基于PLC的工业机械手臂控制系统瑶
- 格式:doc
- 大小:162.50 KB
- 文档页数:18
PLC实验报告机械手臂编程与控制PLC实验报告:机械手臂编程与控制摘要:本次实验旨在通过PLC(可编程逻辑控制器)来对机械手臂进行编程和控制,实现自动化操作。
本文将详细介绍实验的步骤和结果,讨论编程与控制的方法和技巧,同时探讨PLC在工业自动化领域的应用前景。
1. 引言机械手臂是一种多关节、可精确控制的机械装置,广泛应用于制造业的自动化生产线上。
为了实现对机械手臂的准确控制,本实验采用PLC作为控制核心,并对其进行编程以实现操作。
2. 实验步骤2.1 硬件准备在进行机械手臂编程与控制之前,首先要准备好所需的硬件设备。
包括机械手臂本体、传感器、执行器等。
2.2 PLC编程PLC的编程是实现机械手臂自动化控制的关键步骤。
编程主要包括以下几个方面:2.2.1 输入与输出的定义在PLC编程中,需要明确输入与输出的信号。
以机械手臂为例,输入信号可能来自传感器,输出信号用于控制机械手臂运动。
2.2.2 逻辑程序的设计根据实际需求,设计逻辑程序来控制机械手臂的运动。
逻辑程序根据输入信号的状态来判断执行何种动作。
2.2.3 编程语言的选择PLC支持多种编程语言,常见的有Ladder Diagram、Function Block Diagram等。
根据实际情况选择合适的编程语言。
2.3 软件配置将编写好的PLC程序通过相应软件配置到PLC中。
配置过程中需要设置输入与输出的信号对应关系,确保程序能够正确运行。
3. 实验结果与分析经过实验,我们成功实现了对机械手臂的编程与控制。
机械手臂根据预设的逻辑程序,准确无误地完成了指定动作。
实验结果表明,PLC 编程可实现对机械手臂的有效控制,为工业自动化生产线的应用提供了有力支持。
4. 编程与控制的技巧与方法4.1 逻辑设计在编程过程中,首先要进行逻辑设计。
合理的逻辑设计能够减少编程过程中的错误,并提高程序的效率和可靠性。
4.2 错误处理在编程过程中,可能会遇到各种错误。
良好的错误处理机制能够及时发现问题并采取相应的措施进行修复,降低故障对系统的影响。
《基于PLC的工业机械手运动控制系统设计》篇一一、引言随着工业自动化技术的不断发展,机械手运动控制系统在工业生产中扮演着越来越重要的角色。
传统的机械手控制系统通常采用单片机或嵌入式系统进行控制,但由于其处理能力和稳定性的限制,已经无法满足现代工业生产的高效、精确和可靠的要求。
因此,本文提出了一种基于PLC(可编程逻辑控制器)的工业机械手运动控制系统设计。
该系统采用先进的PLC技术,能够有效地提高机械手的控制精度、稳定性和可靠性,满足现代工业生产的需求。
二、系统设计1. 硬件设计本系统硬件部分主要包括PLC控制器、机械手本体、传感器、执行器等部分。
其中,PLC控制器是整个系统的核心,采用高性能的PLC模块,能够实现对机械手的精确控制。
机械手本体包括手臂、手腕、抓手等部分,通过执行器进行驱动和控制。
传感器则用于检测机械手的运动状态和位置信息,为控制系统的精确控制提供支持。
2. 软件设计软件部分是整个系统的关键,它决定了机械手的运动方式和控制精度。
本系统采用PLC编程软件进行程序设计,通过编写梯形图或指令代码来实现对机械手的控制。
程序包括主程序和控制程序两部分。
主程序负责控制整个系统的运行流程,而控制程序则负责实现对机械手的精确控制。
3. 控制策略本系统采用基于位置的控制策略,通过传感器实时检测机械手的位置信息,将位置信息与目标位置进行比较,计算出位置偏差,并通过执行器对机械手进行精确的控制。
同时,系统还具有速度控制和力控制等功能,能够根据实际需求进行灵活的调整和控制。
三、系统实现1. 硬件连接硬件连接是整个系统实现的基础。
首先需要将PLC控制器与机械手本体、传感器、执行器等部分进行连接,确保各部分之间的通信和信号传输畅通。
同时,还需要对硬件设备进行调试和测试,确保其正常工作。
2. 程序设计程序设计是整个系统的核心部分。
根据实际需求和机械手的运动特性,编写相应的梯形图或指令代码,实现对机械手的精确控制。
基于PLC的机械手控制系统设计摘要本文基于PLC的机械手控制系统设计实现了对机械手的自动控制,为机械手的工业应用提供了强有力的支撑。
文章首先介绍了机械手的概念、类型和特点,然后详细讲述了机械手控制系统的工作原理和设计实现。
通过实验验证,本文所设计的机械手控制系统可以实现对机械手的自动化控制和动作规划,具有较高的安全性和稳定性,同时具有广泛的适用性和可扩展性。
本文的研究成果对机械手的应用推广具有较大的意义。
关键词:PLC,机械手,控制系统,自动化控制,动作规划AbstractThis paper designs a mechanical arm control system based on PLC, which realizes the automatic control of the mechanical arm and provides strong support for the industrial application of the mechanical arm. This paper first introduces the concept, types and characteristics of mechanical arms, and then describes in detail the working principle and design implementation of mechanical arm control systems.Through experimental verification, the mechanical arm control system designed in this paper can achieve the automatic control and motion planning of the mechanical arm, with high safety and stability, as well as wide applicability and scalability. The research results of this paper have great significance for the application promotion of mechanical arms.Keywords: PLC, mechanical arm, control system, automaticcontrol, motion planning第一部分:引言随着工业无人化趋势的深入发展,机械手作为工业自动化的重要机器人之一,已经被广泛应用于工业制造、装配、取料、搬运等场景中。
基于PLC的工业机械手运动控制系统设计基于PLC的工业机械手运动控制系统设计摘要:随着现代工业的发展和自动化水平的提高,工业机械手在生产线上的应用越来越广泛。
为了实现机械手的精确运动控制,保证其稳定性和可靠性,本文基于PLC技术,设计了一种工业机械手运动控制系统。
通过分析机械手的运动特点,建立动力学模型,并结合PLC的运动控制功能,实现机械手的运动规划和运动控制。
实验结果表明,该系统能够实现工业机械手的准确控制和高效运动。
一、引言工业机械手在现代工业生产中扮演着越来越重要的角色,能够代替人工完成重复性高、危险性大的作业任务。
在机械手的运动控制中,精确控制和灵活性是关键。
传统的机械手控制方法往往采用脉冲信号生成器和运动控制卡等设备,但其结构复杂、成本较高,限制了机械手的应用范围。
而基于PLC的机械手运动控制系统,通过集中控制单元实现运动规划和控制,在实际应用中具有更高的可靠性和灵活性。
二、工业机械手系统架构工业机械手系统由机械手本体、传感器、PLC控制器和人机界面组成。
机械手本体包含关节、链杆和末端执行器等部分,通过传感器获取位置信息反馈给PLC控制器,PLC控制器根据算法处理并给出控制指令,通过驱动装置控制机械手运动。
三、机械手运动控制算法机械手运动控制算法是整个系统的核心。
首先,根据机械手的动力学特性建立数学模型,包括机械手的运动学方程和动力学方程。
然后,通过运动规划算法确定机械手的运动轨迹和速度。
最后,根据运动规划结果,设计控制算法,包括位置控制、速度控制和力控制等。
这些算法都运行在PLC控制器上,实时反馈机械手的动态信息,并动态调整控制指令,实现机械手的精确运动控制。
四、PLC控制器硬件设计PLC控制器是整个系统的核心控制单元,负责接收和处理传感器的反馈信号,并输出控制指令控制机械手运动。
在硬件设计中,PLC控制器采用高性能的工控机和专用运动控制卡结合的形式,通过高速数据总线连接,并与传感器和执行器交互。
基于PLC的工业机械手自动化控制系统设计研究摘要:目前工业现代化的发展趋势下,工业机械手的应用范围广、作用大,但受限于技术条件,传统的工业机械手自动化控制系统存在效率偏低、控制误差大等情况,严重干扰了其使用,不利于保障工业生产的安全性、高效性。
现阶段技术发展的过程中,针对传统工业机械手自动化控制系统存在的问题,有关人员可利用PLC来进行设计优化。
基于此,本文重点分析了PLC条件下工业机械手自动化控制系统的设计优化策略,对实际工作具有借鉴意义。
关键词:工业机械手;自动化控制系统;PLC技术;设计要点工业作为国民经济的支柱产业,在当前技术发展的过程中保持着高速发展的状态,许多新技术被应用到了生产中,有效保障了生产效率、安全,为企业、行业创造了更大的效益。
工业机械手在现代工业领域有着突出的应用,在自动化控制技术发展的今天,推动智能化,构建工业机械手自动化控制系统成为了各工业企业的关键任务,每个工业企业都需要根据自身的生产特点,立足工业机械手存在的问题,利用PLC优化工业机械手自动化控制系统,保障系统性能与功能。
1.PLC的基本概述许多的工业生产任务中,PLC都有突出的应用,如利用PLC能实现设备的打开/闭合控制,这一控制状态下开关能依据计算机内的逻辑程序顺序执行有关的控制操作,再由逻辑关系为前提启动保护动作,采集逻辑控制环节的非线性规律数据。
PLC技术的特殊性决定了其无论执行哪一功能,均是由电气与计算机辅助完成的,最初的技术理论下,一些发达国家提出了新的研究方向,改造了电气控制技术,在此技术优化条件下部分企业提出了与集成电路、电子电路有关的行为控制器,得到了可编译逻辑控制器原理[1]。
随着各行各业对PLC技术的依赖性显著增强,PLC兼具数字统计、行为处理、人机交互等多种功能,在进入大数据时代后,PLC超越了人工智能技术,在很多方面都有突出应用。
当前的行业内,PLC 控制技术越发成熟,传输性能良好、抗干扰能力强、可靠性好,在未来具有广阔的发展前景。
摘要为工业机械手研制一个技术性能优良的控制系统,对于提高工业机械手的整体技术性能来说具有十分重要的意义。
本论文正是针对这一课题,选择了可编程控制器(PLC)作为工业机械手的控制系统,这对提升工业机械手的整体技术性能起到了良好的作用。
本论文的控制对象是由三个搬运机械手组成的机械手群,每个机械手完成8个基本动作,三个机械手互相配合动作。
机械手由气缸驱动,气缸受电磁阀控制。
限位开关检测机械手是否到达固定位置。
可编程控制器(PLC)控制每个机械手的动作,实现机械手群的自动运行。
本论文可编程控制器(PLC)选用西门子(SIEMENS)公司S7-200系列的CPU224,并扩展了EM221模块和EM222模块。
机械手的开关量信号直接输入PLC,PLC通过中间继电器对电磁阀加以控制。
本论文的重点放在PLC各硬件部分的设计和介绍、PLC梯形图的编写上。
在整体设计过程中按照“提出问题,分析问题,解决问题”的主导思想,对整个系统的设计工作做出了细致的阐述。
关键词:可编程控制器(PLC);气动机械手;梯形图AbstractDevelops a technical performance fine control system for the industrymanipulator, regarding enhances the industry manipulator's overalltechnical performance to say has the extremely vital significance. Thepresent paper is precisely in view of this topic, chose theprogrammable logical controller (PLC) to take the industry manipulator'scontrol system, this to promoted the industry manipulator's overalltechnical performance to play the good role.The present paper controlled member is by three the manipulator group which transports the manipulator to be composed, each manipulator completes 8 elementary actions, three manipulators coordinate the movement mutually.The manipulator actuates by the air cylinder, air cylinder solenoid valve control.The limit switch examines the manipulator whether arrives the stationary position.The programmable logical controller (PLC) controls each manipulator'smovement, realizes the manipulator group automatic movement. Thepresent paper programmable controller (PLC) selects SIEMENS company S7-200 series CPU224, and expanded the EM221 module and the EM222 module. Manipulator's switch quantity signal direct input PLC,PLC performs through the intermediate relay to the solenoid valve tocontrol.The present paper puts with emphasis on the PLC various hardwarepartial designs and the introduction, in the PLC trapezoidal chartcompilation. Defers to in the overall design process "asks thequestion, the analysis question, solves the problem" the guidingideology, has made the careful elaboration to the overall systemdesign work.Key words:Programmable Logical Controller (PLC); Air operated manipulator;Trapezoidal chart目录第1章绪论 (1)1.1 机械手的概念 (1)1.2 气动机械手的简介 (1)1.2.1 气动技术 (1)1.2.2 气动机械手 (2)1.2.3 气动机械手的发展趋势 (3)第2章方案论证 (4)2.1 机械手的设计 (4)2.1.1 气动搬运机械手的结构 (4)2.1.2 气动搬运机械手的工作原理 (4)2.2 气动搬运机械手群 (5)2.2.1 气动搬运机械手群结构 (5)2.2.2 气动搬运机械手群工作原理 (6)2.3 本论文的主要内容及达到的目标 (6)2.4 本系统的控制方案 (6)第3章系统硬件电路的设计 (8)3.1 PLC的简介 (8)3.1.1 可编程控制器的概念 (8)3.1.2 PLC的应用领域 (8)3.1.3 PLC的系统组成 (9)3.1.4 PLC的工作原理 (11)3.2 输入/输出信号 (13)3.3 PLC的选型 (15)3.3.1 PLC的选型 (15)3.3.2 PLC及扩展模块的技术指标 (16)3.4 I/O地址分配 (18)3.5 PLC外部接线 (21)第4章软件设计 (22)4.1 机械手1控制程序 (22)4.2 机械手2控制程序 (24)4.3 机械手3控制程序 (26)4.4 机械手群主程序 (29)第5章结论 (32)参考文献 (33)致谢 (35)附录Ι (36)第1章绪论机械手是近几十年发展起来的一种高科技自动化生产设备。
基于PLC的工业机械手运动控制系统设计摘要:工业机械手作为现代工业自动化生产线的重要组成部分,其运动控制系统的设计与性能直接关系到生产效率和产品质量。
本文以基于可编程逻辑控制器(PLC)的工业机械手运动控制系统为研究对象,详细介绍了系统的设计原理、硬件组成和软件编程。
1. 引言工业机械手广泛应用于汽车制造、电子制造、食品加工等行业中,具有高效、精准、可靠等特点。
其运动控制系统是实现机械手各个关节运动的核心技术之一。
传统的机械手运动控制系统一般采用专用的控制器,但存在成本高、功能受限、维护困难等问题。
而基于PLC的工业机械手运动控制系统则能够充分发挥PLC可编程性、灵活性和可扩展性的优势,成为一种较为理想的解决方案。
2. 系统设计原理基于PLC的工业机械手运动控制系统主要由PLC、编码器、伺服电机和执行机构等组成。
PLC作为系统的核心控制部分,通过读取编码器获得机械手各个关节的位置信息,并根据预设的运动轨迹和动作规划算法来生成相应的运动控制信号,控制伺服电机驱动机械手完成相应的动作。
3. 硬件组成硬件方面,系统主要由三个模块组成:输入模块、输出模块和中央处理器模块。
输入模块负责采集编码器的位置信号以及其他传感器信号,输出模块则负责控制伺服电机的运动,中央处理器模块则负责实时控制与算法的执行。
此外,系统还需要具备较高的通信速率和稳定性,以确保传感器信号和控制信号的准确传输。
4. 软件编程在软件层面,系统需要完成以下几个主要功能模块的设计和开发:位置信息读取模块、运动轨迹规划模块、动作控制模块和异常处理模块。
位置信息读取模块负责从编码器中读取关节位置信息,并将其传输给中央处理器模块进行后续计算;运动轨迹规划模块则负责根据给定的目标位置生成相应的运动轨迹;动作控制模块则负责生成相应的控制信号,驱动伺服电机运动;异常处理模块则负责处理异常情况,如碰撞检测、电机故障等。
5. 系统性能和应用基于PLC的工业机械手运动控制系统具有较高的灵活性、可编程性和可扩展性,能够方便地适应不同的工艺要求和生产场景。
DOI:10.16660/ki.1674-098X.2017.36.081基于PLC的机械手臂控制系统设计的研究应帅(吉安职业技术学院 江西吉安 343000)摘要:机械手臂为目前常用的一种先进工业技术装置,其在较多的工业生产制造中应用较多。
为了实现对机械手臂按要求进行动作控制,本文通过对机械手臂工作过程特点以及控制要求进行分析,利用PLC技术提出了一种基于PLC的机械手臂控制系统设计的研究。
利用PLC作为电气控制的核心对整个机械手臂的控制系统硬件进行了设计,从电气控制系统的设计等方面进行介绍,为后续机械手臂的控制系统设计提供了有利的参考。
关键词:机械手臂 PLC 控制系统 先进工业技术装置中图分类号:TP273 文献标识码:A 文章编号:1674-098X(2017)12(c)-0081-02科学技术突飞猛进的发展给人们的生活带来了极大的改善,为人们的生产劳动带来了重大的变革。
随着国民经济的不断发展以及人们生活质量的不断提升,人们对工业制造的要求也越来越高。
近些年,在电气电子技术以及机械技术飞速发展的带动下,工业制造加快了向自动化、绿色环保化等方向转型。
机械手臂是工业自动控制领域出现的一项新技术。
机械手臂作为目前常用的一种先进工业技术装置,由于具有体积小、绿色环保无污染、动作灵敏等特点,是当下高新技术发展的热点之一,成为了现代工业制造生产过程中的一个重要成分,深受广大制造厂家的喜爱[1-2]。
目前机械手臂被广泛用于货物装箱流水线、机械加工、锻造、货物搬运等多种多样的自动化工业生产中。
通过应用机械手臂不仅可以减轻企业的生产劳动成本,降低劳动者的工作强度,而且还能有效提高产品的生产效率,提高生产作业中的安全保障。
尤其是在温度异常、具有易燃易爆、具有毒害气体以及放射性物质的环境下,通过机械手臂来替代人工操作就凸显出了非凡的意义。
本文通过对机械手臂的特点进行分析,采用PLC技术提出了一种基于PLC的机械手臂控制系统设计的研究。
摘要:机械手:mechanical hand,也被称为自动手,auto hand能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置。
它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,广泛应用于机械制造冶金部门。
机械手主要由手部、运动机构和控制系统三大部分组成。
手部是用来抓持工件(或工具)的部件,根据被抓持物件的形状、尺寸、重量、材料和作业要求而有多种结构形式,如夹持型、托持型和吸附型等。
运动机构,使手部完成各种转动(摆动)、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势。
运动机构的升降、伸缩、旋转等独立运动方式,称为机械手的自由度。
为了抓取空间中任意位置和方位的物体,需有6个自由度。
自由度是机械手设计的关键参数越多、自由度越多,机械手的灵活性越大,通用性越广,其结构也越复杂。
机械手的种类,按驱动方式可分为液压式、气动式、电动式、机械式机械手;按适用范围可分为专用机械手和通用机械手两种;按运动轨迹控制方式可分为点位控制和连续轨迹控制机械手等。
关键词:机械手自由度点位控制连续轨迹控制目录1 绪论 (3)1.1 课题背景与现实意义 (3)1.2 机械手的概述 (4)1.3 本文的主要工作 (5)2 搬运机械手总体设计方案 (5)2.1 搬运机械手结构及其动作 (6)2.2 机械手的控制过程 (7)2.3 机械手的控制要求 (7)3搬运机械手硬件系统设 (9)3.1 机械手的结构 (9)3.2 电气控制的设计 (10)3.3 操作面板及动作说明 (10)3.4 I/O分配 (11)4 搬运机械手的软件系统设计 (13)5 结论 (16)6 谢辞 (17)7 参考文献 (21)1 绪论可编程序控制器(PLC)已在工业生产过程的自动控制中得到了广泛应用。
它是以微处理器为核心,综合计算机技术、自动控制技术和通信技术发展起来的一种通用的自动控制装置,它具有结构简单、易于编程、性能优越、可靠性高、灵活通用和使用简单等一系列有点;气动技术也是实现工业自动化的重要手段,并已广泛应用于各个部门,在机械产品自动化、工业自动化及企业技术改造方面占有重要的地位。
气压传动的介质来自于空气,环境污染小,工程已于实现。
机械手在工业自动化生产得到了很好的利用,它可以减少人的充分操作,并且它还可以完成人无法完成的操作,从而大大地提高了工业的生产效率。
机械手是工业机器人系统中传统的任务执行机构,是机器人的关键部件之一。
其中的工业机械手是近代控制领域中出现的一项新技术,它的发展是由于其积极作用正日益为人们所认识:它能部分地代替人工操作;能按照生产工艺的要求,能遵循一定的程序、时间、位置能完成工件的传送和装卸;能制作必要的机具进行焊接和装配从而大大改善工人的工作条件,显著地提高劳动生产率,加快实现工业生产机械化和自动化的步伐。
1.1 课题背景与现实意义随着人类的发展、文明的进步,工业正不断发展着,需要人们完成的工作量也不断增大(尤其是那种重复性大的工作,像传运货物),涉及到危险性的工作也日趋增多,这就迫使人们研究开发一种新装置,能模仿人手和臂的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作的一种装置,而机械手正是这样一种装置:它可代替人的繁重劳动以实现生产的机械化和自动化,能在有害环境下操作以保护人身安全,因而广泛应用于机械制造、冶金、电子、轻工和原子能等部门。
1.2 机械手的概述机械手是在机械化、自动化生产过程中发展起来的一种新型装置。
近年来,随着电子技术特别是电子计算机的广泛应用,机器人的研制和生产已成为高技术领域内迅速发展起来的一门新兴技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。
机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动、不知疲劳、不怕危险、抓举重物的力量比人手大等特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用。
例如:(1)机床加工工件的装卸,特别是在自动化车床、组合机床上使用较为普遍。
(2)在装配作业中应用广泛,在电子行业中它可以用来装配印制电路板,在机械行业中它可以用来组装零部件。
(3)可在劳动条件差,单调重复易子疲劳的工作环境工作,以代替人的劳动。
(4)可在危险场合下工作,如军工品的装卸、危险品及有害物的搬运等。
(5)宇宙及海洋的开发。
(6)军事工程及生物医学方面的研究和试验。
1.3 本文的主要工作本文用实验室器材来模拟用机械手把物体从传送带A拿到传送带B,从而进一步了解机械手的功能、工作方式,并且进一步熟悉PLC的控制程序。
2 搬运机械手总体设计方案PLC在机械手搬物控制中的应用下图为机械手动作示意图,机械手按下述顺序周而复始地工作:光电开关X1图2—1转盘Y0为步进式传送物料,每当机械手从转盘Y0输送通道上取走一个物料时,该转盘向前步进一个步距,将使机械手在下一个循环取走物料。
机械手搬物动作示意图1中转盘Y0由电动机M控制,械手的左右回转运动由Y10、Y11电控阀控制,机械手的上下运动由电控阀Y12、Y13控制,机械手的夹紧与放松由电控阀控制Y2、Y3,机械手的伸出与缩回由电控阀Y6、Y7控制。
位置信号分别为:机械手左、右转到位开关为磁性传感器X13、X7,机械手手臂上升、下降到位开关为磁性传感器X5、X3,机械手伸出、缩回到位开关为磁性传感器X2、X6。
2.1 搬运机械手结构及其动作本机械手用于生产线上工件的自动搬运,根据对机械手的工艺过程及控制要求分析,机械手的动作过程如图2—1所示:图2—2机械手的动作周期2.2 机械手的控制过程如图2—1所示转盘Y0为步进式传送物料,每当机械手从转盘Y0输送通道上取走一个物料时,该转盘向前步进一个步距,将使机械手在下一个循环取走物料。
机械手搬物动作示意图1中转盘Y0由电动机M控制,械手的左右回转运动由Y10、Y11电控阀控制,机械手的上下运动由电控阀Y12、Y13控制,机械手的夹紧与放松由电控阀控制Y2、Y3,机械手的伸出与缩回由电控阀Y6、Y7控制。
位置信号分别为:机械手左、右转到位开关为磁性传感器X13、X7,机械手手臂上升、下降到位开关为磁性传感器X5、X3,机械手伸出、缩回到位开关为磁性传感器X2、X6。
2.3 机械手的控制要求1)、在初始状态(机械手在上限、左限、手臂缩回)下,按下启动按钮,转盘转动开始输送物料,当光电开关检测到物料时,机械开始动作。
2)机械手伸出到权限位置时,停止伸出;然后机械手开始下降下降到下限权限位置时,停止下降;然后机械手夹紧物料。
3)、机械手夹紧物料后开始上升上升到上限的权限位置时,停止上升;然后机械手缩回缩回到权限位置时,停止缩回。
4)停止缩回后机械手开始右转右转到右限位置时,停止右转;当右转停止后机械手开始伸出伸出到伸出权限时,停止伸出、随着机械手开始下降下降到下限位置时,停止下降然后松开物料。
5)、松开物料后机械手开始上升上升到上限位置后,停止上升、然后左转到原位完成一个循环。
6)、正常工作时闪亮绿灯。
7)、按下启动按钮若在30S内光电开关检测不到物体,报警锋鸣响起及红灯闪亮。
8)具有断电保持功能、停电后再次来电,需按启动按钮才能启动并从停电时那步继续开始工作机械手。
9)、机械手具有急停(机械手立即停止工作、启动后仍从此开始工作)和停止功能(要回到原始位置)。
10)、要设计有单步和循环启动功能。
所谓“循环”,即一次循环工步完毕后,随即或延时0.5秒后自动进入下一次循环;所谓“单步”,即一次循环工步完毕后,机械手就停在初始位。
若想机械手再一次开始工作,必须再次按启动按钮方可。
11)、适当设计一些延时功能,在机械手工作时。
3搬运机械手硬件系统设3.1 机械手的结构设计其结构如图3—1所示图3—1机械手的结构示意图图中设置9个行程开关SQ1—SQ9用于检测工件、小车、机械手的位置及机械手夹钳的夹紧、放松状态,并对系统实施控制。
其中SQ1为工件是否到位的检测开关;SQ2为小车原位检测开关;SQ3、SQ4分别为机械手下降上升是否到位检测开关;SQ5、SQ6分别为机械手夹紧放松检测开关;SQ7、SQ8分别为小车速度转换开关;SQ9为小车运动停止开关。
3.2 电气控制的设计包括主电路和控制电路的设计。
主电路由两台电动机,即慢速电机和快速电机,分别拖动小车慢行和快行,其控制如下:慢速电动机M1由接触器KM1、KM2分别控制其正传和反转;快速电动机M2由接触器KM3和KM4分别控制其正传和反转。
机械手的夹紧放松动作是由一单电两位四通电磁阀控制的一个液压缸完成的,在通电情况下,机械手松开,得电时松开,可以防止在设备运行过程中突然断电导致的机械手松开,工件脱落的情况发生。
3.3 操作面板及动作说明根据控制和生产工艺的要求,控制操作包括手动和自动,手动又包括手动步进、回原位操作,自动控制包括单步、单周期、连续的操作。
故操作方式选择开关设置有五个档位。
手动工作方式下,手动动作包括上升、下降、放松、快进、慢进、快退、慢退和复位,故设置六个动作看官按钮。
各个动作进行的同时均设有动作指示灯。
另外设有启动停止按钮。
其操作面板如图3—2所示图3—2机械手操作面板示意图3.4 I/O分配X0:启动开关 Y0:传送带A运行X1:停止开关 Y1:驱动手臂左旋X2:抓动作限位行程开关 Y2:驱动手臂右旋X3:左旋限位行程开关 Y3:驱动手臂上升X4:右旋限位行程开关 Y4:驱动手臂下降X5:上升限位行程开关 Y5:驱动机械手抓动作X6:下降限位行程开关 Y6:驱动机械手放动作X7:物品检测开关(光电开关)4 搬运机械手的软件系统设计机械手动控制属顺序控制,故其手动程序采用普通的PLC控制指令控制,自动程序采用步进梯形指令控制5 结论本设计主要应用于机加工生产,货物调运等场合。
搬运机械手采用PLC控制,体积小,重量轻,控制方式灵活,可靠性高,操作简单,维修容易。
使用该机械手代替人工搬运工件,既安全,又准确,提高了劳动生产率,保证了工件的质量,降低了工人的劳动强度,具有较好的经济效益和社会效益。
可编程控制器PLC以其丰富的I/O接口模块、高可靠性,可以在机械手的控制系统的设计中起到了十分重要的作用。
本文就设计过程中的几项关键的问题提出了自己的一些看法,可以有效地提高系统的抗干扰能力,对PLC读、写,事件响应等通信时间可进行精确的控制,取得了良好的效果.随着机械手应用的普及,机械手向着专用化,机械结构向模块化、可重构化的方向发展,机械手的动作更加灵活多样,其控制方式也在向着多元化的方向发展,在PLC控制的过程中,还有许多的问题需要解决,PLC在机械手开发中的开发应用还有很大的空间。