称,C 正确; 对于D ,设APB θ∠=,则1sin 2PABSPA PB θ=⋅, P 为曲线C 上的点,1PA PB ∴⋅=,1sin 2PABSθ∴=, 则当sin 1θ=,即PA PB ⊥时,()max 12PABS=, 当PA PB ⊥时,设()00,P x y ,则220011x y ⎧+==,解得:0012x y ⎧=⎪⎪⎨⎪=⎪⎩ 即曲线C 上存在点P ,使得PA PB ⊥,()max 12PAB S ∴=,D 错误. 故选:ABC.17.(2021秋·江苏南通·具有严格的比例性、艺术性,和谐性,蕴含着丰富的美学价值.这一比值能够引起人们的美感,是建筑和艺术中最理想的比例.我们把离心率e =的椭圆称为“黄金椭圆”,则以下说法正确的是( ) A .椭圆2212x =是“黄金椭圆” B .若椭圆22221(0)x y a b a b+=>>的右焦点为(),0F c ,且满足2b ac =,则该椭圆为“黄金椭圆”C .设椭圆22221(0)x y a b a b +=>>的左焦点为F ,上顶点为B ,右顶点为A ,若90ABF ∠=︒,则该椭圆为“黄金椭圆”D .设椭圆22221(0)x y a b a b+=>>的左、右顶点分别是A ,B ,左、右焦点分别是1F ,2F ,若21211=⋅F F AF F B ,则该椭圆为“黄金椭圆” 【答案】ABC【分析】定义离心率12e =的椭圆称为“黄金椭圆”,根据各命题中的椭圆方程,由题设及c e a =、222a b c =+列方程求椭圆离心率即可确定是否为“黄金椭圆”【详解】对于A :由题意得21a =,22b =,故e ==2212x =是“黄金椭圆”,故A 正确; 对于B :2b ac =,即22a c ac −=,故210e e +−=,解得e =e =(舍去),故该椭圆是“黄金椭圆”, 故B 正确;对于C :由90ABF ∠=︒得22222()+=+++a c a b b c ,化简可知210e e +−=,解得12e =或e =(舍去),故该椭圆是“黄金椭圆”, 故C 正确;对于D :由21211=⋅F F AF F B ,得2(2)()()=−+c a c a c ,则e =(负值舍去),故该椭圆不是“黄金椭圆”, 故D 错误. 故选:ABC三、填空题18.(2023春·北京·高三北京市陈经纶中学校考开学考试)卵圆是常见的一类曲线,已知一个卵圆C 的方程为:()221224x y x x +=>−+,O 为坐标原点,点(1,0)A ,点P 为卵圆上任意一点,则下列说法中正确的是________.①卵圆C 关于x 轴对称②卵圆上不存在两点关于直线12x =对称 ③线段PO 长度的取值范围是[1,2] ④OAP △的面积最大值为1 【答案】①③④【分析】利用点(),x y 和(),x y −均满足方程,即可判断①;设()00,x y 和()001,x y −都在卵圆C 上,再解()22000200012411124x y x x y x ⎧+=⎪+⎪⎨−⎪+=⎪−+⎩即可判断②;利用两点间的距离公式表示2OP ,然后利用导数研究其最值,即可判断③;利用三角形的面积公式表示出OAP S △,然后利用导数研究其最值,即可判断④. 【详解】对于①,设(),x y 是卵圆C 上的任意一个点,因为()222212424y x x y x x −+=+=++,所以点(),x y −也在卵圆C 上,又点(),x y 和点(),x y −关于x 轴对称, 所以卵圆C 关于x 轴对称,故①正确;对于②,设()00,x y 在卵圆C 上,()00,x y 关于直线12x =对称的点()001,x y −也在卵圆C 上, 则()2200200012411124x y x x y x ⎧+=⎪+⎪⎨−⎪+=⎪−+⎩,解得0010x y =−⎧⎨=⎩或0020x y =⎧⎨=⎩, 所以卵圆上存在()()1,0,2,0−两点关于直线12x =对称,故②错误; 对于③,由22124x y x +=+,得22124x y x =−+, 所以212x x ≤+,又2x >−,所以12x −≤≤,设点()[],,1,2P x y x ∈−,则2322222241422x x x OP x y x x x ⎛⎫−=+=+−=+ ⎪++⎝⎭, 令()[]()3224,1,22x x f x x x −=+∈−+,则()()()[]()2224,1,22x x x f x x x +−'=∈−+,令()0f x '=,则0x =或1−±,当10x −<<或12x −+<<时,()0f x ¢>,当01x <<−()0f x '<,所以函数()f x 在()()1,0,1−−上递增,在(0,1−上递减,又()()(()11,04,12624f f f f −==−=−=,且261−>,所以()()min max 1,4f x f x ==,即[]21,4OP ∈,所以[]1,2OP ∈,故③正确; 对于④,点()[],,1,2P x y x ∈−,1122OAPSOA y =⋅=⨯= 令()2,122x g x x x =−≤≤+,则()()()24,122x x g x x x +'=−≤≤+, 当10x −<<时,()0g x '<,当02x <<时,()0g x '>, 所以()g x 在()1,0−上递减,在()0,2上递增, 所以()()min 00g x g ==,此时OAP △的面积取得最大值1,故④正确. 故答案为:①③④.【点睛】关键点点睛:本题考查了圆锥曲线的新定义问题,解决此类问题的关键在于理解新定义的本质,把新情境下的概念、法则、运算化归到常规的数学背景中,运用相关的数学公式、定理、性质进行解答. 19.(2023·高二课时练习)在平面直角坐标系中,()1,0A −,()10B ,,若在曲线C 上存在一点P ,使得∠APB 为钝角,则称曲线上存在“钝点”,下列曲线中,有“钝点”的曲线为______.(填序号)①24x y =;②22132x y +=;③221x y −=;④()()22224x y −+−=;⑤344x y +=.【答案】①④⑤【分析】根据曲线上存在“钝点”的定义,依次判断各曲线是否存在“钝点”即可.【详解】设点P 的坐标为(),x y , 若∠APB 为钝角,则1cos 0APB −<∠<, 所以0PA PB ⋅<,且,,A P B 不共线, 所以()()()()110x x y y −−−+−−<,且0y ≠, 化简可得221,0x y y +<≠,反之若221,0x y y +<≠,则∠APB 为钝角, 对于曲线24x y =,取曲线上的点11,216E ⎛⎫⎪⎝⎭,因为221111,021616⎛⎫⎛⎫+<≠ ⎪ ⎪⎝⎭⎝⎭,所以AEB ∠为钝角,故曲线24x y =为有“钝点”的曲线;对于曲线22132x y +=,若曲线上的点()11,F x y 为“钝点”,则2211132x y +=,221111,0x y y +<≠,所以21113x <−,矛盾所以曲线22132x y +=不是有“钝点”的曲线;对于曲线221x y −=,若曲线上点()22,G x y 为“钝点”,则22221x y −=,222221,0x y y +<≠,所以220y <,矛盾 所以曲线221x y −=不是有“钝点”的曲线;对于曲线()()22224x y −+−=,取曲线上的点(2M ,因为((2222121,20+=−<≠,所以AMB ∠为钝角,故曲线()()22224x y −+−=为有“钝点”的曲线; 对于曲线344x y +=,取曲线上的点()21,32N, 因为222111,0322⎛⎫⎛⎫+<≠ ⎪ ⎪⎝⎭⎝⎭,所以ANB ∠为钝角,故曲线344x y +=为有“钝点”的曲线. 所以曲线①④⑤为有“钝点”的曲线. 故答案为:①④⑤.20.(2023秋·广东茂名·高二统考期末)法国数学家蒙日(),17461818Monge −发现:双曲线()2222:10x y a b a bΓ=>>−的两条互相垂直切线的交点P 的轨迹方程为:2222x y a b +=−,这个圆被称为蒙日圆.若某双曲线()22210x y a a −=>对应的蒙日圆方程为223x y +=,则=a ___________.【答案】2【分析】根据题意写出双曲线()22210x y a a −=>对应的蒙日圆方程,可得出关于a 的等式,即可求得正数a 的值.【详解】由双曲线()22210x y a a−=>的方程可得21b =,由蒙日圆的定义可得双曲线()22210x y a a −=>对应的蒙日圆方程223x y +=,所以223a b −=,即213a −=,可得2a =. 故答案为:2.21.(2023·全国·高三专题练习)一条抛物线把平面划分为二个区域,如果一个平面图形完全落在抛物线含有焦点的区域内,我们就称此平面图形被该抛物线覆盖.那么下列命题中,正确的是___________.(填写序号) (1)任意一个多边形所围区域总能被某一条抛物线覆盖; (2)与抛物线对称轴不平行、不共线的射线不能被该抛物线覆盖;(3 (4)任意有限多条抛物线都不能覆盖整个平面. 【答案】(1)(2)(4)【分析】由平面图形被该抛物线覆盖的定义逐项分析判断即可【详解】解:由抛物线的图像和性质可知,由于任意一个多边形所围区域沿着抛物线顶点出发向抛物线对称轴所在直线平移,总能把有限的区域放入抛物线内部,所以(1)正确;由于过抛物线内部一点的直线(不平行于轴)与抛物线都有两个交点,故抛物线无法覆盖一条直线,也不能覆盖与轴不平行、不共线的射线,所以(2)正确;由于锐角是由两条不平行的射线组成,故抛物线不能覆盖任何一个锐角,所以(3)错误;取一条直线,使它不平行于任一抛物线的对称轴,根据抛物线的图像和性质可知直线上的点不能被完全覆盖,如图,因为一条直线若被抛物线覆盖,它必须是抛物线的对称轴,所以任意有限多条抛物线都不能覆盖整个平面,所以(4)正确故答案为:(1)(2)(4)【点睛】关键点点睛:此题考查新定义,考查抛物线的性质的应用,解题的关键是对新定义的正确理解,属于中档题22.(2023·全国·高三专题练习)定义:点P 为曲线L 外的一点,,A B 为L 上的两个动点,则APB ∠取最大值时,APB ∠叫点P 对曲线L 的张角.已知点P 为抛物线2:4C y x =上的动点,设P 对圆22:(3)1M x y −+=的张角为θ,则cos θ的最小值为___________. 【答案】34【分析】先根据新定义,利用二倍角公式判断PM 最小时cos θ最小,再设2,4a P a ⎛⎫⎪⎝⎭,利用距离公式,结合二次函数最值的求法求得PM 最小值,即得结果.【详解】解:如图,2cos cos cos 212sin APB APM APM θ∠∠∠===−,要使cos θ最小,则1sin AM APM PMPM∠==最大,即需PM 最小.设2,4a P a ⎛⎫ ⎪⎝⎭,则PM =∴当24a =,即2a =±时,min ||PM =1sin APM PM ∠==, 此时(1,2)P 或(1,2)−,22min 3(cos )12sin 124APM θ∠=−=−⨯=.故答案为:34.【点睛】关键点点睛:本题的解题关键在于理解新定义,将cos θ的最小值问题转化为线段PM 最小问题,结合二次函数求最值即突破难点.23.(2022·全国·高二专题练习)在平面直角坐标系xOy 中,点M 不与原点О重合,称射线OM 与224x y +=的交点N 为点M 的“中心投影点”,曲线2213x y −=上所有点的“中心投影点”构成的曲线长度是_______【答案】83π 【解析】可作出对应曲线的图象,结合图形,求出题中“中心投影点”构成的曲线长度对应圆中的圆心角,从而求出其“中心投影点”构成的曲线的长度.【详解】曲线2213x y −=的渐近线方程为:y = ,设渐近线与圆224x y +=的交点分别为,,,A C B D ,如下图则曲线2213x y −=上所有点的“中心投影点”构成的曲线为圆弧,AB CD由题意6AOx π∠=,所以23AOB π∠=所以24233AB ππ=⨯=,则83AB CD π+= 故答案为:83π24.(2020·浙江·高二期末)把椭圆C 的短轴和焦点连线段中较长者、较短者分别作为椭圆C '的长轴、短轴,使椭圆C 变换成椭圆C ',称之为椭圆的一次“压缩”.按上述定义把椭圆(0,1,2,)i C i =Λ“压缩”成椭圆1i C +,得到一系列椭圆123,,C C C ,…当短轴长与焦距相等时终止“压缩”.经研究发现,某个椭圆0C 经过(3)n n ≥次“压缩”后能终止,则椭圆2n C −的离心率可能是①2,②5中的______.(填写所有正确结论的序号) 【答案】①②【解析】分类讨论,确定压缩数为2n −时,半长轴、半短轴、半焦距,利用离心率公式,即可求得结论. 【详解】解:依题意,若原椭圆,短轴>焦距,则压缩数为n 时,半长轴为a ,半短轴为c ,半焦距为c所以压缩数为n 1−a ,半焦距为c ;压缩数为2n −a ∵压缩数为n 时,22222a c c c =+=∴2n C −的离心率==同理,若原椭圆,短轴<焦距,则压缩数为n 时,半长轴为a ,半短轴为c ,半焦距为c所以压缩数为n 1−c ,半焦距为a ;压缩数为2n −c ∵压缩数为n 时,22222a c c c =+=∴2n C −的离心率== 故答案为:①②.【点睛】本题考查新定义,考查学生的计算能力,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题.25.(2018·北京·高二统考期末)已知两定点(2,0),(2,0)M N −,若直线上存在点P ,使得||||6PM PN +=,则该直线为“T 型直线”.给出下列直线,其中是“T 型直线”的是___________. ①2y x =+ ②3y = ③3y x =−+ ④132y x =+ 【答案】①③【分析】根据椭圆的定义将“T 型直线”的判定问题转化为直线与椭圆是否有公共点的问题.【详解】由椭圆的定义可知,点P 的轨迹是以,M N 为焦点的椭圆,其方程为22195x y +=,对于①中,直线2y x =+代入椭圆的方程22195x y +=,整理得2143690x x +−=,则236414(9)0∆=−⨯⨯−>,所以2y x =+是“T 型直线”;对于②中,把3y =代入22195x y +=,则29195x +=,此时无解,所以3y =不是“T 型直线”;对于③中,把直线3y x =−+代入椭圆的方程22195x y +=,整理得21454360x x −+=,则254414360∆=−⨯⨯>,所以3y x =−+是“T 型直线”;对于④中,把直线132y x =−+代入椭圆的方程22195x y +=,整理得2291081440x x −+=,可得Δ0<,所以132y x =−+不是“T 型直线”,故答案为:①③.26.(2017·河南漯河·漯河高中校考三模)平面直角坐标系中,(1,0)A −,(1,0)B ,若曲线C 上存在一点P ,使0PA PB ⋅<,则称曲线C 为“合作曲线”,有下列曲线①2212x y +=;②21y x =+;③2221y x −=;④2231x y +=;⑤24x y +=,其中“合作曲线”是__________.(填写所有满足条件的序号) 【答案】①③④【分析】设点(,)P x y ,曲线C 为“合作曲线”⇔存在点(,)x y 使得221x y +<.解出即可判断出结论. 【详解】解:设点(,)P x y ,曲线C 上存在一点P ,使0PA PB ⋅<,∴合作曲线⇔存在点(,)x y 使得221x y +<.①由2212x y +=,则满足存在点(,)x y 使得221x y +<,曲线C 上存在一点P 满足221x y +<,故1为合作曲线; ②令2(,1)P x x +,则222(1)1x x ++<,化为4230x x +<,此时无解,即不满足221x y +<,故2不为合作曲线;③由2221y x −=,可得a =,1b =,则曲线C 上存在一点P 满足221x y +<,故3为合作曲线;④由2231x y +=,可得:1a =,b =,则曲线C 上存在一点P 满足221x y +<,故4为合作曲线; ⑤因为直线圆心到直线24x y +=的距离1d =>,故曲线C 上不存在一点P 满足221x y +<,故5不为合作曲线;综上可得:“合作曲线”是①③④.故答案为:①③④27.(2016·河北衡水·统考一模)如图,将平面直角坐标系中的纵轴绕原点O 顺时针旋转30︒后,构成一个斜坐标平面xOy .在此斜坐标平面xOy 中,点(),P x y 的坐标定义如下:过点P 作两坐标轴的平分线,分别交两轴于,M N 两点,则M 在Ox 轴上表示的数为x ,N 在Oy 轴上表示的数为y .那么以原点O 为圆心的单位圆在此斜坐标系下的方程为___________.【答案】2210x y xy ++−=【分析】过点P 作 ,PA x PB y ⊥⊥, 设(,)P x y 在直角坐标下的坐标为 ()11,P x y , 因为30,BON ON y ∠==,所以 1,2OB y BN y ==,即111,2y y x x y ==+, 因为()11,P x y 在单位圆上,所以22111x y +=,即221122y x y ⎛⎫⎛⎫++= ⎪ ⎪ ⎪⎝⎭⎝⎭, 整理得2210x y xy ++−=.考点:圆的一般方程.【方法点晴】本题主要考查了与直角坐标有关的新定义的运算问题,对于新定义试题,要紧紧围绕新定义,根据新定义作出合理的运算与变换,同时着重考查了转化与化归的思想方法的应用,属于中档试题,本题的解答中,设出(,)P x y 在直角坐标下的坐标为11(,)P x y ',建立两个点之间的变换关系,代入单位圆的方程,即可曲解轨迹方程,其中正确得到两点之间的变换关系是解答的关键.28.(2022·全国·高三专题练习)称离心率为e =22221(0,0)x y a b a b −=>>为黄金双曲线.如图是双曲线22221(0,0,x y a b c a b −=>>=的图象,给出以下几个说法:①双曲线221=x 是黄金双曲线; ②若2b ac =,则该双曲线是黄金双曲线;③若F 1,F 2为左右焦点,A 1,A 2为左右顶点,B 1(0,b ),B 2(0,-b )且∠F 1B 1A 2=90°,则该双曲线是黄金双曲线; ④若MN 经过右焦点F 2且MN ⊥F 1F 2,∠MON =90°,则该双曲线是黄金双曲线. 其中正确命题的序号为____________【答案】①②③④【分析】根据双曲线方程求离心率,或由已知条件及双曲线参数关系构造齐次方程求离心率,结合黄金双曲线的定义判断正确命题.【详解】①:双曲线的标准方程为221x =,则2221,a b c ===,故c e a ===,满足; ②:由2222010b ac c ac a e e =⇒−−=⇒−−=,可得e =e =(舍),故满足; ③:由11290F B A ∠=︒,则222112112B F A B F A +=,所以()()222222()c b a b a c b ac +++=+⇒=,由②可得。
指数函数与对数函数专项训练一、单选题1.(23-24高一下·云南玉溪·期末)函数()()2lg 35f x x x =-的定义域为()A .()0,∞+B .50,3⎛⎫⎪C .()5,0,3∞∞⎛⎫-⋃+ ⎪D .5,3⎛⎫+∞ ⎪【答案】C【详解】由题意知,2350x x ->,即(35)0x x ->,所以0x <或53x >.故选:C.2.(23-24高一上·云南昭通·期末)函数()327x f x x =+-的零点所在的区间是()A .()0,1B .31,2⎛⎫ ⎪⎝⎭C .3,22⎛⎫⎪D .()2,3【答案】B【详解】∵3x y =和27y x =-均在R 上单调递增,∴()327x f x x =+-在R 上单调递增;又()12f =-,327402f ⎛⎫=-> ⎪⎝⎭,∴()f x 在31,2⎛⎫ ⎪⎝⎭上有唯一的零点,故选:B.3.(23-24高一上·云南昆明·期末)滇池是云南省面积最大的高原淡水湖,一段时间曾由于人类活动的加剧,滇池水质恶化,藻类水华事件频发.在适当的条件下,藻类的生长会进入指数增长阶段.滇池外海北部某年从1月到7月的水华面积占比符合指数增长,其模型为23 1.65x y -=⨯.经研究“以鱼控藻”模式能有效控制藻类水华.如果3月开始向滇池投放一定量的鱼群后,鱼群消耗水华面积占比呈现一次函数 5.213.5y x =-,将两函数模型放在同期进行比较,如图所示.下列说法正确的是(参考数据:671.6520.2,1.6533.3≈≈)()A .水华面积占比每月增长率为1.65B .如果不采取有效措施,到8月水华的面积占比就会达到60%左右C .“以鱼控藻”模式并没有对水华面积占比减少起到作用D .7月后滇池藻类水华会因“以鱼控藻”模式得到彻底治理【答案】B【详解】对于A ,由于模型23 1.65x y -=⨯呈指数增长,故A 错误;对于B ,当8x =时,8220.63 1.605326.y -⨯==⨯≈,故B 正确;对于C ,因为鱼群消耗水华面积占比呈现一次函数 5.213.5y x =-,所以“以鱼控藻”模式对水华面积占比减少起到作用,故C 错误;对于D ,由两函数模型放在同期进行比较的图象可知,7月后滇池藻类水华并不会因“以鱼控藻”模式得到彻底治理,故D 错误.故选:B.4.(23-24高一上·云南昭通·期末)()()1log 14a f x x =-+(0a >且1a ≠)的图象恒过定点M ,幂函数()g x 过点M ,则12g ⎛⎫⎪⎝⎭为()A .1B .2C .3D .4【答案】D【详解】()()1log 14a f x x =-+,令11x -=,得2x =,()124f =,则()()1log 14a f x x =-+(0a >且1a ≠)恒过定点12,4M ⎛⎫⎪⎝⎭,设()g x x α=,则124α=,即2α=-,即()2g x x -=,∴142g ⎛⎫= ⎪⎝⎭,故选:D.5.(23-24高一下·云南楚雄·期末)已知0.320.3lo g 3,2,lo g 2a b c -===,则()A .c b a <<B .<<b c aC .<<c a bD .a b c<<【答案】A【详解】因为2log y x =在(0,)+∞上单调递增,且234<<,所以222log 2log 3log 4<<,所以21log 32<<,即12a <<,因为2x y =在R 上递增,且0.30-<,所以0.300221-<<=,即01b <<,因为0.3log y x =在(0,)+∞上单调递减,且12<,所以0.30.3log 1log 2>,所以0.3log 20<,即0c <,所以c b a <<.故选:A6.(23-24高一上·云南·期末)若()21()ln 1||f x x x =+-,设()0.3(3),(ln2),2a f b f c f =-==,则a ,b ,c 的大小关系为()A .c a b >>B .b c a >>C .a b c >>D .a c b>>【答案】D【详解】由题意知()(),00,x ∈-∞⋃+∞,由()()()21ln 1f x x f x x⎡⎤-=-+-=⎣⎦-,所以()f x 为偶函数,图象关于y 轴对称,当0x >时,由复合函数的单调性法则知()f x 随x 的增大而增大,即()0,x ∈+∞,()21()ln 1||f x x x =+-单调递增,因为()()33a f f =-=,()0.3(ln2),2b f c f ==,且00.3112222=<<=,0ln2lne 1<<=,所以0.3ln 223<<,所以()()()0.3ln223f f f <<-,即b c a <<,也就是a c b >>.故选:D7.(23-24高一下·云南·期末)设222,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若关于x 的方程2[()](2)()20f x a f x a -++=恰有5个不同实数解,则实数a 的取值范围是()A .[]1,2B .(2,3]C .()2,+∞D .()3,+∞【答案】B【详解】方程2[()](2)()20f x a f x a -++=化为[()2][()]0f x f x a --=,解得()2f x =或()f x a =,函数()f x 在(,0]-∞上单调递增,函数值的集合为(2,3],在(0,1]上单调递减,函数值的集合为[0,)+∞,在[1,)+∞上单调递增,函数值的集合为[0,)+∞,在同一坐标系内作出直线2,y y a ==与函数()y f x =的图象,显然直线2y =与函数()y f x =的图象有两个交点,由关于x 的方程2[()](2)()20f x a f x a -++=恰有5个不同实数解,则直线y a =与函数()y f x =的图象有3个交点,此时23a <≤,所以实数a 的取值范围是(2,3].故选:B8.(23-24高一下·云南昆明·期末)若()12:lo g 11,:39a p a q --<<,则p 是q 的()条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要【答案】A【详解】对于()22:log 11log 2p a -<=,则012a <-<,解得13a <<;对于1:39a q -<,则12a -<,解得3a <;因为{}|13a a <<是{}|3a a <的真子集,所以p 是q 的充分不必要条件.故选:A.二、多选题9.(23-24高一上·云南迪庆·期末)已知函数()()2ln 2f x x x =-,则下列结论正确的是()A .函数()f x 的单调递增区间是[)1,+∞B .函数()f x 的值域是RC .函数()f x 的图象关于1x =对称D .不等式()ln 3f x <的解集是()1,3-【答案】BC【详解】对于A ,当1x =时,2210x x -=-<,此时()()2ln 2f x x x =-无意义,故A 错误;对于B ,由于()22y g x x x ==-的值域为[)1,-+∞,满足()[)0,1,+∞⊆-+∞,所以函数()f x 的值域是R ,故B 正确;对于C ,由题意()()()22ln 2ln 11f x x x x ⎡⎤=-=--⎣⎦,且定义域为()(),02,-∞+∞ ,它满足()()()21ln 11f x x f x+=-=-,即函数()f x 的图象关于1x =对称,故C 正确;对于D ,由于()f x 的定义域为()(),02,-∞+∞ ,故D 错误.故选:BC.10.(23-24高一上·云南昆明·期末)已知函数2212,0()2|log ,0x x x f x x x ⎧--≤⎪=⎨⎪⎩,若1234x x x x <<<,且()()()()1234fx fx fx fx ===,则下列结论中正确的是()A .122x x +=-B .1204x x <<C .()41,4x ∈D .342x x +的取值范围是332,4⎡⎫⎪⎢⎣⎭【答案】BC【详解】作出函数2212,0()2|log ,0x x x f x x x ⎧--≤⎪=⎨⎪⎩的图像如图.对于选项A,根据二次函数的对称性知,12()224x x +=⨯=--,故A 项错误;对于选项B ,因120x x <<,由上述分析知124x x +=-,则21212120()()()42x x x x x x --<=-⋅-≤=,因12x x ≠,故有1204x x <<,即B 项正确;对于选项C ,如图,因0x ≤时,2211()2(2)2222f x x x x =--=-++≤,0x >时,2()|log |f x x =,依题意须使20|log |2x <<,由2|log |0x >得1x ≠,由2|log |2x <解得:144x <<,故有3411,144x x <<<<,即C项正确;对于选项D ,由图知2324log log x x -=,可得341x x =,故431x x =,则343322x x x x ++=,3114x <<,不妨设21,(,1)4y x x x =+∈,显然函数2y x x =+在(1,14)上单调递减,故23334x x <+<,即342x x +的取值范围是(333,4),故D 项错误.故选:BC.11.(23-24高一上·云南昆明·期末)关于函数()ln f x x x =+,以下结论正确的是()A .方程()0f x =有唯一的实数解c ,且(0,1)c ∈B .对,0,()()()x y f xy f x f y ∀>=+恒成立C .对()1212,0x x x x ∀>≠,都有()()1212f x f x x x ->-D .对12,0x x ∀>,均有()()121222f x f x x x f ++⎛⎫≤⎪【答案】AC【详解】A 选项,由于1y x =在R 上单调递增,2ln y x =在()0,∞+上单调递增,故()ln f x x x =+在定义域()0,∞+上单调递增,又()11ln 30,11033f f ⎛⎫=-<=> ⎪⎝⎭,故由零点存在性定理可得,方程()0f x =有唯一的实数解c ,且(0,1)c ∈,A 正确;B 选项,()ln f xy xy xy =+,()()ln ln ln f x f y x x y y x y xy +=+++=++,显然,0x y ∀>,由于xy 与x y +不一定相等,故()()f x f y +与()f xy 不一定相等,B 错误;C 选项,由A 选项可知,()ln f x x x =+在定义域()0,∞+上单调递增,对()1212,0x x x x ∀>≠,都有()()12120f x f x x x ->-,C 正确;D 选项,12,0x x ∀>,均有121212ln 222x xx x x x f +++⎛⎫=+ ⎪⎝⎭,()()12112212121212ln ln ln ln 22222f x f x x x x x x x x x x x x x ++++++==+=+,由于12122x x x x +≥,当且仅当12x x =时,等号成立,故1212ln ln 2x x x x +≥,即()()121222f x f x x x f ++⎛⎫≥ ⎪⎝⎭,D 错误.故选:AC 三、填空题12.(23-24高一上·云南昆明·期末)()()2,(1)29,1x a x f x x ax a x ⎧>⎪=⎨-++-≤⎪⎩是R 上的单调递增函数,则实数a 的取值范围为.【答案】[]2,5【详解】因为在R 递增,则112129a a a a a⎧⎪⎪≥⎨⎪-++-≤⎪⎩>,解得:25a ≤≤,故答案为:[]2,513.(23-24高一下·云南昆明·期末)设函数()ln(1)f x x =+,2()g x x a =-+,若曲线()y f x =与曲线()y g x =有两个交点,则实数a 的取值范围是.【答案】(0,)+∞【详解】当0x ≥时,()ln(1),f x x =+当0x <时()ln(1),f x x =-+函数图象示意图为则2()g x x a =-+与()ln (1)f x x =+有两个零点知a 的取值范围是(0,)+∞.故答案为:(0,).+∞14.(23-24高一下·云南玉溪·期末)苏格兰数学家纳皮尔(J.Napier ,1550-1617)在研究天文学的过程中,经过对运算体系的多年研究后发明的对数,为当时的天文学家处理“大数”的计算大大缩短了时间.即就是任何一个正实数N 可以表示成10(110,)n N a a n =⨯≤<∈Z ,则lg lg (0lg 1)N n a a =+≤<,这样我们可以知道N 的位数为1n +.已知正整数M ,若10M 是10位数,则M 的值为.(参考数据:0.9 1.1107.94,1012.56≈≈)【答案】8或9【详解】依题意可得910101010M ≤<,两边取常用对数可得91010lg10lg lg10M ≤<,即910lg 10M ≤<,所以0.9lg 1M ≤<,即0.91010M ≤<,又M 为正整数,所以8M =或9M =.故答案为:8或9四、解答题15.(23-24高一上·云南昆明·期末)设函数()log (3)(,10a f x x a =-+>且1)a ≠.(1)若(12)3f =,解不等式()0f x >;(2)若()f x 在[4,5]上的最大值与最小值之差为1,求a 的值.【答案】(1)10(,)3+∞(2)2a =或12a =【详解】(1)由(12)3f =可得log (123)13a -+=,解得3a =,即3()log (3)1,(3)f x x x =-+>,则()0f x >,即3log (3)10x -+>,即310,1333x x x >⎧⎪∴>⎨->⎪⎩,故不等式()0f x >的解集为10(,)3+∞;(2)由于()f x 在[4,5]上的最大值与最小值之差为1,故log 11(log 21)1a a +-+=,即log 21,2a a =∴=或12a =,即a 的值为2a =或12a =.16.(23-24高一上·云南昭通·期末)化简求值:(1)()13103420.027π4160.49--++;(2)ln22311lg125lg40.1e log 9log 1632-+++⨯.【答案】(1)8(2)9【详解】(1)()13103420.027π4160.49--++()()()1313423420.3120.7⎡⎤⎡⎤⎡⎤=-++⎣⎦⎣⎦⎣⎦0.3180.78=-++=;(2)ln22311lg125lg4lg 0.1e log 9log 1632-++++⨯3211112lg34lg2lg5lg23222lg2lg3=+-++⨯lg 5lg28=++9=.17.(23-24高一上·云南·期末)已知定义域为R 的函数()11333xx m f x +-⋅=+是奇函数.(1)求m 的值并利用定义证明函数()f x 的单调性;(2)若对于任意t ∈R ,不等式()()22620f t t f t k -+-<恒成立,求实数k 的取值范围.【答案】(1)1m =,证明见解析(2)3k <-【详解】(1)因为()f x 是奇函数,函数的定义域为R ,所以(0)0f =,所以1033m-=+,所以1m =,经检验满足()()f x f x -=-易知()11312133331x x x f x +-⎛⎫==-+ ⎪++⎝⎭设12x x <,则2112122(33)()()3(31)(31)x x x x f x f x --=++因为3x y =在实数集上是增函数,故12()()0f x f x ->.所以()f x 在R 上是单调减函数(2)由(1)知()f x 在(,)-∞+∞上为减函数.又因为()f x 是奇函数,所以()()22620f t t f t k -+-<等价于()()2262f t t f k t-<-,因为()f x 为减函数,由上式可得:2262t t k t ->-.即对一切t R ∈有:2360t t k -->,从而判别式361203k k ∆=+<⇒<-.所以k 的取值范围是3k <-.18.(23-24高一下·云南昆明·期末)已知函数1()xx f x a a ⎛⎫=- ⎪⎝⎭ (0a >且1a ≠).(1)讨论()f x 的单调性(不需证明);(2)若2a =,(ⅰ)解不等式3()2≤f x x;(ⅱ)若21()(22))2(x g f x t x x f +=-+在区间[]1,1-上的最小值为74-,求t 的值.【答案】(1)答案见解析(2)(ⅰ)(](],10,1-∞-⋃;(ⅱ)2t =-或2t =【详解】(1)若1a >,则1()()x xf x a a=-在R 上单调递增;若01a <<,则1()()x xf x a a=-在R 上单调递减.(2)(ⅰ)3()2≤f x x ,即132()022xx x --≤,设13()2()22xx g x x=--,则(1)0g =,()()g x g x -=-,所以()g x 为奇函数,当0x >时,()g x 单调递增,由()(1)g x g ≤,解得01x <≤,根据奇函数的性质,当0x <时,()(1)g x g ≤的解为1x ≤-,综上所述,3()2≤f x x的解集为(](],10,1-∞-⋃.(ⅱ)2122()2(2)2()222(22)x x x x x g x f x tf x t +--=-+=++-,令22x x m --=,因为[]1,1x ∈-,则33,22m ⎡⎤∈-⎢⎥⎣⎦,所以2()()22g x h m m tm ==++,其图象为开口向上,对称轴为m t=-的抛物线,①当32t -≤-,即32t ≥时,min 39177()()3232444h m h t t =-=-+=-=-,解得2t =.②当3322t -<-<,即3322t -<<时,222min 7()()2224h m h t t t t =-=-+=-+=-,解得1152t =,2152t =-矛盾.③当32t -≥,即32t ≤-时,min 39177()()3232444h m h t t ==++=+=-,解得2t =-.综上所述,2t =-或2t =.19.(23-24高一上·云南昆明·期末)函数()e (0)x f x mx m =-<.(1)求(1)f -和(0)f 的值,判断()f x 的单调性并用定义加以证明;(2)设0x 是函数()f x 的一个零点,当1em <-时,()02f x k >,求整数k 的最大值.【答案】(1)1(1)e f m --=+,(0)1f =,()f x 在定义域R 上单调递增,证明见解析,(2)整数k 的最大值为1-【详解】(1)1(1)e f m --=+,(0)1f =,判断()f x 在定义域R 上单调递增,证明如下:在R 上任取1x ,2x ,且12x x <,则1212121212()()e (e )(e e )()x x x x f x f x mx mx m x x -=---=---,因为12x x <,0m <,所以12e e x x <,120x x -<,0m ->,所以12e e 0x x -<,12()0m x x --<,所以1212(e e )()0x x m x x ---<,即12())0(f x f x -<,所以12()()f x f x <,所以()f x 在定义域R 上单调递增.(2)由题意得0()0f x =,即00e 0x mx -=,1em <-,则10e m +<,即0(1)0()f f x -<=,由()f x 是R 上的增函数,所以01x -<,又0(0)10()f f x =>=,所以010x -<<,0200(2)e 2x f x mx =-002e 2e x x =-,令01e (ext =∈,1),则22()2(1)1g t t t t =-=--,所以()g t 在1(e ,1)上单调递减,所以()()11g t g >=-,即0(2)1f x >-,当1em <-时,0(2)f x k >,所以1k ≤-,所以整数k 的最大值为1-.。
指数函数讲义经典整理(含答案)一、同步知识梳理知识点1:指数函数函数(01)xy a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R知识点2:指数函数的图像和性质知识点3:指数函数的底数与图像的关系指数函数在同一直角坐标系中的图像的相对位置与底数大小的关系 如图所示,则01c d a b <<<<<,在y 轴右侧,图像从下到上相应的底数也由小变大, 在y 轴左侧,图像从上到下相应的底数也由小变大 即无论在y 轴左侧还是右侧,底数按逆时针方向变大在第一象限内,“底大图高”知识点4:指数式、指数函数的理解① 分数指数幂与根式或以互化,通常利用分数指数幂进行根式的运算② 根式的运算、变形、求值、化简及等式证明在数学中占有重要的地位,是研究方程、不等式和函数的基础,应引起重视③ 在有关根式、分数指数幂的变形、求值过程中,要注意运用方程的观点处理问题,通过解方程或方程组来求值④ 在理解指数函数的概念时,应抓住定义的“形式”,像1223,,21xx y y x y y =⋅===- 等函数均不符合形式()01x y a a a =>≠且,因此,它们都不是指数函数⑤ 画指数函数x y a =的图像,应抓住三个关键点:()()11,,0,1,1,a a ⎛⎫- ⎪⎝⎭二、同步题型分析题型1:指数函数的定义、解析式、定义域和值域例1:已知函数,且. (1)求m 的值;(2)判定f (x )的奇偶性;(3)判断f (x )在(0,+∞)上的单调性,并给予证明.考点:指数函数的定义、解析式、定义域和值域;函数单调性的判断与证明. 专题: 计算题. 分析:(1)欲求m 的值,只须根据f (4)=的值,当x=4时代入f (x )解一个指数方程即可;(2)求出函数的定义域x|x≠0},利用奇偶性的定义判断f (x )与f (﹣x )的关系,即可得到答案; (3)利用单调性的定义证明即可.任取0<x1<x2,只要证明f (x1)>f (x2),即可. 解答: 解:(1)因为,所以,所以m=1.(2)因为f (x )的定义域为{x|x≠0},又,所以f (x )是奇函数. (3)任取x1>x2>0,则,因为x1>x2>0,所以,所以f (x1)>f (x2),所以f(x)在(0,+∞)上为单调增函数.点评:本题主要考查了函数单调性的判断、函数奇偶性的判断,与证明及指数方程的解法.在判定函数奇偶性时,一定注意函数的定义域关于原点对称,属于基础题.例2:已知函数,(1)讨论函数的奇偶性;(2)证明:f(x)>0.考点:指数函数的定义、解析式、定义域和值域;函数奇偶性的判断;函数奇偶性的性质.专题:计算题.分析:(1)由2x﹣1≠0解得义域为{x|x≠0},关于原点对称.f(﹣x)=()(﹣x)=()x=f(x),故该函数为偶函数.(2)任取x∈{x|x≠0},当x>0时,2x>20=1且x>0,故,从而.当x<0时,﹣x>0,故f(﹣x)>0,由函数为偶函数,能证明f(x)>0在定义域上恒成立.解答:解:(1)该函数为偶函数.由2x﹣1≠0解得x≠0即义域为{x|x≠0}关于原点对称…(2分)f(﹣x)=()(﹣x)=﹣(+)x=()x=()x=()x=f(x)(6分)故该函数为偶函数.…(7分)(2)证明:任取x∈{x|x≠0}当x>0时,2x>20=1且x>0,∴2x﹣1>0,故从而…(11分)当x<0时,﹣x>0,∴f(﹣x)>0,…(12分)又因为函数为偶函数,∴f(x)=f(﹣x)>0,…(13分)∴f(x)>0在定义域上恒成立.…(14分)点评:本题考查函数的奇偶性的判断和证明f(x)>0.解题时要认真审题,注意指数函数性质的灵活运用.例3:已知函数y=ax(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,记.(1)求a的值;(2)求f(x)+f(1﹣x)的值;(3)求的值.考点:指数函数的定义、解析式、定义域和值域.专题:综合题;函数的性质及应用.分析:(1)由y=ax单调得a+a2=20,由此可求a;(2)写出f(x),代入运算可得;(3)借助(2)问结论分n为奇数、偶数讨论可求;解答:解:(1)∵函数y=ax(a>0且a≠1)在[1,2]上的最大值与最小值之和为20,且y=ax单调,∴a+a2=20,得a=4,或a=﹣5(舍去);(2)由(1)知,∴====1;(3)由(2)知f(x)+f(1﹣x)=1,得n为奇数时,=×1=;n为偶数时,=+f()==;综上,=.点评:本题考查指数函数的单调性、最值等知识,属中档题.题型2:指数函数的图像变换.例1:已知函数y=|2x﹣2|(1)作出其图象;(2)由图象指出函数的单调区间;(3)由图象指出当x取何值时,函数有最值,并求出最值.考点:指数函数的图像变换.专题:综合题;函数的性质及应用.分析:(1)函数y=|2x﹣2|图象是由y=2x的图象向下平移2个单位,再将x轴下方的部分翻着到x轴上方得到.(2)结合函数的图象,可得函数的减区间和增区间.(3)数形结合可得,当x=1时,ymiin=0.解答:解:(1)函数y=|2x﹣2|图象是由y=2x的图象向下平移2个单位,再将x轴下方的部分翻着到x轴上方得到,如图所示:(2)结合函数的图象,可得函数的减区间为(﹣∞,1],增区间为(1,+∞).(3)数形结合可得,当x=1时,ymiin=0.点评:本题主要考查指数函数的图象和性质综合,体现了数形结合的数学思想,属于中档题.题型3:指数函数单调性例1:已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0(1)若a•b>0,判断函数f(x)的单调性;(2)若a=﹣3b,求f(x+1)>f(x)时的x的取值范围.考点:指数函数的单调性与特殊点;函数单调性的判断与证明;函数单调性的性质.专题:函数的性质及应用.分析:(1)分a>0,b>0和a<0,b<0两种情况讨论,运用单调性的定义可作出判断;(2)当a=﹣3b时,f(x)=﹣3b•2x+b•3x=b(3x﹣3•2x),分b>0,b<0两种情况进行讨论,整理可得指数不等式解出即可;解答:解:(1)当a>0,b>0时,任意x1,x2∈R,且x1<x2,则f(x1)﹣f(x2)=a(﹣)+b(﹣),∵<,<,a>0,b>0,∴a(﹣)<0,b(﹣)<0,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),故函数f(x)在R上是增函数;当a<0,b<0时,同理,可判断函数f(x)在R上是减函数;(2)当a=﹣3b时,f(x)=﹣3b•2x+b•3x=b(3x﹣3•2x),则f(x+1)>f(x)即化为b(3x+1﹣3•2x+1)>b(3x﹣3•2x),若b>0,则有3x+1﹣3•2x+1>3x﹣3•2x,整理得,解得x>1;若b<0,则有3x+1﹣3•2x+1<3x﹣3•2x,整理得,解得x<1;故b>0时,x的范围是x>1;当b<0时,x的范围是x<1.点评:本题考查函数单调性的判断、指数函数的单调性的应用,考查分类讨论思想,属基础题.例2:已知定义在(﹣1,1)上的奇函数f(x).在x∈(﹣1,0)时,f(x)=2x+2﹣x.(1)试求f(x)的表达式;(2)用定义证明f(x)在(﹣1,0)上是减函数;(3)若对于x∈(0,1)上的每一个值,不等式t•2x•f(x)<4x﹣1恒成立,求实数t的取值范围.考点:指数函数综合题;奇偶性与单调性的综合.专题:计算题;函数的性质及应用.分析:(1)由f(x)是定义在(﹣1,1)上的奇函数可得f(0)=0,x∈(0,1)时,f(x)=﹣f(﹣x)=﹣(2x+2﹣x);从而写出f(x)的表达式;(2)取值,作差,化简,判号,下结论五步;(3)对于x∈(0,1)上的每一个值,不等式t•2x•f(x)<4x﹣1恒成立转化为对于x∈(0,1)上的每一个值,不等式t>﹣恒成立,从而可得.解答:解:(1)∵f(x)是定义在(﹣1,1)上的奇函数,∴f(0)=0,设∈(0,1),则﹣x∈(﹣1,0),则f(x)=﹣f(﹣x)=﹣(2x+2﹣x),故f(x)=;(2)任取x1,x2∈(﹣1,0),且x1<x2,则f(x1)﹣f(x2)=+﹣(+)=,∵x1<x2<0,∴﹣<0,0<<1,故f(x1)﹣f(x2)>0,故f(x)在(﹣1,0)上是减函数;(3)由题意,t•2x•f(x)<4x﹣1可化为t•2x•(﹣(2x+2﹣x))<4x﹣1,化简可得,t>﹣,令g(x)=﹣=﹣1+,∵x∈(0,1),∴g(x)<﹣1+=0,故对于x∈(0,1)上的每一个值,不等式t•2x•f(x)<4x﹣1恒成立可化为t≥0.点评:本题考查了函数的性质的综合应用及恒成立问题的处理方法,属于难题.例3:已知函数f(x)=|2x﹣1﹣1|,(x∈R).(1)证明:函数f(x)在区间(1,+∞)上为增函数,并指出函数f(x)在区间(﹣∞,1)上的单调性;(2)若函数f(x)的图象与直线y=t有两个不同的交点A(m,t),B(n,t),其中m<n,求m+n 的取值范围.考点:指数函数综合题.专题:计算题;证明题.分析:(1)函数单调性的证明,通常依据定义,步骤为:取值,作差,变形,定号,下结论,由于与指数函数有关,求解时要利用到指数函数的单调性;(2)由(1)可知,函数的值域为(0,1),要使函数f(x)的图象与直线y=t有两个不同的交点,故有t∈(0,1)又函数f(x)的图象与直线y=t有两个不同的交点,所以A(m,t),B(n,t)分别位于直线x=1的两侧,由m<n,得m<1<n,故可以求出m+n,进而由t∈(0,1),可求m+n的取值范围.解答:解:(1)证明:任取x1∈(1,+∞),x2∈(1,+∞),且x1<x2,=,∵x1<x2,∴,∴,∴f(x1)<f(x2).所以f(x)在区间(1,+∞)上为增函数.(5分)函数f(x)在区间(﹣∞,1)上为减函数.(6分)(2)因为函数f(x)在区间(1,+∞)上为增函数,相应的函数值为(0,+∞),在区间(﹣∞,1)上为减函数,相应的函数值为(0,1),由题意函数f(x)的图象与直线y=t有两个不同的交点,故有t∈(0,1),(8分)易知A(m,t),B(n,t)分别位于直线x=1的两侧,由m<n,得m<1<n,故2m﹣1﹣1<0,2n ﹣1﹣1>0,又A,B两点的坐标满足方程t=|2x﹣1﹣1|,故得t=1﹣2m﹣1,t=2n﹣1﹣1,即m=log2(2﹣2t),n=log2(2+2t),(12分)故m+n=log2(2﹣2t)+log2(2+2t)=log2(4﹣4t2),当0<t<1时,0<4﹣4t2<4,﹣∞<log2(4﹣4t2)<2.因此,m+n的取值范围为(﹣∞,2).(17分)点评:本题的考点是指数函数综合问题,主要考查函数单调性的证明,考查函数图形的性质,有较强的综合性.依据定义,证明函数的单调性的步骤通常为:取值,作差,变形,定号,下结论三、课堂达标检测检测题1:已知函数f(x)=(其中e=2.71828…是一个无理数).(1)求函数f(x)的定义域;(2)判断奇偶性并证明之;(3)判断单调性并证明之.考点:指数函数的定义、解析式、定义域和值域;函数单调性的判断与证明;函数奇偶性的判断.专题:计算题;证明题.分析:(1)把分子整理变化成和分母相同的一部分,进行分子常数化,则变量只在分母上出现,根据分母是一个指数形式,恒大于零,得到函数的定义域是全体实数.(2)根据上一问值函数的定义域关于原点对称,从f(﹣x)入手整理,把负指数变化为正指数,就得到结果,判断函数是一个奇函数.(3)根据判断函数单调性的定义,设出两个任意的自变量,把两个自变量的函数值做差,化成分子和分母都是因式乘积的形式,根据指数函数的性质,判断差和零的关系.解答:解:f(x)==1﹣(1)∵e2x+1恒大于零,∴x∈R(2)函数是奇函数∵f(﹣x)==又由上一问知函数的定义域关于原点对称,∴f(x)为奇函数(3)是一个单调递增函数设x1,x2∈R 且x1<x2则f(x1)﹣f(x2)=1﹣=∵x1<x2,∴∴f(x1)﹣f(x2)<0即f(x1)<f(x2)∴f(x)在R是单调增函数点评:本题考查函数的定义域,考查函数的奇偶性的判断及证明.考查函数单调性的判断及证明,考查解决问题的能力,是一个综合题目.检测题2:已知函数f(x)=2ax+2(a为常数)(1)求函数f(x)的定义域.(2)若a=1,x∈(1,2],求函数f(x)的值域.(3)若f(x)为减函数,求实数a的取值范围.考点:指数函数的定义、解析式、定义域和值域;指数函数的单调性与特殊点.专题:常规题型;转化思想.分析:(1)利用指数函数的定义域来考虑.(2)利用函数f(x)在(1,2]上的单调性求函数的值域.(3)根据复合函数的单调性,函数u=ax+2必须为减函数.解答:解:(1)函数y=2ax+2对任意实数都有意义,所以定义域为实数集R.(2)因为a=1,所以f(x)=2x+2.易知此时f(x)为增函数.又因为1<x≤2,所以f(1)<f(x)≤f(2),即8<f(x)≤16.所以函数f(x)的值域为(8,16].(3)因为f(x)为减函数,而y=2u是增函数,所以函数u=ax+2必须为减函数.所以得a<0点评:本题考查指数函数的定义域、值域、单调性,复合函数的单调性,体现转化的数学思想.检测题3:设f(x)的定义域是(﹣∞,0)∪(0,+∞),且f(x)对任意不为零的实数x都满足f(﹣x)=﹣f(x).已知当x>0时(1)求当x<0时,f(x)的解析式(2)解不等式.考点:指数函数的定义、解析式、定义域和值域;函数奇偶性的性质.专题:常规题型.分析:(1)求当x<0时,f(x)的解析式,在哪个区间上求解析式,就在哪个区间上取值x,再转化到已知区间上求解析式,由f(﹣x)=﹣f(x)解出f(x)即可.(2)解不等式f(x)<﹣,分x>0和x<0两种情况,根据求得的解析式求解即可.解答:解:(1)当x<0时,﹣x>0,=又f(﹣x)=﹣f(x)所以,当x<0时,(2)x>0时,,∴化简得∴,解得1<2x<4∴0<x<2当x<0时,∴解得2x>1(舍去)或∴x<﹣2解集为{x|x<﹣2或0<x<2}点评:本题考查分段函数解析式的求法,注意在哪个区间上求解析式,就在哪个区间上取值,再转化到已知的区间上求解析式,再根据奇偶性,解出f(x)来.解不等式也要分段求解,注意x的取值范围.11。
考点14 指数函数【命题解读】在高考中指数函数部分往往与其他知识点交汇考查,也常与函数的图像结合考查。
重点考查与此有关的性质。
【基础知识回顾】 .指数函数及其性质(1)概念:函数y =a x (a >0且a ≠1)叫做指数函数,其中指数x 是变量,函数的定义域是R ,a 是底数. (2)指数函数的图象与性质a >10<a <1图象定义域 (1)R 值域(2)(0,+∞)性质(3)过定点(0,1),即x =0时,y =1(4)当x >0时,y >1;当x <0时,0<y <1 (5)当x <0时,y >1;当x >0时,0<y <1(6)在(-∞,+∞)上是增函数(7)在(-∞,+∞)上是减函数[常用结论]1.指数函数图象的画法画指数函数y =a x(a >0,且a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎫-1,1a .2.指数函数的图象与底数大小的比较如图是指数函数(1)y=a x,(2)y=b x,(3)y=c x,(4)y=d x的图象,底数a,b,c,d与1之间的大小关系为c>d>1>a>b>0.由此我们可得到以下规律:在第一象限内,指数函数y=a x(a>0,a≠1)的图象越高,底数越大.3.指数函数y=a x(a>0,a≠1)的图象和性质跟a的取值有关,要特别注意应分a>1与0<a<1来研究.1、设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是()A.a<b<c B.a<c<bC.b<a<c D.b<c<a【答案】C【解析】因为函数y=0.6x在R上单调递减,所以b=0.61.5<a=0.60.6<1.又c=1.50.6>1,所以b<a<c. 2、函数f(x)=a x-b的图象如图所示,其中a,b为常数,则下列结论正确的是( )A.a>1,b<0B.a>1,b>0C.0<a<1,b>0D.0<a<1,b<0【答案】D【解析】由f(x)=a x-b的图象可以观察出,函数f(x)=a x-b在定义域上单调递减,所以0<a<1. 函数f(x)=a x-b的图象是在f(x)=a x的基础上向左平移得到的,所以b<0.3、若函数y=(a2-1)x是R上的减函数,则实数a的取值范围是( )A. 1<a< 2B. -2<a<-1C. 1<a<2,或-2<a<-1D.22<a<1,或1<a< 2【答案】C【解析】由y=(a2-1)x在(-∞,+∞)上为减函数,得0<a2-1<1,∴1<a2<2,即1<a<2或-2<a<-1.∴数a的取值范围是1<a<2或-2<a<-1.故选C.4、已知函数f(x)=a x-3+2的图像恒过定点A,则A的坐标为.【答案】(3,3)【解析】 由a 0=1知,当x -3=0,即x =3时,f(3)=3,即图像必过定点(3,3). 5、函数的值域为( )A .B .C .(0,]D .(0,2]【答案】A【解析】令t (x )=2x ﹣x 2=﹣(x ﹣1)2+1≤1 ∵单调递减∴即y故选:A .考向一 指数函数的性质与应用例1、(1).已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( )A .b <a <cB .c <a <bC .c <b <aD .a <b <c .(2).如果函数y =a 2x +2a x -1(a >0,a ≠1)在区间[-1,1]上的最大值是14,则a 的值为( ) A .3 B .13 C .-5 D .3或13.(3).已知函数f (x )=2|2x -m |(m 为常数),若f (x )在区间[2,+∞)上是增函数,则m 的取值范围是________. 【解析】(1).B 由函数f (x )=2|x-m |-1为偶函数,得m =0,即f (x )=2|x |-1,其图象过原点,且关于y 轴对称, 在(-∞,0)上单调递减,在(0,+∞)上单调递增. 又a =f (log 0.53)=f (-log 23)=f (log 23),b =f (log 25), c =f (0),且0<log 23<log 25,所以c <a <b .(2).D 令a x =t ,则y =a 2x +2a x -1=t 2+2t -1=(t +1)2-2.当a >1时,因为x ∈[-1,1],所以t ∈⎣⎡⎦⎤1a ,a ,又函数y =(t +1)2-2在⎣⎡⎦⎤1a ,a 上单调递增,所以y max =(a +1)2-2=14,解得a =3(负值舍去).当0<a <1时,因为x ∈[-1,1],所以t ∈⎣⎡⎦⎤a ,1a , 又函数y =(t +1)2-2在⎣⎡⎦⎤a ,1a 上单调递增,则y max =⎝⎛⎭⎫1a +12-2=14,解得a =13(负值舍去). 综上知a =3或a =13.(3)令t =|2x -m |,则t =|2x -m |在区间⎣⎡⎭⎫m 2,+∞上单调递增,在区间⎝⎛⎦⎤-∞,m 2上单调递减,而y =2t 为R 上的增函数,所以要使函数f (x )=2|2x -m |在[2,+∞)上单调递增,则有m2≤2,即m ≤4,所以m 的取值范围是(-∞,4].变式1、(1)函数f(x)=22112x x -++⎛⎫⎪⎝⎭的单调减区间为 .(2)(一题两空)已知函数f (x )=a |x +1|(a >0,且a ≠1)的值域为[1,+∞),则a 的取值范围为________,f (-4)与f (1)的大小关系是________.(3)(2019·福建泉州五中模拟)设a >0,且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,则实数a 的值为________.【答案】(1) (-∞,1] (2)(1,+∞) f (-4)>f (1)(3)13或3【解析】(1)设u =-x 2+2x +1,∵y =12a⎛⎫⎪⎝⎭在R 上为减函数,∴函数f (x )=22112x x -++⎛⎫⎪⎝⎭的减区间即为函数u =-x 2+2x +1的增区间.又u =-x 2+2x +1的增区间为(-∞,1],∴f (x )的减区间为(-∞,1].(2)因为|x +1|≥0,函数f (x )=a |x +1|(a >0,且a ≠1)的值域为[1,+∞),所以a >1.由于函数f (x )=a|x +1|在(-1,+∞)上是增函数,且它的图象关于直线x =-1对称,则函数f (x )在(-∞,-1)上是减函数,故f (1)=f (-3),f (-4)>f (1).(3)令t =a x (a >0,且a ≠1),则原函数化为y =f (t )=(t +1)2-2(t >0).①当0<a <1,x ∈[-1,1]时,t =a x∈⎣⎡⎦⎤a ,1a ,此时f (t )在⎣⎡⎦⎤a ,1a 上为增函数. 所以f (t )max =f ⎝⎛⎭⎫1a =⎝⎛⎭⎫1a +12-2=14.所以⎝⎛⎭⎫1a +12=16,解得a =-15(舍去)或a =13.②当a >1时,x ∈[-1,1],t =a x∈⎣⎡⎦⎤1a ,a ,此时f (t )在⎣⎡⎦⎤1a ,a 上是增函数.所以f (t )max =f (a )=(a +1)2-2=14,解得a =3或a =-5(舍去).综上得a =13或3.变式2、(江苏省南通市通州区2019-2020学年高三第一次调研抽测】不等式23122x x --<的解集为_______. 【答案】(﹣1,2) 【解析】由题23122x x --<则2311222x x ---<=,故23112x x x --<-⇒-<< 故填(﹣1,2)变式3、设函数f(x)=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x -7,x<0,x ,x ≥0,若f(a)<1,则实数a 的取值范围是 ;【答案】(-3,1)【解析】当a <0时,不等式f (a )<1可化为12a ⎛⎫ ⎪⎝⎭-7<1,即12a ⎛⎫ ⎪⎝⎭<8,即12a ⎛⎫ ⎪⎝⎭<312-⎛⎫ ⎪⎝⎭,∴a >-3.又a <0,∴-3<a <0.当a ≥0时,不等式f (a )<1可化为a <1.∴0≤a <1, 综上,a 的取值范围为(-3,1).变式4、(2020·包头模拟)已知实数a ≠1,函数f (x )=⎩⎪⎨⎪⎧4x ,x ≥0,2a -x ,x <0,若f (1-a )=f (a -1),则a 的值为______. 【答案】12.【解析】(1)当a <1时,41-a=21,解得a =12;当a >1时,代入不成立.故a 的值为12.方法总结: 指数函数的性质有着广泛的应用,常见的有:比较大小,解不等式,求函数的单调区间和值域、最值等等.(1)比较两个幂值的大小问题是常见问题,解决这类问题首先要分清底数是否相同;若底数相同,则可利用函数的单调性解决;若底数不同,则要利用中间变量进行比较.(2)与指数函数有关的指数型函数的定义域、值域(最值)、单调性、奇偶性问题,常常需要借助换元等手段将其化归于指数函数来解,体现化归与转化思想的运用.(3)在利用指数函数的性质解决与指数函数相关的问题时,要特别注意底数a 的取值范围,并在必要时须分底数0<a <1和a >1两种情形进行分类讨论,防止错解考向二 指数函数的图像与性质例2、如图,过原点O 的直线与函数y =2x 的图像交于A ,B 两点,过点B 作y 轴的垂线交函数y =4x 的图像于点C ,若AC 平行于y 轴,则点A 的坐标是________. 【答案】(1,2).【解析】设C (a,4a ),则A (a,2a ),B (2a,4a ).又O ,A ,B 三点共线,所以2a a =4a2a ,故4a =2·2a ,所以2a =0(舍去)或2a =2,即a =1,所以点A 的坐标是(1,2).变式1、(2020届江苏省南通市海安高级中学高三第二次模拟)已知过点O 的直线与函数3x y =的图象交于A 、B 两点,点A 在线段OB 上,过A 作y 轴的平行线交函数9x y =的图象于C 点,当BC ∥x 轴,点A的横坐标是 【答案】3log 2【解析】根据题意,可设点(),3a A a ,则(),9a C a ,由于BC ∥x 轴,故9aC B y y ==,代入3x y =,可得2B x a =,即()2,9aB a ,由于A 在线段OB 上,故OA OB k k =,即392a a a a=,解得 3log 2a =.变式2、(2020届山东省滨州市高三上期末)已知31log 3a a ⎛⎫= ⎪⎝⎭,133log b b =,131log 3cc ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系是( ) A .c b a << B .a b c <<C .b c a <<D .b a c <<【答案】C 【解析】在同一直角坐标系内,作出函数13xy ⎛⎫= ⎪⎝⎭,3log y x =,3x y =,13log y x =的图像如下:因为31log 3a a ⎛⎫= ⎪⎝⎭,133log b b =,131log 3cc ⎛⎫= ⎪⎝⎭,所以a 是13x y ⎛⎫= ⎪⎝⎭与3log y x =交点的横坐标;b 是3x y =与13log y x =交点的横坐标;c 是13xy ⎛⎫= ⎪⎝⎭与13log y x =交点的横坐标;由图像可得:b c a <<. 故选:C.变式3、(2019·广西北海一中月考)函数y =a x-1a (a >0,且a ≠1)的图象可能是( )【答案】D【解析】当a >1时,y =a x-1a 是增函数.当x =0时,y =1-1a ∈(0,1),A ,B 不满足. 当0<a <1时,y =a x-1a 在R 上是减函数.当x =0时,y =1-1a <0,C 错,D 项满足. 变式4、 已知f(x)=|2x -1|.(1)求f(x)的单调区间;(2)比较f(x +1)与f(x)的大小;(3)试确定函数g(x)=f(x)-x 2的零点的个数.【解析】 (1)由f(x)=|2x-1|=⎩⎪⎨⎪⎧2x -1,x ≥0,1-2x ,x<0可作出函数的图像如图所示.因此函数f(x)的单调减区间是(-∞,0)上,单调增区间是(0,+∞). (2)在同一坐标系中,分别作出函数f(x)、f(x +1)的图像如图所示.由图像知,当012x +-1=1-02x ,即x 0=log 223时,两图像相交,当x<22log 3时,f(x)>f(x +1); 当x =22log 3时,f(x)=f(x +1);当x>22log 3时,f(x)<f(x +1).(3)将g(x)=f(x)-x 2的零点个数问题转化为函数f(x)与y =x 2的图像的交点个数问题,在同一坐标系中,分别作出函数f(x)=|2x -1|和y =x 2的图像(如图所示),有四个交点,故g(x)有四个零点.方法总结:指数函数的图像直观的刻画了指数函数的性质,在解题中有着十分广泛的应用.(1)已知函数解析式判断其图像一般是取特殊点,判断所给的图像是否过这些点,若不满足则排除; (2)对于有关指数型函数的图像问题,一般是从最基本的指数函数的图像入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论;(3)有关指数方程、不等式问题的求解,往往利用相应的指数函数图像,数形结合求解.考向三 指数函数的综合运用例3、关于函数f (x )=14x+2的性质,下列说法中正确的是( )A .函数f (x )的定义域为RB .函数f (x )的值域为(0,+∞)C .方程f (x )=x 有且只有一个实根D .函数f (x )的图象是中心对称图形 【答案】 ACD【解析】 函数f (x )=14x +2的定义域为R ,所以A 正确;因为y =4x在定义域内单调递增,所以函数f (x )=14x +2在定义域内单调递减,所以函数的值域为⎝⎛⎭⎫0,12,所以方程f (x )=x 只有一个实根,所以B 不正确,C 正确; 因为f (x +1)+f (-x )=14x +1+2+14-x +2=14·4x +2+4x 2·4x +1=12,∴f (x )关于⎝⎛⎭⎫12,14对称,所以D 正确.变式1、(2020届江苏省南通市如皋市高三上学期教学质量调研(二))已知函数(),413,1x x f x x x ⎧≥=⎨+<⎩,若16f f a =,则实数a = _____.【答案】1-【解析】∵函数(),413,1x x f x x x ⎧≥=⎨+<⎩,16f f a =, ∴当1a ≥时,44a f a =,4(())4416aa f f a f ,解得12a =,不合题意. 当1a <时, 3f a a = , 当31a 时,33416af f a f a ==,解得1a =-,当31a 时,33316f f a f a a ==,解得10a =,不合题意.综上,实数1a =-. 故答案为:1-.变式2、已知定义域为R 的函数f (x )=-2x +b2x +1+a 是奇函数.(1) 求a ,b 的值;(2) 若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.【解析】 (1) ∵f (x )是R 上的奇函数,∴f (0)=0,即b -1a +2=0⇒b =1,∴f (x )=1-2xa +2x +1.又由f (1)=-f (-1),得1-2a +4=-1-12a +1⇒a =2. 经检验知,a =2,b =1为所求.(2)(方法1)由(1)得f (x )=1-2x 2+2x +1=-12+12x +1,易知f (x )在(-∞,+∞)上为减函数.∵f (x )是奇函数,∴f (t 2-2t )+f (2t 2-k )<0⇔f (t 2-2t )<-f (2t 2-k )=f (k -2t 2). ∴t 2-2t >k -2t 2,即对一切t 有3t 2-2t -k >0.∴Δ=4+12k <0⇒k <-13.(方法2)由(1)知f (x )=1-2x2+2x +1, ∴222211222ttt t --+-++222211222tkt k --+-+<0,即(2212t k -++2)(1-222t t -)+(2222t t -++2)(1-222t k -<0,即2322t t k --1,故3t 2-2t -k >0.上式对一切t ∈R 均成立,从而Δ=4+12k <0⇒k <-13.变式3、设a 是实数,f (x )=a -22x +1(x ∈R ). (1) 试证明对于任意a ,f (x )都为增函数; (2) 试确定a 的值,使f (x )为奇函数. 【证明】 (1)设x 1,x 2∈R ,且x 1<x 2,则f (x 1)-f (x 2)=1221x a ⎛⎫- ⎪+⎝⎭-2221x a ⎛⎫- ⎪+⎝⎭=21222121x x -++=()()12122(22)2121x x x x -++. 由于指数函数y =2x在R 上是增函数,且x 1<x 2,∴12x <22x ,即1222x x -<0.又由2x>0,得12x +1>0,22x +1>0. ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∵此结论与a 的取值无关,∴对于a 取任意实数, f (x )均为增函数.(2)∵f (x )为奇函数,∴f (-x )=-f (x ),即a -22-x +1=-⎝ ⎛⎭⎪⎫a -22x+1,变形得2a =2·2x (2-x +1)·2x +22x +1=2·(2x +1)2x +1=2,解得a =1. 方法总结:指数函数性质的综合应用,其方法是:首先判断指数型函数的性质,再利用其性质求解以上问题都是指数型函数问题,关键应判断其单调性,对于形如y =a f (x )的函数的单调性,它的单调区间与f (x )的单调区间有关:若a >1,函数f (x )的单调增(减)区间即函数y =a f (x )的单调增(减)区间;若0<a <1,函数f (x )的单调增(减)区间即函数y =a f (x )的单调减(增)区间1、(2018全国卷Ⅱ)函数2()--=x x e e f x x的图像大致为【答案】B【解析】当0<x 时,因为0--<x x e e ,所以此时2()0--=<x x e e f x x,故排除A .D ;又1(1)2=->f e e ,故排除C ,选B .2、(2020届山东省烟台市高三上期末)设0.5log 3a =,30.5b =,0.513c -⎛⎫= ⎪⎝⎭,则,,a b c 的大小关系为( )A .a b c <<B .a c b <<C .b a c <<D .b c a <<【答案】A【解析】 由题,因为0.5log y x =单调递减,则0.50.5log 3log 10a =<=;因为0.5x y =单调递减,则3000.50.51b <=<=;因为3x y =单调递增,则0.50.5013313c -⎛⎫==>= ⎪⎝⎭,所以01a b c <<<<,故选:A 3、(2017北京)已知函数1()3()3x x f x =-,则()f x A .是奇函数,且在R 上是增函数 B .是偶函数,且在R 上是增函数 C .是奇函数,且在R 上是减函数 D .是偶函数,且在R 上是减函数【答案】A【解析】11()3()(3())()33x x x x f x f x ---=-=--=-,得()f x 为奇函数, ()(33)3ln33ln30x x x x f x --''=-=+>,所以()f x 在R 上是增函数.选A .4、(2012山东)若函数在[1,2]-上的最大值为4,最小值为m ,且函数()(0,1)x f x a a a =>≠()(14g x m =-在上是增函数,则a = .【答案】 【解析】 当时,有,此时,此时为减函数,不合题意.若,则,故,检验知符合题意. 5、已知函数f (x )=3x-13|x |. (1)若f (x )=2,求x 的值;(2)判断x >0时,f (x )的单调性;(3)若3tf (2t )+mf (t )≥0对于t ∈⎣⎡⎦⎤12,1恒成立,求m 的取值范围. 【解析】:(1)当x ≤0时,f (x )=3x -3x =0,不满足f (x )=2.当x >0时,f (x )=3x-13x ,令3x -13x =2. 03 1.x x >∴>,∴(3x )2-2·3x -1=0,解得3x =1±2.∵3x >1,∴3x =1+2.∴x =log 3(1+2).0x >,1=33x x f x ∴-函数可化为(). (2)∵y =3x 在(0,+∞)上单调递增,y =13x 在(0,+∞)上单调递减,∴f (x )=3x -13x 在(0,+∞)上单调递增.(3)∵t ∈⎣⎡⎦⎤12,1,∴f (t )=3t -13t >0.∴3t f (2t )+mf (t )≥0化为3t⎝⎛⎭⎫32t -132t +m ⎝⎛⎭⎫3t -13t ≥0, 即3t⎝⎛⎭⎫3t +13t +m ≥0,即m ≥-32t -1. 令g (t )=-32t-1,则g (t )在⎣⎡⎦⎤12,1上递减, ∴g (x )max =-4.∴所求实数m 的取值范围是[-4,+∞).[0,)+∞141a >214,a a m -==12,2a m ==()g x =01a <<124,a a m -==11,416a m ==。
专题10 任务型阅读解题技巧题型概述对于中考考生来说做“任务型”这样的题目时,普遍觉得不难,而考试结果一出来,却发现得高分的不多,原因就在于这种题型不仅要求考生读懂文章,还要求同学们用自己的语言简练的回答有关问题;既考查了学生的阅读理解能力,也考查了大家的英语表达能力和概括能力,另外,对回答的拼写、语法的正确性的要求,使得做简答题有一定的难度。
再加上解答这样的题型几乎没有猜题的技巧可言,也从某种意义上加大了做题的难度。
要想取得较好的成绩,对于题型的研究,好的解题步骤和技巧是非常重要的。
任务型阅读即根据短文内容回答问题是阅读理解的一道重要题型。
此题为5个问题,问题设计一般比较简单,多数考题针对文章中的事实细节,答案都能在原文中找到出处。
最后一个问题通常为开放性题目,往往需要概括文章主旨要义。
解题步骤1看任务:略读任务记住任务2看文段:略读文段首尾句、段----带着任务细读---在文段中做标记定位--对比文段中标记处和对应任务常见题型1 信息查找题:1.解题关键: 根据问题查找定位信息。
常用方法: 带着问题有意识地在关键处做标记2 信息转换题:解题关键: 根据问题查找定位信息,加工分析并转换成另一种表达方式。
常见的转换方式有:词性转换,词汇转换,句型转换3 信息归纳题:解题关键:根据问题查找定位信息,找共性的东西,归纳概括出最佳答案。
方法技巧技巧一:由一般疑问句引出的判断题解题技巧以be动词、助动词、情态动词为句首,句末有问号(?)的句子。
要用yes 和no回答的句子.例如:Do they do their homework after school?be动词:am, is, are, was, were助动词:do, does, did, will, have, has情态动词:can , may, must, could, should, would技巧二:由选择疑问句引出的判断题解题技巧提出两种或两种以上的情况,要求选择一种情况回答,这种问句叫做选择疑问句,选择疑问句的两种或两种以上的情况用or连接,回答时不能用yes或no。
指数函数典型例题详细解析指数函数·例题解析第一课时例1:求下列函数的定义域与值域:1) $y=\frac{3}{2-x}$解:定义域为$x\in R$且$x\neq 2$,值域为$y>0$且$y\neq1$。
2) $y=2x+2-1$解:由$2^{\frac{x+2}{2}-1}\geq 0$,得定义域为$x\geq -2$,值域为$|y|\geq 0$。
3) $y=3-3x-1$解:由$3-3^{\frac{x-1}{2}}\geq 0$,得定义域为$x\leq 2$,由$3-3^{\frac{x-1}{2}}<3$,得值域为$y<3$。
1.指数函数$y=a^x$($a>0$且$a\neq 1$)的定义域是$R$,值域是$(0,+\infty)$。
2.求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为$0$③形如$a^0$,($a\neq 0$)3.求函数的值域:①利用函数$y=a^x$单调性②函数的有界性($x^2\geq 0;a^x>0$)③换元法。
例如:$y=4x+\frac{6}{2x-8}$($1\leq x\leq 2$),先换元,再利用二次函数图象与性质(注意新元的范围)。
例2:指数函数$y=a^x$,$y=b^x$,$y=c^x$,$y=d^x$的图像如图2.6-2所示,则$a$、$b$、$c$、$d$、$1$之间的大小关系是?解:选$(c)$,在$x$轴上任取一点$(x,0)$,则得$b<a<1<d<c$。
例3:比较大小:1)$2$、$3^2$、$5^4$、$8^8$、$9^{16}$的大小关系是:$2<3^2<5^4<8^8<9^{16}$。
2)$\frac{0.6}{4}-\frac{5}{13}-2$,$2$的大小关系是:$\frac{0.6}{4}-\frac{5}{13}-2<2$。
专题1.10 零次幂和负整数指数幂(拓展提高)一、单选题1.下列运算正确的是( ) A .336x x x += B .2224(3)6xy x y = C .1122x x-=D .725x x x ÷=【答案】D【分析】根据合并同类项法则,积的乘方运算法则,负整数指数幂的意义和同底数幂的除法对四个选项依次判断即可.【详解】解:A 选项,33362x x x x +=≠,故A 选项不符合题意; B 选项,222424(3)96xy x y x y =≠,故B 选项不符合题意;C 选项,12122x x x-=≠,故C 选项不符合题意; D 选项,725x x x ÷=,故D 选项符合题意. 故选:D .【点睛】本题考查了合并同类项法则,积的乘方运算法则,负整数指数幂的意义和同底数幂的除法,熟练掌握这些知识点是解题关键. 2.如果等式()331x x +-=成立,则使得等式成立的x 的值有几个( )A .1个B .2个C .3个D .4个【答案】B【分析】利用零指数幂的性质以及有理数的乘方运算法则得出即可. 【详解】解:3(3)1x x +-=,∴若30x +=,解得:3x =-,此时0(6)1-=,符合题意, 当31x -=,解得:4x =,此时711=符合题意,当31x -=-时,解得:2x =,此时5(1)1-=-,不符合题意, 综上所述:满足等式的x 值有2个. 故选:B .【点睛】此题主要考查了零指数幂的性质以及有理数的乘方运算,分类讨论得出是解题关键.3.细菌的个体十分微小,大约10亿个细菌堆积起来才有一颗小米粒那么大.某种细菌的直径是0.0000025米,用科学记数法表示这种细菌的直径是( ) A .25×10﹣5米B .25×10﹣6米C .2.5×10﹣5米D .2.5×10﹣6米【答案】D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.0000025=2.5×10-6. 故选:D .【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.20202021223202120192021202032a b c ⎛⎫⎛⎫==⨯-=-⨯- ⎪⎪⎝⎭⎝⎭,,,则a ,b ,c 的大小关系正确的是( )A .a <b <cB .a <c <bC .b <a <cD .c <b <a【答案】D【分析】根据题意,分别将a ,b ,c 的值算出后比较大小即可得解.【详解】解:020211a ==,()()222202012020120202020120201b =-+-=--=-,20202020202032333232222332c ⎛⎫=⨯=-⨯⨯=- ⎪⎛⎝⎫⎛⎫-⨯ ⎪⎪⎝⎝⎭⎭⎭, ∵3112-<-<, ∴c b a <<, 故答案为:D .【点睛】本题主要考查了幂运算,平方差公式的应用等,熟练掌握相关运算法则是解决本题的关键. 5.据悉,华为Mate40 Pro 和华为Mate40 Pro+搭载业界首款5nm 麒麟90005GSoC 芯片,其中5nm 就是0.000000005m .将数据0.000000005用科学记数法表示为( )A .9510-⨯B .80.510-⨯C .7510-⨯D .7510⨯【答案】A【分析】绝对值小于1的正数用科学记数法表示,一般形式为10n a -⨯,其中110a ≤<; 【详解】0.000000005=9510-⨯ , 故选:A .【点睛】本题考查了科学记数法的形式,正确理解科学记数法是解题的关键;6.我们根据指数运算,得出了一种新的运算,如下表是两种运算对应关系的一组实例:根据上表规律,某同学写出了三个式子:①4log 162=,②2log 84=,③31log 29=-,其中正确的是( ) A .①② B .①③ C .②③ D .①②③【答案】B【分析】根据题中的新定义法则判断即可.【详解】解:根据题意得:①log 416=log 442=2,故①正确; ②322log 8log 23==,故②错误 ③123331log log 9log 329--===-,故③正确. ∴正确的式子是①③, 故选:B .【点睛】此题考查了有理数的乘方运算和负整数指数幂,熟练掌握运算法则是解本题的关键.二、填空题7.计算:230248-⨯⨯=_______. 【答案】16.【分析】先分别算出负指数幂、乘方和零指数幂,再计算乘法,即可得出答案. 【详解】解:230248-⨯⨯ 16414=⨯⨯ 16=故答案为:16.【点睛】本题考查的是负指数幂、乘方和零指数幂,熟记负指数幂和零指数幂的性质是解题的关键. 8.若(1﹣x )1﹣3x =1,则满足条件的x 值为__________________. 【答案】0或13【分析】直接利用零指数幂的性质以及有理数的乘方运算法则计算得出答案.【详解】解:∵(1﹣x )1﹣3x=1,∴当1﹣3x =0时, 解得:x =13,当1﹣3x =1时, 解得:x =0, 当1﹣x =﹣1时, 解得:x =2(不合题意), 则满足条件的x 值为0或13.故答案为:0或13.【点睛】此题主要考查了零指数幂的性质以及有理数的乘方运算,正确分类讨论是解题关键. 9.若(3)1x x -=,则x 的值为__. 【答案】0或4或2【分析】分底数为1或-1,指数为0几种情况,分类讨论,列方程求解即可. 【详解】解:当31x -=,解得:4x =, 此时(3)1x x -=,当31x -=-,解得:2x =, 此时(3)1x x -=,当0x =,此时(3)1x x -=,综上所述:x 的值为:0或4或2. 故答案为:0或4或2.【点睛】本题考查了0指数的性质,解题关键是根据底数和指数进行分类讨论,注意:0指数底数不为0. 10.某种细胞可以近似地看成球体,它的半径是0.0000005米,用科学记数法表示为_________米. 【答案】5×10﹣7 【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.0000005=5×10-7. 故答案为:5×10-7. 【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.11.已知关于x 、y 的方程组135x y ax y a +=-⎧⎨-=-⎩,若x y =1,则a =___.【答案】3或32【分析】由1,y x =可得1,x = 或1,x y =-是偶数,或0,0,x y ≠= 再分三种情况列方程组,解方程组可得答案.【详解】解:1,y x =1,x ∴= 或1,x y =-是偶数,或0,0,x y ≠=当1x =时,11135y a y a +=-⎧∴⎨-=-⎩解得:3,3a y =⎧⎨=-⎩ 当1,x y =-是偶数,11135y a y a -+=-⎧∴⎨--=-⎩解得:11a y =⎧⎨=⎩,不合题意舍去,当0,0,x y ≠=135x a x a =-⎧∴⎨=-⎩解得:3212a x ⎧=⎪⎪⎨⎪=-⎪⎩ 综上:a 的值为:3或32故答案为:3或32【点睛】本题考查的是二元一次方程组的解法,零次幂的含义,有理数的乘方的应用,掌握以上知识是解题的关键.12.一个正方体集装箱的棱长为0.4m .(1)用科学记数法表示这个集装箱的体积是_________3m ;(2)若有一个小立方块的棱长为3110m -⨯,则把集装箱装满需要这样的小立方块的个数为_______.(用科学计数法表示)【答案】26.410-⨯ 76.410⨯【分析】(1)利用有理数的乘法运算结合科学记数法的表示方法得出答案; (2)利用有理数的乘除运算法则化简求出答案. 【详解】解:(1)一个正方体集装箱的棱长为0.4m , ∴这个集装箱的体积是:230.40.40.4 6.410()m -⨯⨯=⨯,答:这个集装箱的体积是236.410m -⨯; 故答案是:26.410-⨯;(2)一个小立方块的棱长为3110m -⨯,23376.410(110) 6.410--∴⨯÷⨯=⨯(个),即:需要76.410⨯个这样的小立方块才能将集装箱装满. 故答案是:76.410⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1||10a <,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.13.已知223x y z x y z -+=-+=,且x 、y 、z 的值中有且仅有一个为0,则()zxy =______. 【答案】1【分析】原式化为2323x y z x y z -+=⎧⎨-+=⎩,得到x +y =0,即可得出z =0,解方程组023x y x y +=⎧⎨-=⎩即可求解.【详解】解:原式化为2323x y z x y z -+=⎧⎨-+=⎩①②,②-①得,0x y +=,∵x ,y ,z 的值中仅有一个为0, ∴0z =,由023x y x y +=⎧⎨-=⎩解得:11x y =⎧⎨=-⎩,∴()[]01(1)1zxy =-=⨯, 故答案为:1.【点睛】本题考查了解三元一次方程组,0指数幂运算,加减消元法消去z 联立关于x 、y 的方程组是解题的关键.14.若a =(﹣2)﹣2,b =(﹣1)﹣1,c =(﹣32)0,则a 、b 、c 的大小关系是_____.【答案】b <a <c【分析】先求出a 、b 、c 的值,再根据有理数大小比较法则比较即可. 【详解】解:∵a =(-2)-2=14,b =(-1)-1=-1,c =(-32)0=1,∴b <a <c , 故答案为:b <a <c .【点睛】本题考查了有理数的大小比较法则,负整数指数幂,零指数幂的应用,解此题的关键是求出每个式子的值,题目比较典型,难度适中.三、解答题15.(1)计算:20212(2015)()2π--+-+;(2)20132012512()()125-⨯. 【答案】(1)1;(2)512-【分析】(1)原式第一项利用有理数的乘方法则,第二项利用零指数幂法则计算,最后一项利用负指数幂法则计算,即可得到结果;(2)原式利用同底数幂的乘法法则变形,再利用积的乘方逆运算化简,计算即可得到结果.【详解】解:(1)20212(2015)()2π--+-+= -4+1+4 =1; (2)20132012512()()125-⨯ 20125125()()12512=-⨯⨯- 20125(1)()12=-⨯-512=-【点睛】此题考查了整式的混合运算,以及实数的运算,涉及的知识有:幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.(1)()()()345222a a a ⋅÷- (2)()3242(3)2a a a -⋅+-(3)34()()x y y x -⋅-(4)2201901(1)( 3.14)3π-⎛⎫-+-- ⎪⎝⎭【答案】(1)4a -;(2)6a ;(3)7()x y -;(4)9-. 【分析】(1)先算幂的乘方,再算同底数幂的乘除法即可; (2)先算积的乘方,在算同底数幂的乘法,再合并同类项即可; (3)先利用偶数次幂变底数符号,再计算同底数幂乘法即可; (4)先计算负1的奇数次幂,零指数幂,负指数幂,再算加减法即可. 【详解】解:(1)()()()345222a a a ⋅÷-,= ()6810a a a ⋅÷-,=6810a +--, =4a -;(2)()3242(3)2a a a -⋅+-,=24698a a a ⋅-, =6698a a -, =6a ;(3)34()()x y y x -⋅-, = 34()()x y x y -⋅-, =7()x y -;(4)220191(1)( 3.14)3π-⎛⎫-+-- ⎪⎝⎭,=119-+-, =9-.本题考查整式乘除乘方混合运算和实数幂的混合运算,掌握整式幂指数运算法则,整式乘法与加减混合运算的顺序,以及负数的乘法,零指数幂负指数幂是解题关键. 17.先阅读下面的内容,再解决问题,例题:若m 2+2mn +2n 2﹣6n +9=0,求m 和n 的值. 解:∵m 2+2mn +2n 2﹣6n +9=0 ∴m 2+2mn +n 2+n 2﹣6n +9=0 ∴(m +n )2+(n ﹣3)2=0 ∴m +n =0,n ﹣3=0 ∴m =﹣3,n =3(1)若x 2﹣2xy +2y 2+4y +4=0,求x y +的值. (2)已知32b a +=.①用含a 的式子表示b : ; ②若28317m m ab +=-,求()mab 的值.【答案】(1)4x y +=-;(2)①23b a =-;②81【分析】(1)根据完全平方公式把原式变形,根据非负数的性质分别求出x 、y ,即可求解; (2)①根据32b a +=可得32a b =-;②根据①中结果将32a b =-代入28317m m ab +=-,配成完全平方式,根据非负数的性质求出各字母的值即可解答.【详解】解:(1)原式=2222440x xy y y y -++++=, 即22()(2)0x y y -++=, ∴2,2y x =-=-, ∴224x y +=--=-; (2)①∵32b a +=, ∴23b a =-; 故答案为:23b a =-②将32a b =-代入28317m m ab +=-, 得28(2)17m m b b +=--,2281720m m b b +++-=,整理得: 22816210m m b b +++-+=, 即: 22(4)(1)0m b ++-=, ∴4,1m b =-=, ∵32a b =-, ∴13a =,∴()41(1)813m ab -=⨯=.【点睛】本题主要考查了完全平方公式的应用,根据题意将原式适当变形,整理为完全平方式是解题关键. 18.如图1是一个长为4a ,宽为b 的长方形,沿图中虚线用剪刀分成四个全等的小长方形,然后用这四块小长方形拼成如图2的正方形.(1)观察图2,直接写出(a +b )2,(a ﹣b )2,ab 三者的等量关系式; (2)用(1)的结论解答:①若m +2m ﹣1=3,求m ﹣2m ﹣1的值;②如图3,正方形ABCD 与AEFG 边长分别为x ,y .若xy =15,BE =2,求图3中阴影部分的面积和.【答案】(1)(a +b )2=(a -b )2+4ab .(2)±1;(3)8【分析】(1)根据大正方形的面积等于4个小长方形和小正方形面积之和,可得结论; (2)利用(1)中关系式计算可得结论;(3)利用三角形的面积公式计算出阴影部分的面积,然后整体代入即可. 【详解】解:(1)∵大正方形的面积等于4个小长方形和小正方形面积之和, ∴(a +b )2=4ab +(b -a )2. ∴(a +b )2=(a -b )2+4ab . 故答案为:(a +b )2=(a -b )2+4ab .(2)由(1)得:(m +2m ﹣1)2=(m -2m ﹣1)2+4×m ×2m ﹣1. ∴(m -2m ﹣1)2=(m +2m ﹣1)2-8∴(m -2m ﹣1)2=9-8=1.∴m -2m ﹣1=±1.(3)∵ABCD ,AEFG 为正方形,边长分别为x ,y .BE =2,∴DG =BE =2,x -y =2.∴(x -y )2=4.∴x 2-2xy +y 2=4.∵xy =15∴x 2+y 2=34,∴x 2+2xy +y 2=34+30,∴(x +y )2=64.∵x >0,y >0,∴x +y =8.∴S 阴影=12BE •EF +12CD •DG =y +x =8.【点睛】本题主要考查了完全平方公式的几何背景,利用图形面积之间的关系得到(a +b )2,(a -b )2,ab 之间的等量关系式是解题的关键.19.我国是最早采用十进制进行计算的国家,研究发现,使用十进制跟我们有十根手指头有关.进制也就是进位制,是人们规定的一种进位方法,对于任何一种进制一X 进制,就表示某一位置上的数运算时是逢X 进一位,十进制是逢十进一,二进制就是逢二进一,十六进制是逢十六进一,以此类作.X 进制就是逢X 进一.为与十进制进行区分,我们常把用X 进制表示的数a 写成(a )X .X 进制的数转化为十进制数的方法;X 进制表示的数(1111)X 中,从右边数起,第一位上的1表示1×X 0,第二位上的1表示1×X 1,第三位上的1表示1×X 2,第四位上的1表示1×X 3,故(1111)X 转化为十进制为:(1111)X =1×X 3+1×X 2+1×X 1+1×X 0(规定当X ≠0时,X 0=1) 例如:(101)2=1×22+0×21+1×20=5,(1023)5=1×53+0×52+2×51+3×50=138. 根据材料,完成以下问题:(1)把下列进制表示的数转化为十进制表示的数:(10101)3=________,(257)8=________;(2)一个四进制三位数(a 3b )4与七进制三位数(3ba )7之和能被8整除(1≤a ≤3,1≤b ≤3.且a ,b 均为整数),求a 的值;(3)若一个八进制数与一个六进制数之差为420,则称这两个数为“坤鹏数”,试判断(mm 4)8与(n 2n )6是否为“坤鹏数”并说明理由.【答案】(1)91,175;(2)a 的值是1;(3)(mm 4)8与(n 2n )6是“坤鹏数”,理由见解析【分析】(1)根据进制的定义以及转化方法计算即可;(2)先转化为十进制数,再根据之和能被8整除求解;(3)先转化为十进制数,根据差为420列二元一次方程,求是否有不大于10的自然数解.【详解】解:(1)(10101)3=1×34+0×33+1×32+0×31+1×30=91, (257)8=2×82+5×81+7×80=175;(2)∵(a 3b )4=a ×42+3×41+b ×40=16a +12+b , (3ba )7= 3×72+b ×71+a ×70=147+7b +a ,∴(a 3b )4+(3ba )7=17a +8b +159=17a +8b +8×19+7,∵(a 3b )4+(3ba )7能被8整除,∴17a +7能被8整除,当a =1时,17a +7=24,能被8整除;当a =2时,17a +7=41,不能被8整除;当a =3时,17a +7=58,不能被8整除;综上可知,(a 3b )4+(3ba )7能被8整除时,a 的值是1;(3)∵(mm 4)8=m ×82+m ×81+4×80= 72m +4,(n 2n )6=n ×62+2×61+n ×60=37n +12, ∴(mm 4)8-(n 2n )6= 72m +4-37n -12=420,∴72m -37n =428,∵m ,n 是不大于10的自然数,∴m =8,n =4,∴当m =8,n =4时,(mm 4)8与(n 2n )6是“坤鹏数”.【点睛】本题考查数的新定义、列代数式、整式的加减、以及二元一次方程的应用;理解题意,从题目中获取信息,列出正确的代数式,再由数的特点求解是解题的关键.20.我们规定:1(0)p p a a a -=≠,即a 的负P 次幂等于a 的p 次幂的倒数.例:22144-= (1)计算:25-=_____;2(2)--=_____;(2)如果128p -=,那么p =_____;如果212a -=,那么a =_____;(3)如果116p a -=,且a 、p 为整数,求满足条件的a 、p 的取值.【答案】(1)125,14;(2)3,(3)a =16时,p =1;a =±4时,p =2;a =±2时,p =4 【分析】(1)根据负整数指数幂的计算法则计算即可求解;(2)根据负整数指数幂的计算法则找到指数即可求解;(3)根据负整数指数幂的计算法则找到底数和指数即可求解.【详解】解:(1)25-=125;2(2)--=14; (2)如果128p -=,则311228p -==, 那么p =3; 如果212a -=,则()22112a -==,那么a =(3)由于a 、p 为整数,所以当a =16时,p =1;当a =±4时,p =2; 当a =±2时,p =4. 【点睛】本题考查了负整数指数幂,负整数指数幂:1p pa a -=(a ≠0,p 为正整数),注意:①a ≠0;②计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(-3)-2=(-3)×(-2)的错误;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数;④在混合运算中,始终要注意运算的顺序.。
指数函数习题一、选择题1.定义运算,则函数的图象大致为( )2.函数f(x)=x2-bx+c满足f(1+x)=f(1-x)且f(0)=3,则f(b x)与f(c x)的大小关系是( )A.f(b x)≤f(c x)B.f(b x)≥f(c x)C.f(b x)>f(c x)D.大小关系随x的不同而不同3.函数y=|2x-1|在区间(k-1,k+1)内不单调,则k的取值范围是( )A.(-1,+∞) B.(-∞,1)C.(-1,1) D.(0,2)4.设函数f(x)=ln[(x-1)(2-x)]的定义域是A,函数g(x)=lg(-1)的定义域是B,若A⊆B,则正数a的取值范围( )A.a>3 B.a≥3C.a> D.a≥5.已知函数,若数列{a n}满足a n=f(n)(n∈N*),且{a n}是递增数列,则实数a的取值范围是( )A.[,3) B.(,3)C.(2,3) D.(1,3)6.已知a>0且a≠1,f(x)=x2-a x,当x∈(-1,1)时,均有f(x)<,则实数a 的取值范围是( )A.(0,]∪[2,+∞) B.[,1)∪(1,4]C.[,1)∪(1,2] D.(0,)∪[4,+∞)二、填空题7.函数y=a x(a>0,且a≠1)在[1,2]上的最大值比最小值大,则a的值是________.8.若曲线|y|=2x+1与直线y=b没有公共点,则b的取值范围是________.9.(2011·滨州模拟)定义:区间[x1,x2](x1<x2)的长度为x2-x1.已知函数y =2|x|的定义域为[a,b],值域为[1,2],则区间[a,b]的长度的最大值与最小值的差为________.三、解答题10.求函数y=的定义域、值域和单调区间.11.(2011·银川模拟)若函数y=a2x+2a x-1(a>0且a≠1)在x∈[-1,1]上的最大值为14,求a的值.12.已知函数f(x)=3x,f(a+2)=18,g(x)=λ·3ax-4x的定义域为[0,1].(1)求a的值;(2)若函数g(x)在区间[0,1]上是单调递减函数,求实数λ的取值范围.指数函数答案1.解析:由a⊗b=得f(x)=1⊗2x=答案:A2. 解析:∵f(1+x)=f(1-x),∴f(x)的对称轴为直线x=1,由此得b =2.又f(0)=3,∴c=3.∴f(x)在(-∞,1)上递减,在(1,+∞)上递增.若x≥0,则3x≥2x≥1,∴f(3x)≥f(2x).若x<0,则3x<2x<1,∴f(3x)>f(2x).∴f(3x)≥f(2x).答案:A3.解析:由于函数y=|2x-1|在(-∞,0)内单调递减,在(0,+∞)内单调递增,而函数在区间(k-1,k+1)内不单调,所以有k-1<0<k+1,解得-1<k<1.答案:C4. 解析:由题意得:A=(1,2),a x-2x>1且a>2,由A⊆B知a x-2x>1在(1,2)上恒成立,即a x-2x-1>0在(1,2)上恒成立,令u(x)=a x-2x-1,则u′(x)=a x lna-2x ln2>0,所以函数u(x)在(1,2)上单调递增,则u(x)>u(1)=a-3,即a≥3.答案:B5. 解析:数列{a n}满足a n=f(n)(n∈N*),则函数f(n)为增函数,注意a8-6>(3-a)×7-3,所以,解得2<a<3.答案:C6. 解析:f(x)<⇔x2-a x<⇔x2-<a x,考查函数y=a x与y=x2-的图象,当a>1时,必有a-1≥,即1<a≤2,当0<a<1时,必有a≥,即≤a<1,综上,≤a<1或1<a≤2.答案:C7. 解析:当a>1时,y=a x在[1,2]上单调递增,故a2-a=,得a=.当0<a<1时,y=a x在[1,2]上单调递减,故a-a2=,得a=.故a=或.答案:或8. 解析:分别作出两个函数的图象,通过图象的交点个数来判断参数的取值范围.曲线|y|=2x+1与直线y=b的图象如图所示,由图象可得:如果|y|=2x+1与直线y=b没有公共点,则b应满足的条件是b∈[-1,1].答案:[-1,1]9. 解析:如图满足条件的区间[a,b],当a=-1,b=0或a=0,b=1时区间长度最小,最小值为1,当a=-1,b=1时区间长度最大,最大值为2,故其差为1.答案:110. 解:要使函数有意义,则只需-x2-3x+4≥0,即x2+3x-4≤0,解得-4≤x≤1.∴函数的定义域为{x|-4≤x≤1}.令t=-x2-3x+4,则t=-x2-3x+4=-(x+)2+,∴当-4≤x≤1时,t max=,此时x=-,t min=0,此时x=-4或x=1.∴0≤t≤.∴0≤≤.∴函数y=的值域为[,1].由t=-x2-3x+4=-(x+)2+(-4≤x≤1)可知,当-4≤x≤-时,t是增函数,当-≤x≤1时,t是减函数.根据复合函数的单调性知:y=在[-4,-]上是减函数,在[-,1]上是增函数.∴函数的单调增区间是[-,1],单调减区间是[-4,-].11. 解:令a x=t,∴t>0,则y=t2+2t-1=(t+1)2-2,其对称轴为t =-1.该二次函数在[-1,+∞)上是增函数.①若a>1,∵x∈[-1,1],∴t=a x∈[,a],故当t=a,即x=1时,y max =a2+2a-1=14,解得a=3(a=-5舍去).②若0<a<1,∵x∈[-1,1],∴t=a x∈[a,],故当t=,即x=-1时,y max=(+1)2-2=14.∴a=或-(舍去).综上可得a=3或.12. 解:法一:(1)由已知得3a+2=18⇒3a=2⇒a=log32.(2)此时g(x)=λ·2x-4x,设0≤x1<x2≤1,因为g(x)在区间[0,1]上是单调减函数,所以g(x1)-g(x2)=(2x1-2x2)(λ-2x2-2x1)>0恒成立,即λ<2x2+2x1恒成立.由于2x2+2x1>20+20=2,所以实数λ的取值范围是λ≤2.法二:(1)同法一.(2)此时g(x)=λ·2x-4x,因为g(x)在区间[0,1]上是单调减函数,所以有g′(x)=λln2·2x-ln4·4x=ln2[-2·(2x)2+λ·2x]≤0成立.设2x=u∈[1,2],上式成立等价于-2u2+λu≤0恒成立.因为u∈[1,2],只需λ≤2u恒成立,所以实数λ的取值范围是λ≤2.。
指数函数1.指数函数の定义:函数)1(≠>=aaay x且叫做指数函数,其中x是自变量,函数定义域是R 2.指数函数の图象和性质:在同一坐标系中分别作出函数y=x2,y=x⎪⎭⎫⎝⎛21,y=x10,y=x⎪⎭⎫⎝⎛101の图象.我们观察y=x2,y=x⎪⎭⎫⎝⎛21,y=x10,y=x⎪⎭⎫⎝⎛101图象特征,就可以得到)1(≠>=aaay x且の图象和性质。
a>1 0<a<1图象00性质(1)定义域:R(2)值域:(0,+∞)(3)过点(0,1),即x=0时,y=1(4)在 R上是增函数(4)在R上是减函数指数函数是高中数学中の一个基本初等函数,有关指数函数の图象与性质の题目类型较多,同时也是学习后续数学内容の基础和高考考查の重点,本文对此部分题目类型作了初步总结,与大家共同探讨.1.比较大小例1 已知函数2()f x x bx c=-+满足(1)(1)f x f x+=-,且(0)3f=,则()xf b与()x f c の大小关系是_____.分析:先求b c ,の值再比较大小,要注意x x b c ,の取值是否在同一单调区间内.解:∵(1)(1)f x f x +=-, ∴函数()f x の对称轴是1x =. 故2b =,又(0)3f =,∴3c =.∴函数()f x 在(]1-,∞上递减,在[)1+,∞上递增. 若0x ≥,则321x x ≥≥,∴(3)(2)x x f f ≥; 若0x <,则321x x <<,∴(3)(2)x x f f >. 综上可得(3)(2)x x f f ≥,即()()x x f c f b ≥.评注:①比较大小の常用方法有:作差法、作商法、利用函数の单调性或中间量等.②对于含有参数の大小比较问题,有时需要对参数进行讨论. 2.求解有关指数不等式例2 已知2321(25)(25)x x a a a a -++>++,则x の取值范围是___________. 分析:利用指数函数の单调性求解,注意底数の取值范围. 解:∵2225(1)441a a a ++=++>≥,∴函数2(25)x y a a =++在()-+,∞∞上是增函数,∴31x x >-,解得14x >.∴x の取值范围是14⎛⎫+ ⎪⎝⎭,∞. 评注:利用指数函数の单调性解不等式,需将不等式两边都凑成底数相同の指数式,并判断底数与1の大小,对于含有参数の要注意对参数进行讨论. 3.求定义域及值域问题例3 求函数y =の定义域和值域. 解:由题意可得2160x --≥,即261x -≤,∴20x -≤,故2x ≤. ∴函数()f x の定义域是(]2-,∞.令26x t -=,则y =,又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤.∴函数の值域是[)01,. 评注:利用指数函数の单调性求值域时,要注意定义域对它の影响.4.最值问题例4 函数221(01)x x y a a a a =+->≠且在区间[11]-,上有最大值14,则a の值是_______.分析:令x t a =可将问题转化成二次函数の最值问题,需注意换元后t の取值范围.解:令x t a =,则0t >,函数221x x y a a =+-可化为2(1)2y t =+-,其对称轴为1t =-.∴当1a >时,∵[]11x ∈-,,∴1x a a a ≤≤,即1t a a≤≤. ∴当t a =时,2max (1)214y a =+-=. 解得3a =或5a =-(舍去);当01a <<时,∵[]11x ∈-,,∴1x a a a ≤≤,即1a t a≤≤,∴ 1t a =时,2max 11214y a ⎛⎫=+-= ⎪⎝⎭, 解得13a =或15a =-(舍去),∴a の值是3或13.评注:利用指数函数の单调性求最值时注意一些方法の运用,比如:换元法,整体代入等. 5.解指数方程例5 解方程223380x x +--=.解:原方程可化为29(3)80390x x ⨯-⨯-=,令3(0)x t t =>,上述方程可化为298090t t --=,解得9t =或19t =-(舍去),∴39x =,∴2x =,经检验原方程の解是2x =.评注:解指数方程通常是通过换元转化成二次方程求解,要注意验根. 6.图象变换及应用问题例6 为了得到函数935x y =⨯+の图象,可以把函数3x y =の图象( ). A .向左平移9个单位长度,再向上平移5个单位长度 B .向右平移9个单位长度,再向下平移5个单位长度 C .向左平移2个单位长度,再向上平移5个单位长度D .向右平移2个单位长度,再向下平移5个单位长度分析:注意先将函数935x y =⨯+转化为235x t +=+,再利用图象の平移规律进行判断.解:∵293535x x y +=⨯+=+,∴把函数3x y =の图象向左平移2个单位长度,再向上平移5个单位长度,可得到函数935x y =⨯+の图象,故选(C ). 评注:用函数图象解决问题是中学数学の重要方法,利用其直观性实现数形结合解题,所以要熟悉基本函数の图象,并掌握图象の变化规律,比如:平移、伸缩、对称等. 习题1、比较下列各组数の大小: (1)若 ,比较 与 ; (2)若 ,比较 与 ; (3)若 ,比较与;(4)若 ,且,比较a 与b ; (5)若 ,且,比较a 与b .解:(1)由 ,故 ,此时函数为减函数.由,故 .(2)由 ,故.又 ,故 .从而 . (3)由 ,因,故.又,故.从而.(4)应有.因若,则.又,故 ,这样 .又因,故 .从而 ,这与已知 矛盾. (5)应有.因若,则.又,故,这样有.又因 ,且 ,故 .从而 ,这与已知矛盾.小结:比较通常借助相应函数の单调性、奇偶性、图象来求解.2,曲线 分别是指数函数,和の图象,则 与1の大小关系是 ( ).(分析:首先可以根据指数函数单调性,确定,在 轴右侧令,对应の函数值由小到大依次为 ,故应选 .小结:这种类型题目是比较典型の数形结合の题目,第(1)题是由数到形の转化,第(2)题则是由图到数の翻译,它の主要目の是提高学生识图,用图の意识. 求最值3,求下列函数の定义域与值域.(1)y =231-x ; (2)y =4x +2x+1+1.解:(1)∵x-3≠0,∴y =231-x の定义域为{x |x ∈R 且x ≠3}.又∵31-x ≠0,∴231-x ≠1,∴y =231-x の值域为{y |y>0且y ≠1}.(2)y =4x +2x+1+1の定义域为R.∵2x >0,∴y =4x +2x+1+1=(2x )2+2·2x +1=(2x +1)2>1.∴y =4x +2x+1+1の值域为{y |y>1}.4,已知-1≤x ≤2,求函数f(x)=3+2·3x+1-9x の最大值和最小值解:设t=3x ,因为-1≤x ≤2,所以931≤≤t ,且f(x)=g(t)=-(t-3)2+12,故当t=3即x=1时,f(x)取最大值12,当t=9即x=2时f(x)取最小值-24。
考向10指数与指数函数1.(2020·全国高考真题(文))设3log 42a =,则4a -=( ) A .116B .19C .18D .16【答案】B 【分析】根据已知等式,利用指数对数运算性质即可得解 【详解】由3log 42a =可得3log 42a=,所以49a =,所以有149a-=, 故选:B. 【点睛】本题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目.2.(2015·山东高考真题(理))已知函数()(0,1)xf x a b a a =+>≠ 的定义域和值域都是[]1,0- ,则a b +=_____________.【答案】32- 【详解】若1a > ,则()f x 在[]1,0-上为增函数,所以11{10a b b -+=-+= ,此方程组无解;若01a << ,则()f x 在[]1,0-上为减函数,所以10{11a b b -+=+=- ,解得1{22a b ==- ,所以32a b +=-. 考点:指数函数的性质.1.指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,但应注意:(1)必须同底数幂相乘,指数才能相加;(2)运算的先后顺序.2.当底数是负数时,先确定符号,再把底数化为正数.3.运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.4.有关指数函数图象问题的解题思路(1)已知函数解析式判断其图象,一般是取特殊点,判断选项中的图象是否过这些点,若不满足则排除. (2)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.(3)有关指数方程、不等式问题的求解,往往是利用相应的指数型函数图象,数形结合求解. (4)根据指数函数图象判断底数大小的问题,可以通过直线x =1与图象的交点进行判断.5.利用指数函数的性质比较幂值的大小,先看能否化成同底数,能化成同底数的先化成同底数幂,再利用函数单调性比较大小,不能化成同底数的,一般引入“1”等中间量比较大小;6.利用指数函数的性质解简单的指数方程或不等式,先利用幂的运算性质化为同底数幂,再利用函数单调性转化为一般不等式求解;7.解答指数函数性质的综合应用,首先判断指数型函数的性质,再利用其性质求解。
专题10函动点问题中函数图像压轴突破1.(2022春•上蔡县期末)如图1,矩形ABCD,点E为BC的中点,点P沿BC 从点B运动到点C,设点P运动的路程为x,P A﹣PE=y,图2是点P运动时y随着x变化的图象,则AB的长为()A.4B.5C.6D.7【答案】A【解答】解:连接AE,由函数图象知:当x=0,即P在B点时,BA﹣BE=1.利用三角形两边之差小于第三边,得到P A﹣PE≤AE.∴y的最大值为AE,∴AE=5.在Rt△ABE中,由勾股定理得:BA2+BE2=AE2=25,设BE的长度为t,则BA=t+1,∴(t+1)2+t2=25,即:t2+t﹣12=0,∴(t+4)(t﹣3)=0,由于t>0,∴t+4>0,∴t﹣3=0,∴t=3.∴AB=3+1=4.故选:A.2.(2022春•开封期末)小明家与学校之间的距离是1000米,一天,他以每分钟60米的速度去学校,出发5分钟后,小明爸爸发现小明的数学作业忘带了,立即以每分钟360米的速度去追小明,追上小明一分钟后,小明又以每分钟80米的速度去学校,小明爸爸按原速度回家,以下图象中,能反映他们离家的路程y与小明离家的时间x(分钟)的函数关系的是()A.B.C.D.【答案】A【解答】解:设x分钟爸爸追上小明,60×5+60x=360x,解得x=1,可知1分钟后就追上小明,过了1分钟后,小明又以每分钟80米的速度去学校,小明爸爸按原速度回家,所以爸爸又过了一分钟就到家了,小明一共用了5+1+1+=15分钟到学校,所以A项符合题意,故选:A.3.(2022春•上杭县期末)已知动点H以每秒x厘米的速度沿图1的边框(边框拐角处都互相垂直)按从A﹣B﹣C﹣D﹣E﹣F的路径匀速运动,相应的△HAF 的面积S(cm2)关于时间t(s)的关系图象如图2,已知AF=8cm,则下列说法正确的有几个()①动点H的速度是2cm/s;②BC的长度为3cm;③当点H到达D点时△HAF的面积是8cm2;④b的值为14;⑤在运动过程中,当△HAF的面积是30cm2时,点H的运动时间是3.75s和10.25s.A.2个B.3个C.4个D.5个【答案】A【解答】解:当点H在AB上时,如图所示,AH=xt(cm),S△HAF=×AF×AH=4xt(cm2),此时三角形面积随着时间增大而逐渐增大,当点H在BC上时,如图所示,HP是△HAF的高,且HP=AB,=×AF×AB,此时三角形面积不变,∴S△HAF当点H在CD上时,如图所示,HP是△HAF的高,C,D,P三点共线,S△HAF=×AF×HP,点H从点C点D运动,HP逐渐减小,故三角形面积不断减小,当点H在DE上时,如图所示,HP是△HAF的高,且HP=EF,S△HAF=×AF×EF,此时三角形面积不变,当点H在EF时,如图所示,S△HAF=×AF×HF,点H从点E向点F运动,HF逐渐减小,故三角形面积不断减小直至零,对照图2可得0≤t≤5时,点H在AB上,S△HAF=4xt=4•5x=40(cm2),∴x=2,AB=2×5=10(cm),∴动点H的速度是2cm/s,故①正确,5≤t≤8时,点H在BC上,此时三角形面积不变,∴动点H由点B运动到点C共用时8﹣5=3(s),∴BC=2×3=6(cm),故②错误,8≤t≤12时,当点H在CD上,三角形面积逐渐减小,∴动点H由点C运动到点D共用时12﹣8=4(s),∴CD=2×4=8(cm),∴EF=AB﹣CD=10﹣8=2(cm),在D点时,△HAF的高与EF相等,即HP=EF,=×AF×EF=×8×2=8(cm2),∴S△HAF故③正确,12≤t≤b,点H在DE上,DE=AF﹣BC=8﹣6=2(cm),∴动点H由点D运动到点E共用时2÷2=1(s),∴b=12+1=13,故④错误.当△HAF的面积是30cm2时,点H在AB上或CD上,=4xt=8t=30(cm2),点H在AB上时,S△HAF解得t=3.75(s),点H在CD上时,S△HAF=×AF×HP=×8×HP=30(cm2),解得HP=7.5(cm),∴CH=AB﹣HP=10﹣7.5=2.5(cm),∴从点C运动到点H共用时2.5÷2=1.25(s),由点A到点C共用时8s,∴此时共用时8+1.25=9.25(s),故⑤错误.故选:A.4.(2022春•镜湖区校级期中)在平面直角坐标系xOy中,对于任意一点P(x,y),规定:f(x,y)=;比如f(﹣4,)=4,f(﹣2,﹣3)=3.当f(x,y)=2时,所有满足该条件的点P组成的图形为()A.B.C.D.【答案】D【解答】解:∵f(x,y)=2,∴|x|=2,|y|≤2或|y|=2,|x|<2.①当|x|=2,|y|≤2时,点P满足x=2,﹣2≤y≤2或x=﹣2,﹣2≤y≤2,在图象上,线段x=2,﹣2≤y≤2即为D选项中正方形的右边,线段x=﹣2,﹣2≤y≤2即为D选项中正方形的左边;②当|y|=2,|x|<2时,点P满足y=2,﹣2<x<2,或y=﹣2,﹣2<x<2,在图象上,线段y=2,﹣2<x<2即为D选项中正方形的上边,线段y=﹣2,﹣2<x<2即为D选项中正方形的下边.故选:D.5.(2021春•洪山区期末)如图1,将正方形ABCD置于平面直角坐标系中,其中AD边在x轴上,其余各边均与坐标轴平行,直线L:y=x﹣3沿x轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD 的边所截得的线段长为m,平移的时间为t(秒),m与t的函数图象如图2所示,则图2中a的值为()A.7B.9C.12D.13【答案】D【解答】解:设直线L与x轴交于点M,令y=x﹣3=0,则x=3,即点M(3,0),由图2,直线AC=6,则正方形ABCD的边长为6,从图2看,MA=1,则点A(2,0),故点D的坐标为(﹣4,0),当直线l过点C时,设直线l′交x轴与点N,对应的时间为a,由直线L和x轴坐标轴的夹角为45°,则当直线L在L′的位置时,ND=CD =6,点N(﹣10,0),则a=10+3=13,故选:D.6.(2021春•任城区期末)小华和小明是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校,如图是他们从家到学校已走的路程S(米)和所用时间t(分钟)的关系图,则下列说法中错误的是()A.小明家和学校距离1200米B.小华乘公共汽车的速度是240米/分C.小华乘坐公共汽车后7:50与小明相遇D.小明从家到学校的平均速度为80米/分【答案】D【解答】解:由图象可知,小华和小明的家离学校1200米,故A正确;根据图象,小华乘公共汽车,从出发到到达学校共用了13﹣8=5(分钟),所以公共汽车的速度为1200÷5=240(米/分),故B正确;小明先出发8分钟然后停下来吃早餐,由图象可知在小明吃早餐的过程中,小华出发并与小明相遇然后超过小明,所以二人相遇所用的时间是8+480÷240=10(分钟),即7:50相遇,故C正确;小明从家到学校的时间为20分钟,所以小明的平均速度为1200÷20=60(米/分),故D错误.故选:D.7.(2019秋•垦利区期末)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形EFGD,动点P从点A出发,沿A→E→F→G→C→B的路线,绕多边形的边匀速运动到点B时停止,则△ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.【答案】B【解答】解:①当点P在AE上运动时,S=×AB×AP=2×t=t;②当点P在EF上运动时,S=×1×2=1;③当点P在FG上运动时,S=×(t﹣1)=t﹣1;④当点P在GC上运动时,同理S=2;⑤当点P在BC上运动时,同理可得:函数的表达式为一次函数,图象为线段;故选:B.8.(2021•广州模拟)小元步行从家去火车站,走到6分钟时,以同样的速度回家取物品,然后从家乘出租车赶往火车站,结果比预计步行时间提前了3分钟.小元离家路程S(米)与时间t(分钟)之间的函数图象如图,那么从家到火车站路程是()A.1300米B.1400米C.1600米D.1500米【答案】C【解答】解:步行的速度为:480÷6=80米/分钟,∵小元步行从家去火车站,走到6分钟时,以同样的速度回家取物品,∴小元回到家时的时间为6×2=12(分钟)则返回时函数图象的点坐标是(12,0)设后来乘出租车中S与t的函数解析式为S=kt+b(k≠0),把(12,0)和(16,1280)代入得,,解得,所以S=320t﹣3840;设步行到达的时间为t,则实际到达的时间为t﹣3,由题意得,80t=320(t﹣3)﹣3840,解得t=20.所以家到火车站的距离为80×20=1600m.故选:C.9.(2019春•无为县期末)如图1,在矩形ABCD中,动点E从点B出发,沿BADC方向运动至点C处停止,设点E运动的路程为x,△BCE的面积为y,如果y关于x的函数图象如图2所示,则矩形ABCD的周长为()A.20B.21C.14D.7【答案】C【解答】解:当点E在AB段运动时,y=BC×BE=BC•x,为一次函数,由图2知,AB=3,当点E在AD上运动时,y=×AB×BC,为常数,由图2知,AD=4,故矩形的周长为7×2=14,故选:C.10.(2022秋•莱芜区期末)如图①在长方形ABCD中,动点P从点B出发,沿B﹣C﹣D﹣A方向匀速运动至点A停止,已知点P的运动速度为3cm/s,设点P的运动时间为t(s),△PAB的面积为y(cm2),若y关于t的函数图象如图②所示,则长方形ABCD的面积为()A.108cm2B.54cm2C.48cm2D.36cm2【答案】A【解答】解:∵动点P从点B出发,沿BC、CD、DA运动至点A停止,当点P在点B,C之间运动时,△ABP的面积随时间t的增大而增大,由图2知,当t=3时,点P到达点C处,∴BC=3×3=9(cm);当点P运动到点C,D之间时,△ABP的面积不变,由图2可知,点P从点C运动到点D所用时间为7﹣3=4(s),∴CD=3×4=12(cm),∴长方形ABCD面积=BC×CD=9×12=108(cm2),故选:A.11.(2022秋•金东区期末)A,B两地相距640km,甲、乙两辆汽车从A地出发到B地,均匀速行驶,甲出发1小时后,乙出发沿同一路线行驶,设甲、乙两车相距s(km),甲行驶的时间为t(h),s与t的关系如图所示,下列说法:①甲车行驶的速度是60km/h,乙车行驶的速度是80km/h;②甲出发4h后被乙追上;③甲比乙晚到h;④甲车行驶8h或9h,甲,乙两车相距80km;其中错误的()A.序号①B.序号②C.序号③D.序号④【答案】D【解答】解:①由图可得,甲车行驶的速度是60÷1=60(km/h),∵甲先出发1h,乙出发3h后追上甲,﹣60)=60,∴3(v乙∴v=80(km/h),乙即乙车行驶的速度是80km/h,故①正确;②∵当t=1时,乙出发,当t=4时,乙追上甲,∴甲出发4h后追上甲,故②正确;③由图可得,当乙到达B地时,甲乙相距100km,∴甲比乙晚到100÷60=(h),故③正确;④由图可得,当60t+80=80(t﹣1)时,解得t=8;当60t+80=640时,解得t=9,∴甲车行驶8h或9h,甲,乙两车相距80km,故④错误;故选:D.12.(2022秋•泗阳县期末)如图,在长方形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,y关于x的函数图象如图2所示,若b﹣2a=5,则长方形ABCD的周长为()A.20B.18C.16D.24【答案】B【解答】解:根据图2的点(a,10),可知BC=a,AB×BC=10,∴AB=,∴BC+CD+DA=2a+=b,∴b﹣2a=,∵b﹣2a=5,∴=5,∴a=4,∴AB=5,BC=4,∴长方形ABCD的周长为2×(5+4)=18.故选:B.13.(2022秋•广饶县校级期末)如图,折线ABCDE描述了一辆汽车在某一直线上的行驶过程中,汽车离出发地的距离s(km)与行驶时间t(h)之间的函数关系,根据图中提供的信息,判断下列结论正确的选项是()①汽车在行驶途中停留了0.5小时;②汽车在整个行驶过程的平均速度是60km/h;③汽车共行驶了240km;④汽车出发4h离出发地40km.A.①②④B.①②③C.①③④D.①②③④【答案】C【解答】解:①汽车在行驶途中停留了2﹣1.5=0.5h,故①正确;②平均速度:120×2÷4.5=千米/小时,故②错误;③汽车共行驶了120×2=240km,故③正确;④汽车自出发后3h到4.5h速度为:120÷(4.5﹣3)=120÷1.5=80千米/小时,∴汽车出发4h离出发地距离为120﹣(4﹣3)×80=120﹣80=40千米,故④正确.∴正确的是①③④,故选:C.14.(2022秋•东城区校级期末)如图,在长方形ABCD中,AB=6,AD=4,DM=2,动点P从点A出发,沿路径A→B→C→M运动,则△AMP的面积y 与点P经过的路径长x之间的函数关系用图象表示大致是()A.B.C.D.【答案】A【解答】解:①当点P在AB上运动时,即0≤x≤6,此时AP=x,y=S△AMP=,∴y=;②当点P在BC上运动时,即6<x≤10,此时BP=x﹣6,CP=10﹣x,y=S△AMP=S长方形ABCD﹣S△ABP﹣S△MCP﹣S△ADM,∴y=4×6﹣=﹣x+18;③当点P在CM上运动时,即10<x≤14,此时MP=14﹣x,y=S△AMP=,∴y=;根据函数解析式,可知A选项正确.故选:A.15.(2022秋•南京期末)在边长为4的正方形ABCD的边上有一个动点P,从A 出发沿折线ABCD移动一周,回到A点后继续周而复始.设点P移动的路程为x,△PAC的面积为y.请结合右侧函数图象分析当x=2022时,y的值为()A.2B.4C.6D.8【答案】B【解答】解:∵点P在正方形ABCD的边上每运动一周,则x的值增加16,∴2022÷16=126(周)……6(单位长度),∴当x=2022时,点P位于BC边的中点处,∴y=×2×4=4,故选:B.16.(2022秋•孝南区期末)如图1,点P从△ABC的顶点B出发,沿B→C→A 匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是()A.6B.9C.12D.15【答案】C【解答】解:根据图象可知点P在BC上运动时,此时BP不断增大,由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,由于M是曲线部分的最低点,∴此时BP最小,如图,即BP′⊥AC,BP′=3,∴由勾股定理可知:PC=4,由于图象的曲线部分是轴对称图形,∵图象右端点函数值为5,∴AB=BC=5,∴P′A=P′C=4,∴AC=8,∴△ABC的面积为:AC•BP′=×8×3=12.故选:C.17.(2022秋•江北区校级期末)一辆汽车行驶的速度(km/h)与时间(min)之间的变化关系如图所示,说法正确的是()A.时间是因变量,速度是自变量B.汽车在1~3min时匀速行驶C.汽车在3~8min时匀速行驶D.汽车最快的速度是10km/h【答案】C【解答】解:速度是因变量,时间是自变量,故选项A不合题意;汽车在1~3分钟时,速度在增加,故选项B不合题意;汽车在3~8分钟,匀速运动,故选项C符合题意;汽车最快速度是30千米/时,故选项D不符合题意;故选:C.18.(2023•西城区校级模拟)如图,将一圆柱形水杯杯底固定在大圆柱形容器底面中央,现用一个注水管沿大容器内壁匀速注水,则水杯内水面的高度h(单位:cm)与注水时间t(单位:s)的函数图象大致为()A.B.C.D.【答案】B【解答】解:当注入大圆柱形容器的水面高度到达小水杯的高度前,水杯内水面的高度为0,故选项A、C不合题意;当注入大圆柱形容器的水面高度到达小水杯的高后,水杯内水面的高度逐渐增大,当水杯内水面的高度达到水杯高度时,水杯内水面的高度不再增加,故选项B符合题意,选项D不合题意.故选:B.19.(2022春•牡丹区校级期中)如图,在长方形ABCD中,动点P从点B出发,沿BC,CD,DA运动到点A停止,设点P运动路程为x,△ABP的面积为y,如果y关于x的函数图象如图所示,则长方形ABCD的周长是()A.24B.18C.20D.40【答案】B【解答】解:由y关于x的函数图象可知,BC=4,CD=9﹣BC=9﹣4=5,∴长方形ABCD的周长是:2×(4+5)=18;故选:B.20.(2022春•灵宝市校级月考)如图1,点P从菱形ABCD的顶点A出发,沿A →D→B以1cm/s的速度匀速运动到点B,图2是点P运动时,△PBC的面积y(cm2)随时间x(s)变化的函数关系图象,则菱形ABCD的周长为()A.5B.C.D.【答案】D【解答】解:如图1,过点D作DE⊥BC于点E,∵AD∥BC,∴当点P在边AD上运动时,y的值不变,∴AD=a,即菱形的边长是a,∴•a•DE=a,∴DE=3,当点P在DB上运动时,y逐渐减小,∴DB=5,∴BE===4,在Rt△DCE中,DC=a,CE=4﹣a,DE=3,∴a2=32+(4﹣a)2,解得a=,∴菱形ABCD的周长为4a=.故选:D.21.(2022春•朝阳区校级月考)如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.【答案】B【解答】解:当点P由点A向点D运动,即0<x≤4时,y的值为0;当点P在DC上运动,即4<x≤8时,y随着x的增大而增大;当点P在CB上运动,即8<x≤12时,y不变;当点P在BA上运动,即12<x≤16时,y随x的增大而减小.故选:B.22.(2022•新市区校级三模)如图1,四边形ABCD中,AB∥CD,∠B=90°,AC=AD,动点E从点B出发,沿折线B﹣A﹣D﹣C方向以m单位/秒的速度匀速运动,在整个运动过程中,△BCE的面积S与运动时间t(秒)的函数图象如图2所示,则四边形ABCD的面积是()A.144B.134C.124D.114【答案】A【解答】解:从图2来看,AB=6m,AD=16m﹣6m=10m=AC,过点A作AH⊥CD交于点H,∵AC=AD,∴,在Rt△ADH中,AD=10m,AB=6m=CH=DH,∴,当点P在点D处时,,解得m2=2,则四边形ABCD的面积=,故选:A.23.(2022秋•九龙坡区校级月考)匀速地向如图所示的一个空水瓶里注水,最后把空水瓶注满,在这个注水过程中,水面高度h与注水时间t之间函数关系的大致图象是()A.B.C.D.【答案】C【解答】解:从下往上,空水瓶的横截面积由小变大,再由大到小,结合空瓶子的特点,那么符合题意选项的是C选项.故选:C.24.(2022春•包头期中)如图1,在直角梯形ABCD中,∠B=90°,动点P从B点出发,沿B→C→D→A匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示,下列说法错误的是()A.当x=4时,y=16B.AB=8C.梯形ABCD的面积为26D.当y=12时,x=3【答案】D【解答】解:由图可得,当x=4时,y=16,故A正确,不符合题意;由图可得,BC=4,CD=9﹣4=5,AD=14﹣9=5,当x=4时,点P和点C重合,=AB•BP=16,∴S△ABP∴AB×4=16,∴AB=8,故B正确,不符合题意;∵梯形ABCD的面积=(AB+CD)•BC=(8+5)×4=26,故C正确,不符合题意;设当9≤x≤14时,y与x的函数解析式为y=kx+b(k≠0),把(9,16)和(14,0)代入解析式得:,解得,∴y与x的函数解析式为y=﹣x+,当y=12时,﹣x+=12,解得x=,故D错误,符合题意.故选:D.25.(2022春•封丘县期末)如图1,在矩形ABCD中,动点P从点B出发,沿B →C→D→A方向匀速运动至点A停止.已知点P的运动速度为1cm/s,设点P 的运动时间为x(s),△PAB的面积为y(cm2),若y关于x的函数图象如图2所示,则矩形对角线AC的长为()A.5B.6C.8D.10【答案】D【解答】解:∵动点P从点B出发,沿BC、CD、DA运动至点A停止,当点P在点B,C之间运动时,△ABP的面积随时间x的增大而增大,由图2知,当x=3时,点P到达点C处,∴BC=3×2=6(cm);当点P运动到点C,D之间时,△ABP的面积不变,由图2可知,点P从点C运动到点D所用时间为7﹣3=4(s),∴CD=2×4=8(cm),∴AC=(cm),故选:D.26.(2022春•金牛区期末)如图1,在长方形ABCD中,动点P从点B出发,沿B→C→D→A的路径匀速运动到点A处停止,设点P运动的路程为x,△PAB的面积为y,表示y与x的关系的图象如图2所示,则a,b的值分别为()A.a=4,b=5B.a=4,b=20C.a=4,b=10D.a=5,b=10【解答】解:∵动点P从点B出发,沿B→C→D→A的路径匀速运动,∴图2为等腰梯形,∴a=13﹣9=4,∴BC=DA=a=4,∴在矩形ABCD中,AB=CD=9﹣4=5,∴b=5×4÷2=10.故选:C.27.(2022春•惠济区期末)如图1,已知在平行四边形ABCD中,AD=DC,若点P从顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点P运动时,△PBC的面y(cm2)随时间x(s)变化的关系图象,则a的值为()A.5B.C.D.【答案】C【解答】解:∵在平行四边形ABCD中,AD=DC,∴平行四边形ABCD是菱形,过点D作DE⊥BC,∵菱形ABCD中,AD∥BC,∴当点P在边AD上运动时,y的值不变,∴AD=a,即菱形的边长是a,∴AD•DE=2a,当点P在DB上运动时,y逐渐减小,∴DB=5,∴BE===3.在Rt△DCE中,DC=a,CE=a﹣3,DE=4,∴a2=42+(a﹣3)2,解得a=.故选:C.28.(2022春•镇平县月考)如图1,在平行四边形ABCD中,∠C=150°,BC =6,动点P从C出发,沿C→D→A匀速运动到点A.图2是点P运动时,△PBC的面积y随点P运动路程x变化的关系图象,则a的值是()A.2B.3C.4D.6【答案】D【解答】解:由题意可知:CD=4,过D点作DF⊥BC于点F,∵∠BCD=150°,∴∠DCF=180°﹣150°=30°,∴DF=CD=2,∵四边形ABCD为平行四边形,BC=6,=BC•DF=6×2=12,∴S平行四边形ABCD=S平行四边形ABCD=6,当P点与D点重合时,S△BCP即当x=4时,y=a=6,故选:D.29.(2022春•天桥区期末)已知动点H以每秒x厘米的速度沿图1的边框(边框拐角处都互相垂直)按从A﹣B﹣C﹣D﹣E﹣F的路径匀速运动,相应的△HAF的面积S(cm2)关于时间t(s)的关系图象如图2,已知AF=8cm,下列说法错误的是()A.动点H的速度为2cm/sB.b的值为14C.BC的长度为6cmD.在运动过程中,当△HAF的面积为30cm2时,点H的运动时间是3.75s 或9.25s【答案】B【解答】解:当点H在AB上时,如图所示,AH=xt(cm),S△HAF=×AF×AH=4xt(cm2),此时三角形面积随着时间增大而逐渐增大,当点H在BC上时,如图所示,HP是△HAF的高,且HP=AB,=×AF×AB,此时三角形面积不变,∴S△HAF当点H在CD上时,如图所示,HP是△HAF的高,C,D,P三点共线,S△HAF=×AF×HP,点H从点C点D运动,HP逐渐减小,故三角形面积不断减小,当点H在DE上时,如图所示,HP是△HAF的高,且HP=EF,S△HAF=×AF×EF,此时三角形面积不变,当点H在EF时,如图所示,S△HAF=×AF×HF,点H从点E向点F运动,HF逐渐减小,故三角形面积不断减小直至零,对照图2可得0≤t≤5时,点H在AB上,S△HAF=4xt=4•5x=40(cm2),∴x=2,AB=2×5=10(cm),∴动点H的速度是2cm/s,故A正确,不符合题意,12≤t≤b,点H在DE上,DE=AF﹣BC=8﹣6=2(cm),∴动点H由点D运动到点E共用时2÷2=1(s),∴b=12+1=13,故B错误,符合题意.5≤t≤8时,点H在BC上,此时三角形面积不变,∴动点H由点B运动到点C共用时8﹣5=3(s),∴BC=2×3=6(cm),故C正确,不符合题意,当△HAF的面积是30cm2时,点H在AB上或CD上,=4xt=8t=30(cm2),点H在AB上时,S△HAF解得t=3.75(s),点H在CD上时,S△HAF=×AF×HP=×8×HP=30(cm2),解得HP=7.5(cm),∴CH=AB﹣HP=10﹣7.5=2.5(cm),∴从点C运动到点H共用时2.5÷2=1.25(s),由点A到点C共用时8s,∴此时共用时8+1.25=9.25(s),故D正确,不符合题意.故选:B.30.(2022•温州)小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s米,所经过的时间为t分钟.下列选项中的图象,能近似刻画s与t之间关系的是()。
专题10分类讨论法解决含参函数单调性问题1.函数与导数问题中往往含有变量或参数,这些变量或参数取不同值时会导致不同的结果,因而要对参数进行分类讨论.常见的有含参函数的单调性、含参函数的极值、最值等问题,解决时要分类讨论.分类讨论的原则是不重复、不遗漏,讨论的方法是逐类进行,还必须要注意综合讨论的结果,使解题步骤完整.2.利用分类讨论解决含参函数的单调性、极值、最值问题的思维流程3.口诀记忆导数取零把根找,先定有无后大小;有无实根判别式,两种情形需知晓.因式分解见两根,逻辑分类有区分;首项系数含参数,先论系数零正负.首项系数无参数,根的大小定胜负;定义域,紧跟踪,两根是否在其中.题型一可求根或因式分解1.已知函数f (x )=x -a ln x (a ∈R),讨论函数f (x )的单调性.解析:f (x )的定义域为(0,+∞),f ′(x )=1-a x =x -ax,令f ′(x )=0,得x =a ,①当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,∴f (x )在(0,+∞)上单调递增,②当a >0时,x ∈(0,a )时,f ′(x )<0,x ∈(a ,+∞)时,f ′(x )>0,综上,当a ≤0时,f (x )在(0,+∞)上单调递增,当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增.2.已知函数f (x )=a ln x -ax -3(a ∈R).讨论函数f (x )的单调性.解析:函数f (x )的定义域为(0,+∞),且f ′(x )=a (1-x )x ,令f ′(x )=0,得x =1,当a >0时,f (x )在(0,1)上单调递增,在(1,+∞)上单调递减;当a <0时,f (x )在(1,+∞)上单调递增,在(0,1)上单调递减;当a =0时,f (x )为常函数.3.已知函数f (x )=ln x -ax (a ∈R),讨论函数f (x )的单调性.解析:f (x )的定义域为(0,+∞),f ′(x )=1x -a =1-ax x (x >0),①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )在(0,+∞)上单调递增.②当a >0时,令f ′(x )=1x -a =1-ax x =0,可得x =1a ,当0<x <1a 时,f ′(x )=1-ax x >0;当x >1a 时,f ′(x )=1-ax x <0,故函数f (x )综上,当a ≤0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )4.已知函数f (x )=12ax 2-(a +1)x +ln x ,a >0,试讨论函数y =f (x )的单调性.解析:函数的定义域为(0,+∞),f ′(x )=ax -(a +1)+1x =ax 2-(a +1)x +1x =(ax -1)(x -1)x .①当0<a <1时,1a >1,∴x ∈(0,1)f ′(x )>0;x f ′(x )<0,∴函数f (x )在(0,1)②当a =1时,1a =1,∴f ′(x )≥0在(0,+∞)上恒成立,∴函数f (x )在(0,+∞)上单调递增;③当a >1时,0<1a <1,∴x (1,+∞)时,f ′(x )>0;x f ′(x )<0,∴函数f (x )(1,+∞)综上,当0<a <1时,函数f (x )在(0,1)当a =1时,函数f (x )在(0,+∞)上单调递增;当a >1时,函数f (x )(1,+∞)5.设函数f (x )=a ln x +x -1x +1,其中a 为常数.讨论函数f (x )的单调性.解析:函数f (x )的定义域为(0,+∞).f ′(x )=ax +2(x +1)2=ax 2+(2a +2)x +a x (x +1)2.当a ≥0时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增.当a <0时,令g (x )=ax 2+(2a +2)x +a ,由于Δ=(2a +2)2-4a 2=4(2a +1).(1)当a =-12时,Δ=0,f ′(x )=-12(x -1)2x (x +1)2≤0,函数f (x )在(0,+∞)上单调递减.(2)当a <-12时,Δ<0,g (x )<0,f ′(x )<0,函数f (x )在(0,+∞)上单调递减.(3)当-12<a <0时,Δ>0.设x 1,x 2(x 1<x 2)是函数g (x )的两个零点,则x 1=-(a +1)+2a +1a ,x 2=-(a +1)-2a +1a .由x 1=a +1-2a +1-a =a 2+2a +1-2a +1-a >0,所以x ∈(0,x 1)时,g (x )<0,f ′(x )<0,函数f (x )单调递减;x ∈(x 1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增;x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减.综上可得:当a ≥0时,函数f (x )在(0,+∞)上单调递增;当a ≤-12时,函数f (x )在(0,+∞)上单调递减;当-12<a <0时,f (x )6.已知f (x )=(x 2-ax )ln x -32x 2+2ax ,求f (x )的单调递减区间.解析:易得f (x )的定义域为(0,+∞),f ′(x )=(2x -a )ln x +x -a -3x +2a =(2x -a )ln x -(2x -a )=(2x -a )(ln x -1),令f ′(x )=0得x =a2或x =e .当a ≤0时,因为x >0,所以2x -a >0,令f ′(x )<0得x <e ,所以f (x )的单调递减区间为(0,e).当a >0时,①若a2<e ,即0<a <2e ,当x f ′(x )>0,当x f ′(x )<0,当x ∈(e ,+∞)时,f ′(x )>0,所以f (x )②若a2=e ,即a =2e ,当x ∈(0,+∞)时,f ′(x )≥0恒成立,f (x )没有单调递减区间;③若a2>e ,即a >2e ,当x ∈(0,e)时,f ′(x )>0,当x f ′(x )<0,当x f ′(x )>0,所以f (x )综上所述,当a ≤0时,f (x )的单调递减区间为(0,e);当0<a <2e 时,f (x )当a =2e 时,f (x )无单调递减区间;当a >2e 时,f (x )7.已知e 是自然对数的底数,实数a 是常数,函数f (x )=e x -ax -1的定义域为(0,+∞).(1)设a =e ,求函数f (x )的图象在点(1,f (1))处的切线方程;(2)判断函数f (x )的单调性.解析:(1)∵a =e ,∴f (x )=e x -e x -1,∴f ′(x )=e x -e ,f (1)=-1,f ′(1)=0.∴当a =e 时,函数f (x )的图象在点(1,f (1))处的切线方程为y =-1.(2)∵f (x )=e x -ax -1,∴f ′(x )=e x -a .易知f ′(x )=e x -a 在(0,+∞)上单调递增.∴当a ≤1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增;当a >1时,由f ′(x )=e x -a =0,得x =ln a ,∴当0<x <ln a 时,f ′(x )<0,当x >ln a 时,f ′(x )>0,∴f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增.综上,当a ≤1时,f (x )在(0,+∞)上单调递增;当a >1时,f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增.8.已知函数g (x )=ln x +ax 2+bx ,其中g (x )的函数图象在点(1,g (1))处的切线平行于x 轴.(1)确定a 与b 的关系;(2)若a ≥0,试讨论函数g (x )的单调性.解析:(1)g ′(x )=1x +2ax +b (x >0).由函数g (x )的图象在点(1,g (1))处的切线平行于x 轴,得g ′(1)=1+2a +b =0,所以b =-2a -1.(2)由(1)得g ′(x )=2ax 2-(2a +1)x +1x =(2ax -1)(x -1)x .因为函数g (x )的定义域为(0,+∞),所以当a =0时,g ′(x )=-x -1x.由g ′(x )>0,得0<x <1,由g ′(x )<0,得x >1,即函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减.当a >0时,令g ′(x )=0,得x =1或x =12a,若12a <1,即a >12,由g ′(x )>0,得x >1或0<x <12a ,由g ′(x )<0,得12a<x <1,即函数g (x )(1,+∞)若12a >1,即0<a <12,由g ′(x )>0,得x >12a 或0<x <1,由g ′(x )<0,得1<x <12a,即函数g (x )在(0,1)若12a =1,即a =12,在(0,+∞)上恒有g ′(x )≥0,即函数g (x )在(0,+∞)上单调递增.综上可得,当a =0时,函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减;当0<a <12时,函数g (x )在(0,1)当a =12时,函数g (x )在(0,+∞)上单调递增;当a >12时,函数g (x )(1,+∞)9.已知函数f (x )=ln x +ax 2-(2a +1)x .若a >0,试讨论函数f (x )的单调性.解析:因为f (x )=ln x +ax 2-(2a +1)x ,所以f ′(x )=2ax 2-(2a +1)x +1x =(2ax -1)(x -1)x.由题意知函数f (x )的定义域为(0,+∞),令f ′(x )=0得x =1或x =12a ,若12a <1,即a >12,由f ′(x )>0得x >1或0<x <12a ,由f ′(x )<0得12a <x <1,即函数f (x )(1,+∞)若12a >1,即0<a <12,由f ′(x )>0得x >12a 或0<x <1,由f ′(x )<0得1<x <12a ,即函数f (x )在(0,1)若12a =1,即a =12,则在(0,+∞)上恒有f ′(x )≥0,即函数f (x )在(0,+∞)上单调递增.综上可得,当0<a <12时,函数f (x )在(0,1)当a =12时,函数f (x )在(0,+∞)上单调递增;当a >12时,函数f (x )减,在(1,+∞)上单调递增.10.函数f (x )=2ax -a 2+1x 2+1,当a ≠0时,求f (x )的单调区间与极值.解析:因为f ′(x )=-2ax 2+2(a 2-1)x +2a (x 2+1)2=-2a(x 2+1)2·(x -a (1)a >0时x (-∞,-a -1)(-a -1,a )(a ,+∞)f ′(x )-+-f (x )的极小值为f (-a -1)=-a 2,极大值为f (a )=1.(2)当a <0时,x (-∞,a )(a ,-a -1)(-a -1,+∞)f ′(x )+-+f (x )的极小值为f (-a -1)=-a 2,极大值为f (a )=1.综上,当a >0时,f (x )的递增区间是(-a -1,a ),递减区间是(-∞,-a -1),(a ,+∞),f (x )的极小值为f (-a -1)=-a 2,极大值为f (a )=1.当a <0时,f (x )的递增区间是(-∞,a ),(-a -1,+∞),递减区间是(a ,-a -1),f (x )的极小值为f (-a -1)=-a 2,极大值为f (a )=1.11.已知函数f (x )=ln(x +1)-axx +a(a >1),讨论f (x )的单调性.解析:f ′(x )=x (x -(a 2-2a ))(x +1)(x +a )2.①当a 2-2a <0时,即1<a <2,又a 2-2a =(a -1)2-1>-1.②当a =2时,f ′(x )=x (x +1)(x +2)2≥0,f (x )在(-1,+∞)上递增.③当a 2-2a >0时,即a >2时,x (-1,0)(0,a 2-2a )(a 2-2a ,+∞)f ′(x )+-+综上,当1<a <2时,f (x )的递增区间是(-1,a 2-2a ),(0,+∞),递减区间是(a 2-2a,0);当a >2时,f (x )的递增区间是(-1,0),(a 2-2a ,+∞),递减区间是(0,a 2-2a );当a =2时,f (x )在(-1,+∞)上递增.12.已知函数f (x )=e x (e x -a )-a 2x ,讨论f (x )的单调性.解析:函数f (x )的定义域为(-∞,+∞),f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x 在(-∞,+∞)上单调递增.②若a >0,则由f ′(x )=0,得x =ln a .当x ∈(-∞,ln a )时,f ′(x )<0;当x ∈(ln a ,+∞)时,f ′(x )>0.故f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增.③若a <0,则由f ′(x )=0,得x =当x ∞,f ′(x )<0;当x f ′(x )>0.故f (x )∞,13.已知函数f (x )=a ln(x +1)-ax -x 2,讨论f (x )在定义域上的单调性.解析:f ′(x )=a x +1-a -2x 令f ′(x )=0,得x =0或x =-a +22f (x )的定义域为(-1,+∞),①当-a +22≤-1,即当a ≥0时,若x ∈(-1,0),f ′(x )>0,则f (x )单调递增;若x ∈(0,+∞),f ′(x )<0,则f (x )单调递减.②当-1<-a +22<0,即-2<a <0时,若x 1f ′(x )<0,则f (x )单调递减;若x -a +22,f ′(x )>0,则f (x )单调递增;若x ∈(0,+∞),f ′(x )<0,则f (x )单调递减.③当-a +22=0,即a =-2时,f ′(x )≤0,f (x )在(-1,+∞)上单调递减.④当-a +22>0,即a <-2时,若x ∈(-1,0),f ′(x )<0,则f (x )单调递减;若x f ′(x )>0,则f (x )单调递增;若x -a +22,+f ′(x )<0,则f (x )单调递减.综上,当a ≥0时,f (x )在(-1,0)上单调递增,在(0,+∞)上单调递减;当-2<a <0时,f (x )1-a +22,(0,+∞)上单调递减;当a =-2时,f (x )在(-1,+∞)上单调递减;当a <-2时,f (x )在(-1,0)-a +22,+14.已知函数f (x )=x 2+2cos x ,g (x )=e x ·(cos x -sin x +2x -2),其中e 是自然对数的底数.(1)求函数g (x )的单调区间;(2)讨论函数h (x )=g (x )-af (x )(a ∈R)的单调性.解析:(1)g ′(x )=(e x )′·(cos x -sin x +2x -2)+e x (cos x -sin x +2x -2)′=e x (cos x -sin x +2x -2-sin x -cos x +2)=2e x (x -sin x ).记p (x )=x -sin x ,则p ′(x )=1-cos x .因为cos x ∈[-1,1],所以p ′(x )=1-cos x ≥0,所以函数p (x )在R 上单调递增.而p (0)=0-sin 0=0,所以当x <0时,p (x )<0,g ′(x )<0,函数g (x )单调递减;当x >0时,p (x )>0,g ′(x )>0,函数g (x )单调递增.综上,函数g (x )的单调递减区间为(-∞,0),单调递增区间为(0,+∞).(2)因为h (x )=g (x )-af (x )=e x (cos x -sin x +2x -2)-a (x 2+2cos x ),所以h ′(x )=2e x (x -sin x )-a (2x -2sin x )=2(x -sin x )(e x -a ).由(1)知,当x >0时,p (x )=x -sin x >0;当x <0时,p (x )=x -sin x <0.当a ≤0时,e x -a >0,所以x >0时,h ′(x )>0,函数h (x )单调递增;x <0时,h ′(x )<0,函数h (x )单调递减.当a >0时,令h ′(x )=2(x -sin x )(e x -a )=0,解得x 1=ln a ,x 2=0.①若0<a <1,则ln a <0,所以x ∈(-∞,ln a )时,e x -a <0,h ′(x )>0,函数h (x )单调递增;x ∈(ln a ,0)时,e x -a >0,h ′(x )<0,函数h (x )单调递减;x ∈(0,+∞)时,e x -a >0,h ′(x )>0,函数h (x )单调递增.②若a =1,则ln a =0,所以x ∈R 时,h ′(x )≥0,函数h (x )在R 上单调递增.③若a >1,则ln a >0,所以x ∈(-∞,0)时,e x -a <0,h ′(x )>0,函数h (x )单调递增;x ∈(0,ln a )时,e x -a <0,h ′(x )<0,函数h (x )单调递减;x ∈(ln a ,+∞)时,e x -a >0,h ′(x )>0,函数h (x )单调递增.综上所述,当a ≤0时,函数h (x )在(0,+∞)上单调递增,在(-∞,0)上单调递减;当0<a <1时,函数h (x )在(-∞,ln a ),(0,+∞)上单调递增,在(ln a ,0)上单调递减;当a =1时,函数h (x )在R 上单调递增;当a >1时,函数h (x )在(-∞,0),(ln a ,+∞)上单调递增,在(0,ln a )上单调递减.题型二导函数不可因式分解1.已知函数f (x )=x 3-x 2+ax +1.讨论f (x )的单调性.解析:由题意知f (x )的定义域为R ,f ′(x )=3x 2-2x +a ,对于f ′(x )=0,Δ=(-2)2-4×3a =4(1-3a ).①当a ≥13时,f ′(x )≥0,f (x )在R 上单调递增;②当a <13时,令f ′(x )=0,即3x 2-2x +a =0,解得x 1=1-1-3a 3,x 2=1+1-3a 3,令f ′(x )>0,则x <x 1或x >x 2;令f ′(x )<0,则x 1<x <x 2.所以f (x )在(-∞,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增.综上,当a ≥13时,f (x )在R 上单调递增;当a <13时,f (x )∞2.已知函数f (x )=x 3-kx +k 2.讨论f (x )的单调性.解析:由题意,得f ′(x )=3x 2-k ,当k ≤0时,f ′(x )≥0恒成立,所以f (x )在(-∞,+∞)上单调递增;当k >0时,令f ′(x )=0,得x =±k 3,令f ′(x )<0,得-k3<x <k3,令f ′(x )>0,得x <-k3或x >k 3,所以f (x )-k 3,∞k3,+3.已知函数f (x )=(1+ax 2)e x -1,当a ≥0时,讨论函数f (x )的单调性.解析:由题易得f ′(x )=(ax 2+2ax +1)e x ,当a =0时,f ′(x )=e x >0,此时f (x )在R 上单调递增.当a >0时,方程ax 2+2ax +1=0的判别式Δ=4a 2-4a .①当0<a ≤1时,Δ≤0,ax 2+2ax +1≥0恒成立,所以f ′(x )≥0,此时f (x )在R 上单调递增;②当a >1时,令f ′(x )=0,解得x 1=-1-1-1a,x 2=-1+1-1a.x ∈(-∞,x 1)时,f ′(x )>0,函数f (x )单调递增;x ∈(x 1,x 2)时,f ′(x )<0,函数f (x )单调递减;x ∈(x 2,+∞)时,f ′(x )>0,函数f (x )单调递增.所以f (x )∞,-11+1-1a,+1-1-1a,-1综上,当0≤a ≤1时,f (x )在R 上单调递增;当a >1时,f (x )∞,-11+1-1a,+1-1-1a ,-14.已知函数f (x )=1x-x +a ln x ,讨论f (x )的单调性.解析:f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+ax =-x 2-ax +1x 2.①当a ≤2时,则f ′(x )≤0,当且仅当a =2,x =1时,f ′(x )=0,所以f (x )在(0,+∞)上单调递减.②当a >2时,令f ′(x )=0,得x =a -a 2-42或x =a +a 2-42.当x f ′(x )<0;当x f ′(x )>0.所以f (x )综合①②可知,当a ≤2时,f (x )在(0,+∞)上单调递减;当a >2时,f (x )5.已知f (x )=ax -1x ,g (x )=ln x ,x >0,a ∈R 是常数.(1)求函数y =g (x )的图象在点P (1,g (1))处的切线方程;(2)设F (x )=f (x )-g (x ),讨论函数F (x )的单调性.解析:(1)因为g (x )=ln x (x >0),所以g (1)=0,g ′(x )=1x ,g ′(1)=1,故函数g (x )的图象在P (1,g (1))处的切线方程是y =x -1.(2)因为F (x )=f (x )-g (x )=ax -1x -ln x (x >0),所以F ′(x )=a +1x 2-1x =a -14.①当a ≥14时,F ′(x )≥0,F (x )在(0,+∞)上单调递增;②当a =0时,F ′(x )=1-xx 2,F (x )在(0,1)上单调递增,在(1,+∞)上单调递减;③当0<a <14时,由F ′(x )=0,得1=1-1-4a 2a >0,x 2=1+1-4a 2a>0,且x 2>x 1,故F (x )④当a <0时,由F ′(x )=0,得x 1=1-1-4a 2a >0,x 2=1+1-4a 2a <0,F (x )6.已知函数f (x )=x 3+ax 2+x +1.(1)讨论函数f (x )的单调区间;(2)设函数f (x )-23,-a 的取值范围.解析:(1)因为f ′(x )=3x 2+2ax +1.①当Δ≤0⇒-3≤a ≤3,f ′(x )≥0,且在R 的任给一子区间上,f ′(x )不恒为0,所以f (x )在R 上递增;②当Δ>0⇒a <-3或a > 3.由f ′(x )=0⇒x 1=-a -a 2-33,x 2=-a +a 2-33.x(-∞,x 1)(x 1,x 2)(x 2,+∞)f ′(x )+-+所以f (x )的单调递增区间是(-∞,x 1),(x 2,+∞);单调递减区间是(x 1,x 2).(2)因为f (x )-23,--23,-(x 1,x 2).所以f ′(x )=3x 2+2ax +1≤0-23,-所以2a ≥-3x -1x在-23,-a ≥2.7.已知函数f (x )=x -2x+1-a ln x ,a >0,讨论f (x )的单调性.解析:由题意知,f (x )的定义域是(0,+∞),导函数f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8.①当Δ≤0,即0<a ≤22时,对一切x >0都有f ′(x )≥0.此时f (x )是(0,+∞)上的单调递增函数.②当Δ>0,即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.由f ′(x )>0,得0<x <x 1或x >x 2.由f ′(x )<0,得x 1<x <x 2.所以f (x )在。
导数章节知识全归纳专题10 导数含参单调性讨论(详述版)一.知识点归纳:核心知识:1.函数的单调性与导数(1)设函数)(x f y =在某个区间),(b a 可导,如果'f )(x 0>,则)(x f 在此区间上为增函数; 如果'f 0)(<x ,则)(x f 在此区间上为减函数。
(2)如果在某区间内恒有'f 0)(=x ,则)(x f 为常函数。
总结:含参单调性讨论主要针对学生对于含有参数的函数进行单调性讨论存在严重问题,时常分不清楚何时讨论参数,以及先哪一步在哪一步:这里君哥给大家总结如下:第一类:简单含参--独立含参,先讨论恒成立,再分类。
第二类:多位置含参数:首先考虑是否可以进行十字相乘,在讨论根的大小,再讨论单调性。
第三类:二次函数型含参:必考虑∆,在讨论根的大小,最后讨论单调性。
第四类:其他函数型含参:画图看交点。
二.导数含参单调性讨论典型例题:类型一:独立含参讨论:例:1.已知函数()()ln f x x ax a R =-∈.(1)讨论函数()f x 的单调性;解:【分析】(1)求导,对参数a 进行分类讨论判断导函数的正负,最后判断原函数的单调。
【详解】(1)解:函数()f x 的定义域为()0,∞+,()()110ax f x a x x x-'=-=>, 当0a ≤时,()0f x '>恒成立,所以()f x 在()0,∞+内单调递增;当0a >时,令()0f x '=,得1x a =,所以当10,x a ⎛⎫∈ ⎪⎝⎭时()0f x '>,()f x 单调递增; 当1,x a ⎛⎫∈+∞ ⎪⎝⎭时()0f x '<,()f x 单调递减, 综上所述,当0a ≤时,()f x 在()0,∞+内单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭内单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭内单调递减. 例:2.已知函数()ln ()f x x ax a R =+∈.(1)讨论()f x 的单调性;解:【分析】(1)对参数a 分类讨论,分别求得对于范围内的单调区间;【详解】(1)函数()ln f x x ax =+的定义域为()0,∞+当0a ≥时,()10f x a x'=+>恒成立,故函数f (x )在()0,∞+上单调递增 当0a <时,令()10ax f x x +'=>,得10x a<<-;令()0f x '<,得1x a>-. 故函数()ln f x x ax =+在10,a ⎛⎫-⎪⎝⎭上递增,在1,a ⎛⎫-+∞ ⎪⎝⎭递减 变式:1.函数()ln 2.f x x mx =-+(1)求函数()y f x =的单调区间;解:【分析】(1)求导,分别讨论0m ≤和0m >两种情况()f x '的正负,即可求得()y f x =的单调区间.【详解】(1)()11,(0).mx f x m x x x-'=-=> 当0m ≤时,()0f x '>,所以()y f x =在()0,∞+为增函数,当0m >时,令()0f x '=,解得1x m=; 当10,x m ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()y f x =为增函数, 当1,x m ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<, ()y f x =为减函数, 综上:当0m ≤时,()y f x =的单调增区间为()0,∞+,当0m >时,()y f x =的单调增区间为10,m ⎛⎫ ⎪⎝⎭,单调减区间为1,m ⎛⎫+∞ ⎪⎝⎭. 变式:2.已知函数()21ln 2f x x a x =-,其中a ∈R .(1)讨论函数()f x 的单调性;解:【分析】(1)对参数a 进行分类讨论,根据导函数的正负判断函数的单调性;【详解】(1)()2a x a f x x x x-'=-=,0x >, 当0a ≤时,()0f x '>,故()f x 在()0,∞+上单调递增,当0a >时,令()0f x '=,得x =从而()f x 在(上单调递减,在)+∞上单调递增.变式:3.已知函数()e xf x ax =-,()ln xg x x a =-. (1)求函数()g x 的单调区间;解:【分析】(1)先求导得到()'g x ,再分0a <和0a >两种情况讨论()g x 的单调性和单调区间;【详解】解:(1)由题意知()g x 的定义域是()0,∞+,()11g x x a '=-, 当0a <时,()110g x x a-'=>恒成立,所以()g x 在()0,∞+上单调递增; 当0a >时,由()110a x g x x a ax -'=-=>得0x a <<,所以()g x 在()0,a 上单调递增, 由()110a x g x x a ax-'=-=<得x a >,所以()g x 在(),a +∞上单调递减.综上所述,当0a <时,()g x 的单调递增区间为()0,∞+,无单调递减区间;当0a >时,()g x 的单调递增区间为()0,a ,单调递减区间为(),a +∞.类型二:独立含参难:例:1.已知函数()x f x e ax =-,()212g x ax ax x =-+. (1)讨论函数()f x 的单调性;解:【分析】(1)求导()x f x e a '=-,分0a ≤,0a >讨论求解;【详解】(1)∵()x f x e a '=-,当0a ≤时,()0xf x e a '=->在R 上恒成立, ∵()f x 在(),-∞+∞上是递增的.当0a >时,令()0f x '>,则ln x a >;令()0f x '<,则ln x a <.∵()f x 在(),ln a -∞上递减,在()ln ,a +∞上递增.综上所述,当0a ≤时,()f x 是(),-∞+∞上的增函数,当0a >时,()f x 在(),ln a -∞是减函数,在()ln ,a +∞上是增函数.例2.已知函数()ln 1()f x a x x a =++∈R .(1)讨论()f x 的单调性;解:【分析】(1)首先对函数进行求导,通过对a 进行分类讨论,可得()f x 的单调性;【详解】(1)函数()f x 的定义域为(0,)+∞,'()1a x a f x x x+=+=, 当0a ≥时,0f x ,所以()f x 在(0,)+∞上单调递增;当0a <时,若0x a <<-,则0f x ;若x a >-,则0f x , 所以()f x 在(0,)a -上单调递减,在(,)a -+∞上单调递增.综上:当0a ≥时,()f x 在(0,)+∞上单调递增,当0a <时,()f x 在(0,)a -上单调递减,在(,)a -+∞上单调递增;例3.已知函数()2ln(1)1f x ax x =-++,a R ∈.(1)讨论()f x 的单调性;解:【分析】(1)先写定义域,对函数求导,再讨论0a ≤时和0a >时导数的正负情况,即得函数的单调性;【详解】解:(1)()f x 的定义域为 (1,)-+∞,1()21f x a x =-+', ①当0a ≤时,()0f x '<,即()f x 在(1,)-+∞上单调递减; ②当0a >时,221()1ax a f x x '+-=+,由()0f x '>解得122a x a ->,由()0f x '<解得1212a x a--<<, 即()f x 在121,2a a -⎫⎛- ⎪⎝⎭上单调递减,在12 ,2a a -⎫⎛+∞ ⎪⎝⎭上单调递增; 综上所述,当0a ≤时,()f x 在(1,)-+∞上单调递减; 当0a >时,()f x 在121,2a a -⎫⎛- ⎪⎝⎭上单调递减,在12 ,2a a -⎫⎛+∞ ⎪⎝⎭上单调递增. 变式:1.已知函数()()1x f x ax e =+.(1)讨论()f x 的单调性;解:【分析】(1)先求导函数,然后分析导函数符号只与含参一次因式有关,所以对a 分0,0,0a a a >=<三种情况进行讨论;【详解】解:(1)因为()()1x f x ax e =+,所以()()()11x x x f x ae ax e ax a e '=++=++. 若0a =,则()0f x '>,()f x 是R 上的增函数;若0a >,则当1a x a -->时,()0f x '>;当1a x a--<时,()0f x '<. 故()f x 的单调递增区间为1,a a --⎛⎫+∞⎪⎝⎭,单调递减区间为1,a a --⎛⎫-∞ ⎪⎝⎭; 若0a <,则当1a x a -->时,()0f x '<;当1a x a--<时,()0f x '>, 故()f x 的单调递减区间为1,a a --⎛⎫+∞ ⎪⎝⎭,单调递增区间为1,a a --⎛⎫-∞ ⎪⎝⎭.变式:2.已知函数2()(1)12ln f x m x x =+--.(1)讨论()f x 的单调性;解:【分析】(1)求导()22()1f x mx mx x'=+-,分0m =,0m >,0m <讨论求解; 【详解】(1)函数2()(1)12ln f x m x x =+--, 求导得:()222()2(1)1f x m x mx mx x x'=+-=+-, 当0m =时,2()0f x x=-<',所以()f x 在()0,∞+上递减; 当0m >时,240m m ∆=+>,令()0f x '=,则方程210mx mx +-=有两个不同的根,.10x =<,20x =>, 当()20,x x ∈时,()0f x '<,当()2,x x ∈+∞时,()0f x '>,所以()f x 在()20,x 上递减,在()2,x +∞上递增;当0m <时,()21y m x =+在()0,∞+上递减,1ln y x =--在()0,∞+上递减, 所以()f x 在()0,∞+递减;类型三:二次函数类型含参:例:1.已知函数()31f x x ax =-+,a R ∈. (1)讨论函数()f x 的单调性;解:【分析】(1)先求函数的导数,()23f x x a '=-,再分0a ≤和0a >两种情况讨论函数的单调性;【详解】(1)由题意()f x 的定义域为R ,()23f x x a '=-, ①若0a ≤,则()0f x '≥,所以()f x 在R 上为单调递增函数;②若0a >,由()230f x x a '=-=解得13x =-,23x =,()0f x '>的解为3x <-或3x >,()0f x '<的解为33x -<<,即()f x 的增区间为,3⎛-∞- ⎝⎭,,3⎛⎫+∞ ⎪ ⎪⎝⎭,减区间为33⎛⎫- ⎪ ⎪⎝⎭. 例2.已知函数()2()12ln ,f x a x x a R =--∈. (1)2a =时,求在(1,(1))f 处的切线方程;(2)讨论()f x 的单调性;解:【分析】(1)利用导数的几何意义,直接求切线方程;(2)首先求函数的导数()22222ax f x ax x x-'=-=,()0x >,分0a ≤和0a >两种情况讨论函数的单调性; 【详解】当2a =时,()()2212ln f x x x =--,0x >, ()22424x f x x x x-'=-=,()10f =,()12f '=, ()f x ∴在1x =处的切线方程是()21y x =-.(2)()22222ax f x ax x x-'=-=,()0x > 当0a ≤时,()0f x '<,()f x ∴在()0,∞+上单调递减,当0a >时,令()0f x '>,解得:x >,令()0f x '<,解得:0x <<,()f x ∴的增区间是⎫+∞⎪⎪⎝⎭,减区间是0,a ⎛⎫ ⎪ ⎪⎝⎭,综上可知:0a ≤时,函数的减区间是()0,∞+,无增区间;0a >时,函数的增区间是⎫+∞⎪⎪⎝⎭,减区间是⎛ ⎝⎭. 变式:1.已知函数()2ln 1f x a x x =++,其中a R ∈且0a ≠ (1)求函数()f x 的单调区间;解:【分析】(1)求出()222a x a f x x x x='+=+,然后分a >0、a <0两种情况讨论即可; 【详解】(1)函数的定义域为(0,+∞),()222a x a f x x x x ='+=+,当a >0时,()0f x '>,f (x )在(0,+∞)上单调递增,此时()f x 的增区间为(0,+∞);当a <0时,令()0f x '=,解得x =x =),则0,2x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0f x '<,()f x 单调递减;,2x ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,()0f x '>,()f x 单调递增.此时()f x 的单调减区间是⎛ ⎝⎭,单调增区间是⎫+∞⎪⎪⎝⎭综上,当a >0时,()f x 的增区间为(0,+∞);当a <0时,()f x 的单调减区间是⎛ ⎝⎭,单调增区间是⎫+∞⎪⎪⎝⎭变式:2.已知函数2()2ln 3f x x ax x =-+-. (1)讨论()f x 的单调性. 解:【分析】(1)求导,分2160a ∆=-≤,2160a ∆=->情况讨论导函数的正负,可得原函数的单调性; 【详解】(1)解:2222'()2x ax f x x a x x-+=-+=. 当2160a ∆=-≤,即44a -≤≤时,'()0f x ≥,所以()f x 在()0,∞+上单调递增.当2160a ∆=->,即4a或4a >时,令2220x ax -+=,得x =.当4a时,两根均为负数,则'()0f x >,所以()f x 在()0,∞+上单调递增;当4a >时,两根均为正数,所以()f x 在⎛ ⎝⎭,⎫+∞⎪⎪⎝⎭上单调递增,在44a a ⎛+⎪⎝⎭,上单调递减. 综上所述,当4a ≤时,()f x 在()0,∞+上单调递增;当4a >时,()f x 在⎛ ⎝⎭,⎫+∞⎪⎪⎝⎭上单调递增,在44a a ⎛+ ⎪⎝⎭,上单调递减.变式:3.已知函数()22ln kx f x x x +-=.(1)讨论()f x 的单调性; 解:【分析】(1)明确函数的定义域,求出导函数,对参数分类讨论,结合导函数与单调性的关系得到结果; 【详解】(1)()f x 的定义域是()0,∞+,求导得()()21221220kx x f x kx x x x+-'=+-=>.记()2221g x kx x =+-,①当0k =时,令()102g x x =⇒=, 当10,2x ⎛⎫∈ ⎪⎝⎭时,()()()00g x f x f x '<⇒<⇒单调递减,当1,2x ⎛⎫∈+∞⎪⎝⎭时,()()()00g x f x f x '>⇒>⇒单调递增;②当0k >时,480k ∆=+>,()0g x x =⇒==,当10,2x k ⎛⎫∈ ⎪ ⎪⎝⎭时,()()()00g x f x f x '<⇒<⇒单调递减,当x ⎫∈+∞⎪⎪⎝⎭时,()()()00g x f x f x '>⇒>⇒单调递增; ③当0k <时,令480k ∆=+≤得1,2k ⎛⎤∈-∞- ⎥⎝⎦,则()22210g x kx x =+-≤在()0,∞+恒成立,于是()0f x '≤在()0,∞+恒成立,()f x 在定义域()0,∞+上单调递减.若1,02k ⎛⎫∈-⎪⎝⎭,则480k ∆=+>,令()10g x x =⇒=2x =()0f x '=有2个不相等正根,()f x 在10,2k ⎛⎫ ⎪ ⎪⎝⎭上单调递减,在11,22k k ⎛⎫ ⎪ ⎪⎝⎭单调递增,在1,2k ⎛⎫+∞ ⎪ ⎪⎝⎭单调递减. 综上,当0k =时,函数增区间为1,2⎛⎫+∞⎪⎝⎭,减区间为10,2⎛⎫⎪⎝⎭;当0k >时,函数增区间为⎫+∞⎪⎪⎝⎭,减区间为⎛ ⎝⎭; 当12k ≤-时,函减区间为()0,∞+,无增区间;当102k -<<时,函数增区间为⎝⎭,减区间为10,2k ⎛⎫ ⎪ ⎪⎝⎭,1,2k ⎛⎫+∞ ⎪ ⎪⎝⎭; 类型四:多参函数讨论: 例:1.已知函数()(1),()af x x a lnx a R x=--+∈. (1)当2a =时,求()f x 的极值; (2)若0a >,求()f x 的单调区间. 解:【分析】(1)首先求函数的导数,2232()(0)x x f x x x -+'=>,判断函数的单调性后得到函数的极值;(2)222(1)()(1)()x a a x x a x f x x x +-+--'==,分1a >,1a =和01a <<三种情况讨论求函数的单调递减区间. 【详解】解:(1)因为当2a =时,2()3f x x lnx x=--, 所以2232()(0)x x f x x x-+'=>,由()0f x '=得1x =或2x =, 当x 变化时,()f x ',()f x 的变化情况列表如下:所以当1x =时,()f x 取极大值1-;当2x =时,()f x 取极小值132ln -. (2)222(1)()(1)()x a a x x a x f x x x +-+--'==,12()0,1f x x a x '=⇒==①当1a >时,当(0,1)x ∈,()0f x '>,()f x 单调递增,当(1,)x a ∈,()0f x '<,()f x 单调递减,当(,)x a ∈+∞,()0f x '>,()f x 单调递增.②当1a =时,()0f x '≥在(0,)+∞恒成立,所以()f x 在(0,)+∞上单调递增;③当01a <<时,当(0,)x a ∈,()0f x '>,()f x 单调递增,当(,1)x a ∈,()0f x '<,()f x 单调递减,当(1,)x ∈+∞,()0f x '>,()f x 单调递增,综上所述,①当1a >时,()f x 单调递增区间为(0,1),(,)a +∞.单调递减区间为(1,)a ;②当1a =时,()f x 单调增区间为(0,)+∞,无减区间;③当01a <<时,()f x 单调递增区间为(0,)a ,(1,)+∞,单调递减区间为(,1)a .例2.已知函数()221()2ln 2()2f x x ax x x ax a =--+∈R . (1)若0a =,求()f x 的最小值; (2)求函数()f x 的单调区间. 解:【分析】(1)若0a =,221()ln 2f x x x x =-利用导数得出()f x 在()0,∞+的单调性即可求解.(2)()()22ln f x x a x '=-再讨论0a ≤、01a <<、1a =、1a >函数()f x 的单调区间即可. 【详解】(1)若0a =,221()ln 2f x x x x =-定义域为()0,∞+, 21()2ln 2ln f x x x x x x x x'=+⨯-=,由()0f x '>可得1x >, 由()0f x '<可得01x <<,所以()f x 在()0,1单调递减,在()1,+∞单调递增,所以()f x 的最小值为1(1)2f =-; (2)()()()21()22ln 2222ln f x x a x x ax x a x a x x'=-+-⋅-+=- ①当0a ≤时,220x a ->,由()0f x '>可得1x >, 由()0f x '<可得01x <<,此时()f x 的单调递减区间为()0,1,单调递增区间为()1,+∞, ②当01a <<时,由()0f x '>可得0x a <<或1x > 由()0f x '<可得1<<a x ,此时()f x 的单调递减区间为(),1a ,单调递增区间为()0,a 和()1,+∞, ③当1a =时,()0f x '≥恒成立,此时()f x 的单调递增区间为()0,∞+,④当1a >时,由()0f x '>可得01x <<或x a >, 由()0f x '<可得1x a <<,此时()f x 的单调递减区间为()1,a ,单调递增区间为()0,1和(),a +∞,综上所述:当0a ≤时,()f x 的单调递减区间为()0,1,单调递增区间为()1,+∞, 当01a <<时,()f x 的单调递减区间为(),1a ,单调递增区间为()0,a 和()1,+∞, 当1a =时, ()f x 的单调递增区间为()0,∞+,当1a >时,()f x 的单调递减区间为()1,a ,单调递增区间为()0,1和(),a +∞,变式:1.已知函数()()24ln 22f x x a x a x =-+-,a R ∈.(1)当1a =时,求证:()4ln 2f x ≥-; (2)当0a ≤时,讨论函数()f x 的单调性. 解:【分析】(1)当1a =时,可得()24ln 2f x x x x =--,利用导数求得()min 4ln 2f x =-,由此可证得结论成立;(2)求得()()()22x a x f x x+-'=,对实数a 的取值进行分类讨论,分析导数的符号变化,由此可得出函数()f x 单调递增区间和递减区间. 【详解】(1)当1a =时,()24ln 2f x x x x =--,该函数的定义域为()0,∞+,()()()2212422422x x x x f x x x x x+---'=--==, 当02x <<时,()0f x '<,此时函数()f x 单调递减; 当2x >时,()0f x '>,此时函数()f x 单调递增.所以,()()min 24ln 2f x f ==-,因此,当1a =时,求证:()4ln 2f x ≥-;(2)当0a ≤时,函数()()24ln 22f x x a x a x =-+-的定义域为()0,∞+,()()()()()22224224222x a x a x a x af x x a x x x+--+-'=-+-==. ①当0a -=时,即当0a =时,则()()22f x x '=-. 由()0f x '<可得02x <<,由()0f x '>可得2x >.此时,函数()f x 的单调递减区间为()0,2,单调递增区间为()2,+∞; ②当02a <-<时,即当20a -<<时,由()0f x '<可得2a x -<<,由()0f x '>可得0x a <<-或2x >.此时,函数()f x 的单调递减区间为(),2a -,单调递增区间为()0,a -、()2,+∞;③当2a -=时,即当2a =-时,则()()2220x f x x-'=≥对任意的0x >恒成立,此时,函数()f x 的单调递增区间为()0,∞+; ④当2a ->时,即当2a <-时,由()0f x '<可得2x a <<-,由()0f x '>可得02x <<或x a >-.此时,函数()f x 的单调递减区间为()2,a -,单调递增区间为()0,2、(),a -+∞. 综上所述,当0a =时,函数()f x 的单调递减区间为()0,2,单调递增区间为()2,+∞; 当20a -<<时,函数()f x 的单调递减区间为(),2a -,单调递增区间为()0,a -、()2,+∞; 当2a =-时,函数()f x 的单调递增区间为()0,∞+;当2a <-时,函数()f x 的单调递减区间为()2,a -,单调递增区间为()0,2、(),a -+∞.变式:2.已知函数()ln ()mf x x mx m x=--∈R . (1)讨论函数()f x 的单调性; 解:【分析】(1)2221()m mx x m f x m x x x++'=---=-,0x >,分0m =,0m ≠两种情况,根据二次函数的性质,利用判别式结合函数的定义域,由导数的正负判断; 【详解】(1)2221()m mx x mf x m x x x++'=---=-,0x >, 若0m =,则1()0f x x'=-<,函数()f x 在(0,)+∞上单调递减. 若0m ≠,则二次函数2y mx x m =++的判别式214m ∆=-,当0∆≤,即12m ≤-或12m ≥时,若12m ≤-,则()0f x '≥,等号不恒成立,函数()f x 在(0,)+∞上单调递增; 若12m ≥,则()0f x '≤,等号不恒成立,函数()f x 在(0,)+∞上单调递减.当0∆>,即1122m -<<且0m ≠时, 令()0f x '=,即20mx x m ++=,此时112x m -=212x m-+=,121x x m +=-,121=x x ,若102m <<,则1x ,20x <,此时()0f x '<恒成立,函数()f x 在(0,)+∞上单调递减; 若102m -<<,则210x x <<,当()20,x x ∈时,()0f x '>, 当()21,x x x ∈时()0f x '<,当()1,x x ∈+∞时,()0f x '>, 即函数()f x 在()20,x 和()1,x +∞上单调递增,在()21,x x 上单调递减. 综上,当0m ≥时,函数()f x 在(0,)+∞上单调递减;当12m ≤-时,函数()f x 在(0,)+∞上单调递增;当102m -<<时,函数()f x 在⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减. 变式:3.已知实数0a >,函数()22ln f x a x a x x=++,(0,10)x ∈. (1)讨论函数()f x 的单调性; 解【分析】(1)求导后得()()()()221010ax ax f x x x +-'=<<;分别在110a ≥和1010a<<两种情况下,根据()f x '的符号可确定()f x 的单调性;【详解】(1)()()()()222212010ax ax a f x a x x x x+-'=-++=<<. 0a >,010x <<,20ax ∴+>.①当110a ≥,即当10,10a ⎛⎤∈ ⎥⎝⎦时,()0f x '<, ()f x ∴在()0,10上单调递减;②当1010a <<,即1,10a ⎛⎫∈+∞ ⎪⎝⎭时, 当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<; 当1,10x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>, ()f x ∴在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,10a ⎛⎫ ⎪⎝⎭上单调递增. 综上所述:当10,10a ⎛⎤∈ ⎥⎝⎦时,()f x 在()0,10上单调递减; 当1,10a ⎛⎫∈+∞ ⎪⎝⎭时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,10a ⎛⎫ ⎪⎝⎭上单调递增. 类型五:其他函数含参讨论:例:1.已知函数()1x f x ke x -=-.(1)讨论()f x 的单调性;解:【分析】(1)对函数求导,分0k ≤和0k >两种情况,分别得出函数的单调性;【详解】(1)()11x f x ke -=-',当0k ≤时,()0f x '<,()f x 在(),-∞+∞上单调递减;当0k >时,令()0f x '=,得1ln x k =-,当(),1ln x k ∈-∞-时,()0f x '<;当()1ln ,x k ∈-+∞时,()0f x '>.故()f x '在(),1ln k -∞-上单调递减,在()1ln ,k -+∞上单调递增.例2..已知函数()22x f x xe ax ax =++,e 为自然对数的底数. (1)讨论()f x 的单调性;解:【分析】(1)求导()()()12x f x x e a '=++,分0a ≥,102a e-<<,12a e =-,12a e <-讨论求解.【详解】(1)()()()12x f x x e a '=++, ①当0a ≥时,20x e a +>,(),1x ∈-∞-,()0f x '<,()f x 单调递减,()1,x ∈-+∞,()0f x '>,()f x 单调递增.②当102a e-<<时,()ln 21a -<-, ()(),ln 2x a ∈-∞-,20x e a +<,()0f x '>,()f x 单调递增,()()ln 2,1x a ∈--,20x e a +>,()0f x '<,()f x 单调递减,()1,x ∈-+∞,20x e a +>,()0f x '>,()f x 单调递增,③当12a e =-时,()()()110x f x x e e -'=+-≥,(),x ∈-∞+∞,()f x 单调递增 ④当12a e<-时,()ln 21a ->-, (),1x ∈-∞-,20x e a +<,()0f x '>,()f x 单调递增,()()1,ln 2x a ∈--,20x e a +<,()0f x '<,()f x 单调递减,()()ln 2,x a ∈-+∞,20x e a +>,()0f x '>,()f x 单调递增.例3.已知函数()e 1xx a f x =-+(a ∈R ). (1)讨论函数()f x 的单调性;解:【分析】(1)求导后,分类讨论a ,利用导数的符号可得函数()f x 的单调性;【详解】(1)()f x 的定义域为(),-∞+∞,且()1e xf x a ='-.当0a ≤时,()0f x '>,则()f x 在(),-∞+∞上单调递增.当0a >时,若(),ln x a ∈-∞-,则()0f x '>,()f x 在(),ln a -∞-上单调递增; 若()ln ,x a ∈-+∞,则()0f x '<,()f x 在()ln ,a -+∞上单调递减.综上所述,当0a ≤时,()f x 在(),-∞+∞上单调递增;当0a >时,()f x 在(),ln a -∞-上单调递增,在()ln ,a -+∞上单调递减.变式:1.设()()ln a f x ax x =+,()11ln x g x b e x x-=⋅+,其中,a b ∈R ,且0a ≠. (1)试讨论()f x 的单调性;解:【分析】(1)分别在0a <和0a >两种情况下,结合定义域,根据导函数的正负可确定原函数的单调性;【详解】(1)()221a x a f x x x x'-=-=, ①当0a <时,由0ax >得:0x <,即()f x 定义域为(),0-∞;∴当(),x a ∈-∞时,()0f x '<;当(),0x a ∈时,()0f x '>;()f x ∴在(),a -∞上单调递减,在(),0a 上单调递增;②当0a >时,由0ax >得:0x >,即()f x 定义域为()0,∞+;∴当()0,x a ∈时,()0f x '<;当(),x a ∈+∞时,()0f x '>;()f x ∴在()0,a 上单调递减,在(),a +∞上单调递增;综上所述:当0a <时,()f x 在(),a -∞上单调递减,在(),0a 上单调递增;当0a >时,()f x 在()0,a 上单调递减,在(),a +∞上单调递增.变式:2.已知函数()()()ln 1f x a a x x a =++∈R .(1)求讨论函数()f x 的单调性;解:【分析】(1)当0a =时,()1f x =是常数函数,可得结论,当0a ≠时,求出()f x '分0a >和0a <进行讨论得到答案.【详解】(1)函数()()()ln 1f x a a x x a =++∈R 的定义域是()0,∞+,()()1a a x a f x a x x +⎛⎫'=+= ⎪⎝⎭. 当0a =时,()1f x =是常数函数,不具有单调性;当0a >时,()0f x '>对任意()0,x ∈+∞恒成立,故函数()f x 在()0,∞+上单调递增; 当0a <时,令()0f x '<,得x a >-,令()0f x '>,得0x a <<-,故函数()f x 在()0,a -上单调递增,在(),a -+∞上单调递减.综上:当0a >时,函数()f x 在()0,∞+上单调递增;当0a =时,()f x 不具有单调性;当0a <时,函数()f x 在()0,a -上单调递增,在(),a -+∞上单调递减.变式:3.已知函数()()2e 21x f x x a x x =+++,a ∈R .(1)求()f x 的单调区间;解:【分析】(1)利用导数的基本运算可得()()()12x f x x e a '=++,讨论0a ≥、102a e -<<或12a e <-,利用导数与函数单调性之间的关系即可得出结果.【详解】解:(1)由题意得()()()12xf x x e a '=++, 令()()()12xg x x e a =++, 当0a ≥时,()10g -=,即当(),1x ∈-∞-时,()()0g x f x ='<;当()1,x ∈-+∞时,()()0g x f x '=>,故()f x 的单调递减区间为(),1-∞-,单调递增区间为()1,-+∞; 当12a e<-时,令()()0g x f x '==, 则11x =-,()2ln 2x a =-,12x x <,故()f x 的单调递减区间为()()1,ln 2a --,单调递增区间为(),1-∞-,()()ln 2,a -+∞; 当12a e-=时,令()()0g x f x '==, 则11x =-,()2ln 2x a =-,12x x =,满足()()0g x f x '=≥,故()f x 在R 上单调递增;当102a e-<<时,令()()0g x f x '==, 则11x =-,()2ln 2x a =-,12x x >,故()f x 的单调递减区间为()()ln 2,1a --,单调递增区间为()(),ln 2a -∞-,()1,-+∞. 综上,当0a ≥时,()f x 的单调递减区间为(),1-∞-,单调递增区间为()1,-+∞; 当12a e -<时,()f x 的单调递减区间为()()1,ln 2a --, 单调递增区间为(),1-∞-,()()ln 2,a -+∞; 当12a e-=时,()f x 的单调递增区间为(),-∞+∞; 当102a e -<<时,()f x 的单调递减区间为()()ln 2,1a --, 单调递增区间为()(),ln 2a -∞-,()1,-+∞.。
2020-2021高一下学期期末考试考前必刷题(苏教版 2019)(统计、概率基础题)一、单选题1.(2021·江苏高一课时练习)某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率直方图如图所示,估计棉花纤维的长度的样本数据的80百分位数是()A.29 mm B.29.5 mmC.30 mm D.30.5 mm【答案】A【分析】先求得棉花纤维的长度在30 mm以下的比例为85%,在25 mm以下的比例为85%-25%=60%,从而可得80百分位数一定位于[25,30)内,进而可求出答案【详解】棉花纤维的长度在30 mm以下的比例为(0.01+0.01+0.04+0.06+0.05)×5=0.85=85%,在25 mm以下的比例为85%-25%=60%,因此,80百分位数一定位于[25,30)内,由0.800.60 255290.850.60-+⨯=-,可以估计棉花纤维的长度的样本数据的80百分位数是29 mm.故选:A2.(2021·江苏高一课时练习)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为()A.12B.13C.14D.15【答案】D【分析】先计算抽样比,从而求出样本容量.【详解】抽样比是,所以样本容量是.故选:D.3.(2021·江苏高一课时练习)某校对全校1200名男女学生进行健康调查,采用分层抽样法抽取一个容量为200的样本.已知女生抽了85人,则该校的男生人数为()A.670B.680C.690D.700【答案】C【分析】先计算男生抽取人数,进一步求出该校男生人数.【详解】⨯=人每层的抽样比为,女生抽了85人,所以男生抽取115人,因此共有男生1156690故选:C.4.(2021·江苏高一课时练习)某高三学生在连续五次月考中的数学成绩(单位:分)为:90,90,93,94,93,则该学生在这五次月考中数学成绩的平均数和方差分别为()A.92,2.8B.92,2C.93,2D.93,2.8【答案】A【分析】根据5个样本,分别计算平均数和方差.【详解】该学生在这五次月考中数学成绩的平均数为×(90+90+93+94+93)=92,方差为s2=×[(90-92)2+(90-92)2+(93-92)2+(94-92)2+(93-92)2]=2.8.故选:A5.(2021·江苏高一课时练习)某市有15个旅游景点,经计算,黄金周期间各个景点的旅游人数平均为20万,标准差为s,后来经核实,发现甲、乙两处景点统计的人数有误,甲景点实际为20万,被误统计为15万,乙景点实际为18万,被误统计成23万;更正后重新计算,得到标准差为s1,则s与s1的大小关系为()A.s=s1B.s<s1C.s>s1D.不能确定【答案】C 【分析】首先由统计总数没变,可知两次统计的平均数没有变,再分别列出标准差公式,判断大小关系. 【详解】由已知,两次统计所得的旅游人数总数没有变,即两次统计的各景点旅游人数的平均数是相同的,设为,则s =1s =若比较与的大小,只需比较()()221523x x -+-与()()222018x x -+-的大小即可,而()()2221523754762x x x x -+-=-+,()()2222018724762x x x x -+-=-+,所以()()221523x x -+->()()222018x x -+-,从而.故选:C 【点睛】关键点点睛:本题考查样本平均数和标准差,关键是判断平均数没有变,才能利用标准差公式判断大小. 6.(2021·江苏高一课时练习)已知下表为随机数表的一部分,将其按每5个数字编为一组: 08015 17727 45318 22374 21115 78253 77214 77402 43236 00210 45521 64237 29148 66252 36936 87203 76621 13990 68514 14225 46427 56788 96297 78822已知甲班有60位同学,编号为01~60号,现在利用上面随机数表的某一个数为起点,用简单随机抽样的方法在甲班中抽取4位同学,得到下列四组数据,则抽到的4位同学的编号不可能是( ) A .08,01,51,27 B .27,45,31,23 C .15,27,18,74 D .14,22,54,27【答案】C 【分析】根据选项C 中编号74大于甲班同学的总人数60,即可得到答案. 【详解】因为C中编号74大于甲班同学的总人数60,则抽出的4位同学的编号不可能是C选项.故选:C7.(2021·江苏高一课时练习)某厂10名工人在一小时内生产零件的个数分别是15,17,14,10,15,17,17,16,14,12,设该组数据的平均数为a,50百分位数为b,则有()A.a=13.7,b=15.5B.a=14,b=15C.a=12,b=15.5D.a=14.7,b=15【答案】D【分析】可直接求出平均数,然后对这一列数排列,从而可求出50百分位数【详解】把该组数据按从小到大的顺序排列为10,12,14,14,15,15,16,17,17,17,其平均数a=×(10+12+14+14+15+15+16+17+17+17)=14.7,因为50×=5,所以这10名工人一小时内生产零件的50百分位数为b==15.故选:D8.(2021·江苏高一课时练习)年月日,欧盟特别峰会在布鲁塞尔举行,主要讨论年至年长期预算,有个国家代表参加,最终因各方分歧太大,未达成共识.会后某记者从每个国家与会人员中采访了两名成员,调查得到各成员国在预算总量、主要政策领域分配额、欧盟收入来源以及激励机制等多方面都存在分歧.在这个问题中样本容量是()A.B.C.D.不确定【答案】C【分析】根据样本容量的定义可得结果.【详解】⨯=名参会人员,参会国家共有个,记者采访了每个国家的两名成员,共采访了27254得到名参会人员的意见,在这个问题中,样本容量为.故选:C.9.(2021·江苏高一课时练习)下列调查方式中合适的是()A.某单位将新购买的准备开业庆典的箱礼炮全部进行质检B.某班有名同学,指定家庭最富有的人参加“学代会”C.某服装厂的一批件出口服装,随机抽件进行抽样调查D.为了调查最近上映影片的一周内的票房情况,特选周六、周日两天进行调查【答案】C【分析】分析题意,要选择合适的调查方法,需要对全面调查的局限性和抽样调查的必要性结合起来.结合抽样调查和普查的特点逐项判断即可得出合适的选项.【详解】对于A选项,对礼炮的质检带有破坏性,虽然总量不大,但不宜采用普查的方式;对于B选项,“家庭最富有”不具备代表性,样本选择错误;对于C选项,件服装容量较大,随机抽件进行抽样调查较为合适;对于D选项,因调查一周的票房,时间不长,周六、周日是双休日,这两天的票房较高,所以,周六、周日这两天的选取也不具备代表性.故选:C.10.(2021·苏州市第三中学校高一月考)袋内红、白、黑球分别为3个、2个、1个,从中任取2个,则互斥而不对立的两个事件是()A.至少有一个白球;至少有一个红球B.恰有一个白球;一个白球一个黑球C.至少有一个白球;都是白球D.至少有一个白球;红、黑球各1个【答案】D【分析】利用互斥事件、对立事件的定义直接求解.【详解】袋中装有红球3个、白球2个、黑球1个,从中任取2个,在A中,至少有一个白球和至少有一个红球两个事件能同时发生,不是互斥事件,故A不成立;在B中,恰有一个白球和一个白球一个黑球两个事件能同时发生,不是互斥事件,故B不成立;在C中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故C不成立.在D中,至少有一个白球和红、黑球各一个两个事件不能同时发生但能同时不发生,是互斥而不对立的两个事件,故D成立.故选:D.11.(2021·江苏高一课时练习)某中学高一年级有400人,高二年级有320人,高三年级有280人,若每人被抽到的可能性都为0.2,用随机数表法在该中学抽取容量为n 的样本,则n 等于( ) A .80 B .160 C .200 D .280【答案】C 【分析】每个个体被抽的可能性等于样本容量除以总体数,由此列出关于的方程并求解出结果. 【详解】 由题意可知:0.2400320280n=++,解得,故选:C.12.(2021·江苏高一课时练习)下列调查方案中,抽样方法合适、样本具有代表性的是( ) A .用一本书第1页的字数估计全书的字数B .为调查某校学生对航天科技知识的了解程度,上学期间,在该校门口,每隔2分钟随机调查一位学生C .在省内选取一所城市中学,一所农村中学,向每个学生发一张卡片,上面印有一些名人的名字,要求每个学生只能在一个名字下面画“√”,以了解全省中学生最崇拜的人物是谁D .为了调查我国小学生的健康状况,共抽取了100名小学生进行调查 【答案】B 【分析】根据抽取的样本具有代表性,即抽取的样本是随机的,逐个分析判断 【详解】A 中,样本缺少代表性(第1页的字数一般较少);B 中,抽样保证了随机性原则,样本具有代表性;C 中,城市中学与农村中学的规模往往不同,学生崇拜的人物也未必在所列的名单之中,这些都会影响数据的代表性;D 中,总体数量很大,而样本容量太少,不足以体现总体特征. 故选:B13.(2021·江苏高一课时练习)“中国天眼”为500米口径球面射电望远镜(FivehundredmetersApertureSphericalTelescope ,简称FAST ),是具有我国自主知识产权、世界最大单口径、最灵敏的射电望远镜.建造“中国天眼”的目的是( )A .通过调查获取数据B .通过试验获取数据C.通过观察获取数据D.通过查询获得数据【答案】C【分析】根据“中国天眼”的特点求解.【详解】“中国天眼”主要是通过观察获取数据.故选:C【点睛】本题主要考查抽样获取数据的方法,还考查了理解辨析的能力,属于基础题.14.(2020·江苏苏州市·高一期末)围棋盒子中有若干粒黑子和白子,从中任意取出2粒,2粒都是黑子的概率为,都是白子的概率为,则取出的2粒颜色不同的概率为()A.B.C.D.【答案】D【分析】先计算2粒都是黑子或2粒都是白子的概率,而取出的2粒颜色不同的对立事件是2粒都是黑子或2粒都是白子,利用对立事件的概率公式求得答案.【详解】2粒都是黑子或2粒都是白子的概率为,取出的2粒颜色不同的概率为.故选:D.【点睛】本题考查了互斥事件的概率加法公式,和对立事件的概率计算公式,属于基础题.15.(2020·江苏常州市·高一期末)抛掷一枚硬币,连续出现9次正面向上,则第10次出现正面向上的概率为()A.B.C.D.【答案】D【分析】由正面向上或正面向下可能性相同可求出所求概率.【详解】第10次抛硬币结果不受前9次结果的影响,由于硬币正面向上或正面向下可能性相同,则概率为,故选:D.【点睛】本题考查了等可能事件的概率,属于基础题.16.(2020·江苏省如东高级中学高一月考)抛掷一个质地均匀的骰子的试验,事件A表示“小于5的偶数点出现”,事件B表示“不小于5的点数出现”,则一次试验中,事件A或事件B至少有一个发生的概率为()A.B.C.D.【答案】A【分析】由古典概型概率公式分别计算出事件A和事件B发生的概率,又通过列举可得事件A和事件B为互斥事件,进而得出事件A或事件B至少有一个发生的概率即为事件A和事件B的概率之和.【详解】事件A表示“小于5的偶数点出现”,事件B表示“不小于5的点数出现”,∴P(A),P(B),又小于5的偶数点有2和4,不小于5的点数有5和6,所以事件A和事件B为互斥事件,则一次试验中,事件A或事件B至少有一个发生的概率为P(A∴B)=P(A)+P(B),故选:A.【点睛】本题主要考查古典概型计算公式,以及互斥事件概率加法公式的应用,属于中档题.二、填空题17.(2021·江苏高一课时练习)为了分析高三年级的8个班400名学生第一次高考模拟考试的数学成绩,决定在8个班中每班随机抽取12份试卷进行分析,这个问题中样本容量是________.【答案】96【分析】由于每个班抽12份,所以8个班共抽96份,所以样本容量为96本题中,400名学生第一次高考模拟考试的数学成绩是总体,从8个班中每班抽取的12名学生的数学成绩是样本,400是总体个数,96是样本容量.故答案为:9618.(2021·江苏高一课时练习)为了了解高一年级学生的视力情况,特别是近视率问题,抽测了其中100名同学的视力情况.在这个过程中,100名同学的视力情况(数据)是________.【答案】总体的一个样本【分析】由样本的定义进行判断即可【详解】100名同学的视力情况(数据)是从总体中抽取的一部分个体所组成的集合,所以是总体的一个样本.故答案为:总体的一个样本19.(2020·江苏常州市·高一期末)如图,把一个表面涂有蓝漆的正方体木块锯成64个完全相同的小正方体,若从中任取一块,则这一块至多有一面涂有蓝漆的概率为_______.【答案】【分析】求出至多有一面涂有蓝漆的小木块个数,即可求出概率大小.【详解】解:有两面涂有蓝漆的小木块有24个,有三面涂有蓝漆的小木块有8个,则至多有一面涂有蓝漆的小木块有32个,故.故答案为: .【点睛】本题考查了等可能事件的概率,属于基础题.本题的关键是准确找到至多有一面涂有蓝漆的小木块个数. 20.(2021·江苏高一课时练习)一个容量为20的样本数据,分组与频数如下表:则样本在[10,50)内的频率为__________【答案】0.7用[10,50)的频数除以20求得[10,50)的频率. 【详解】数据落在区间[10,50)的频率为. 故答案为:0.721.(2021·江苏高一课时练习)1,2,3,4,5,6,7,8,9,10的分位数为______,分位数为________,分位数为________. 【答案】 【分析】直接利用分位数的定义求解. 【详解】因为数据个数为,且已经按照从小到大的顺序排列,又1025% 2.5⨯=,10757.5%⨯=,1090%9⨯=,所以该组数据的分位数为,分位数为,分位数为9109109.522++==x x ; 故答案为:;;.22.(2021·江苏高一课时练习)从一群做游戏的小孩中随机抽出人,一人分一个苹果,让他们返回继续做游戏.过了一会儿,再从中任取人,发现其中有个小孩曾分过苹果,估计参加游戏的小孩的人数为________. 【答案】 【分析】根据随机抽样中每个个体被抽到的概率是相等的,列出方程,即可求解. 【详解】设参加游戏的小孩有人,根据随机抽样中每个个体被抽到的概率是相等的,可得,解得, 即参加游戏的小孩的人数为. 故答案为:.23.(2021·江苏高一课时练习)某中学举行电脑知识竞赛,现将高一参赛学生的成绩进行整理后分成五组,绘制成如图所示的频率直方图,已知图中从左到右的第一、二、三、四、五小组的频率分别是0.30,0.40,0.15,0.10,0.05.则估计高一参赛学生的成绩的众数、中位数分别为____________.【答案】65,65【分析】频率分布直方图中最高矩形的中点横坐标即为众数,利用平分矩形面积可得中位数.【详解】由题图可知众数为65,又∴第一个小矩形的面积为0.3,∴设中位数为60+x,则0.3+x×0.04=0.5,得x=5,∴中位数为60+5=65.故答案为:65,6524.(2021·江苏高一课时练习)用简单随机抽样的方法从含n个个体的总体中,逐个抽取一个容量为3的样本,若个体a在第一次被抽到的可能性为,那么n=________,在整个抽样中,每个个体被抽到的可能性为________.【答案】8【分析】依据简单随机抽样方式,总体中的每个个体被抽到的概率都是一样的,再结合容量是3,可以看成是抽3次,从而可求得概率.【详解】简单随机抽样时第一次抽样可以理解为从n个个体中抽取一个个体,则每个个体被抽到的可能性是,因此n=8;整个抽样过程中每个个体被抽到的可能性是.故答案为:8,.25.(2021·江苏高一课时练习)将全班同学按学号编号,制作相应的卡片号签,放入同一个箱子里搅拌均匀,从中抽取15个号签,就相应的15名学生对看足球比赛的喜爱程度(很喜爱、喜爱、一般、不喜爱、很不喜爱)进行调查,使用的是________.【答案】抽签法【分析】根据调查过程的特点直接判断所使用的抽样方法.【详解】抽签法分为编号、制签、取样三步,这里用了学生的学号作为编号,后面的抽取过程符合抽签法的实施步骤,所以采用的是抽签法,故答案为:抽签法.26.(2021·江苏高一课时练习)在用抽签法抽样时,有下列五个步骤:(1)从箱中每次抽出1个号签,并记录其编号,连续抽取k次;(2)将总体中的所有个体编号;(3)制作号签;(4)将总体中与抽到的签的编号相一致的个体取出构成样本;(5)将号签放在同一箱中,并搅拌均匀.以上步骤的次序是______________.【答案】(2)(3)(5)(1)(4)【分析】按照抽签法的步骤判断,即编号,做号签,放入容器,进行抽取,构成样本.【详解】利用抽签法第一步要进行编号,然后做号签,放入容器,接下来按照逐个不放回地抽取号签,最后将与编号一致的个体取出构成样本,故这些步骤的先后顺序为(2)(3)(5)(1)(4).故答案为:(2)(3)(5)(1)(4).27.(2021·江苏高一课时练习)已知30个数据的60百分位数是8.2,这30个数据从小到大排列后第18个数据是7.8,则第19个数据是________.【答案】8.6【分析】由题意设第19个数据为x,则=8.2,从而可求得结果【详解】由于60×=18,设第19个数据为x,则=8.2,解得x=8.6,即第19个数据是8.6.故答案为:8.628.(2021·江苏高一课时练习)已知样本数据x1,x2,…,x10,其中x1,x2,x3的平均数为a,x4,x5,x6,…,x10的平均数为b,则样本数据的平均数为________.【答案】【分析】根据题意得出前3个数的和与后7个数的和,从而得出这10个数的和,得到平均数前3个数据的和为3a,后7个数据的和为7b,则这10个数据的和为则样本平均数为10个数据的和除以10,即.故答案为:29.(2021·江苏高一课时练习)某歌手电视大奖赛中,七位评委对某选手打出如下分数:7.9,8.1,8.4,8.5,8.5,8.7,9.9,则其百分位数为________.【答案】【分析】由题意,数据按照从小到大的顺序排列,分析得百分位数即为这组数据的中位数,所以找第个数据.【详解】由题意可知,共有个数据并且已经按照从小到大的顺序排列,其百分位数即为这组数据的中位数,所以其百分位数是第个数据为.故答案为:30.(2021·江苏高一课时练习)下列调查中:①考察一片经济林中树木的平均直径;②疫情开学前,某市对全体高三教师和学生进行血清抗体检测;③省教育机构调查参加高考模拟考试的60万名考生的英语答题情况;④某市委书记用一上午时间随机到全市高中学校检查高三开学情况.适合用抽样调查方法获取数据的是________.(填序号)【答案】①③④【分析】根据抽样调查的特点逐个判断即可【详解】①该问题用普查的方法很难实现,适合用抽样调查的方法获取数据;②检测必须要知道每一位老师和学生是否正常,不能用抽样调查的方法获取数据;③60万名考生的答题情况用普查的方法获取数据不合适,适合用抽样调查的方法获取数据;④一上午时间,市委书记无法检查到全市每一所高中学校,该问题只能用抽样调查的方法获取数据.故答案为:①③④31.(2021·江苏高一课时练习)若样本数据x1,x2,…,x10的标准差为8,则数据2x1-1,2x2-1,…,2x10-1的标准差为______.【答案】16DX=,数据的方差为,则对应的标准差为因为样本数据的标准差为,,即64=,故答案为.1632.(2021·江苏高一课时练习)用随机数表法从名学生(男生人)中抽取人进行评教,某男生被抽取的机率是__________【答案】【详解】试题分析:每个个体被抽到的概率是相等的,均为.考点:等可能性事件的概率计算.。