运筹学最短路例2解题步骤
- 格式:doc
- 大小:31.00 KB
- 文档页数:2
最短路问题的求解方法最短路问题是图论中的一个经典问题,它在很多实际应用中都有着重要的作用。
在现实生活中,我们经常需要求解最短路径,比如在地图导航、网络通信、交通运输等领域。
因此,研究最短路问题的求解方法具有重要的理论意义和实际应用价值。
在图论中,最短路问题的求解方法有很多种,其中比较经典的有Dijkstra算法、Bellman-Ford算法、Floyd-Warshall算法等。
这些算法各有特点,适用于不同的场景和要求。
下面我们就逐一介绍这些算法的原理和求解方法。
Dijkstra算法是一种用于求解单源最短路径的算法,它采用贪心策略,每次找到当前距离最短的节点进行松弛操作,直到所有节点都被遍历。
Dijkstra算法的时间复杂度为O(V^2),其中V为节点的个数。
这种算法适用于边权值为正的图,可以求解从单个源点到其他所有点的最短路径。
Bellman-Ford算法是一种用于求解单源最短路径的算法,它可以处理边权值为负的图,并且可以检测负权回路。
Bellman-Ford算法的时间复杂度为O(VE),其中V为节点的个数,E为边的个数。
这种算法适用于一般情况下的最短路径求解,但是由于其时间复杂度较高,不适用于大规模图的求解。
Floyd-Warshall算法是一种用于求解所有点对最短路径的算法,它可以处理边权值为正或负的图,但是不能检测负权回路。
Floyd-Warshall算法的时间复杂度为O(V^3),其中V为节点的个数。
这种算法适用于求解图中所有点对之间的最短路径,可以同时求解多个源点到多个目标点的最短路径。
除了上述几种经典的最短路求解算法外,还有一些其他的方法,比如A算法、SPFA算法等。
这些算法在不同的场景和要求下有着各自的优势和局限性,需要根据具体情况进行选择和应用。
在实际应用中,最短路问题的求解方法需要根据具体的场景和要求进行选择,需要综合考虑图的规模、边权值的情况、时间效率等因素。
同时,对于大规模图的求解,还需要考虑算法的优化和并行化问题,以提高求解效率。
最短路问题的求解方法最短路问题是图论中的经典问题之一,它在实际生活中有着广泛的应用,比如在交通规划、通信网络、物流配送等领域都有着重要的作用。
在解决最短路问题时,我们需要找到图中两个顶点之间的最短路径,即使得路径上的边的权值之和最小。
针对不同的图,我们可以采用不同的方法来求解最短路问题,下面将介绍几种常见的求解方法。
首先,最简单直接的方法是暴力搜索法。
暴力搜索法适用于小规模的图,它通过穷举所有可能的路径来找到最短路径。
虽然这种方法在理论上是可行的,但是在实际应用中由于时间复杂度过高,通常不适用于大规模的图。
其次,我们可以使用迪杰斯特拉算法来解决最短路问题。
迪杰斯特拉算法是一种贪心算法,它通过逐步扩展离源点距离最短的节点来逐步求解最短路径。
迪杰斯特拉算法的时间复杂度为O(V^2),其中V为顶点数,因此适用于稠密图。
另外,我们还可以使用贝尔曼-福特算法来求解最短路问题。
贝尔曼-福特算法是一种动态规划算法,它通过多次松弛操作来逐步逼近最短路径。
贝尔曼-福特算法适用于存在负权边的图,但是由于其时间复杂度为O(VE),因此在稠密图中效率较低。
最后,我们还可以使用Floyd-Warshall算法来解决最短路问题。
Floyd-Warshall算法是一种动态规划算法,它通过逐步考察所有顶点对之间的路径来求解最短路径。
Floyd-Warshall算法的时间复杂度为O(V^3),因此适用于小规模图。
总的来说,不同的最短路求解方法适用于不同的图,我们需要根据具体的情况来选择合适的方法。
在实际应用中,我们还可以结合启发式算法、并行算法等方法来进一步提高求解效率。
希望本文介绍的内容能够对读者有所帮助,谢谢!。
图论——单源最短路一、最短路两点之间的最短路:给定一个带权图,图中两点i与j的最短路是指从i到j的一条路径,这条路径经过的边的权值之和最小。
求单源最短路:给定一个带权图,求图以结点start为起点的单源最短路是指对每一个结点j<>start,求出start到j的最短路。
二、图的存储方式对于求最短路类问题的算法,图的不同存储方式会产生很大的影响,总的来说,图的存储方式有邻接矩阵,邻接表,前向星等几种。
邻接矩阵:这种存储方法需要开设一个V^2的二维数组edge,对于每两个顶点i和j,如果ij有边,则edge[i,j]=w[i,j],否则edge[i,j]=-1,这里w[i,j]为边Eij的权。
邻接表:邻接表有链表与数组两种实现方式,如果用数组实现,同邻接矩阵一样需要一个V^2的二维数组edge,edge的每个元素包含两个信息:终点和权值。
另有一个数组a记录从指定顶点出发的边数。
对于每个顶点i,edge[i, j](j=1~a[i])表示从i出发的第j条边的终点与权值。
若用链表实现邻接表,我们可以将edge减成一维,在每个edge[i]后面连一条链表,链表上的每个结点都表示由i出发的一条边。
前向星:前向星的存法只需两个一维数组pos与edge,其中edge[i]存储了第i条边的信息,这些边是按照起点由小到大排好序的,而pos[i]则表示以i为起点的第一条边的位置。
这样在edge[pos[i]~pos[i+1]-1]中便可找到从i出发的所有边的信息。
以下的例子显示了这四种存储图的方法:2 4邻接矩阵:邻接表(数组):邻接表(链表):edge各种存储方法的比较:#对于稀疏图而言,复杂度约为常数。
*需要一个O(ElogE)的预处理(排序)。
总的来说,邻接矩阵比较好编写,存储方式简单明了,适合中小规模数据;用数组实现的邻接表与邻接矩阵相差不多;用链表实现的邻接表编程复杂度较高,但效率很好,适合各种各样的图论类题目;前向星只对数组进行操作,编写不是很难,同时效率也不错,在不需要修改边的最短路问题中,前向星是遇到大数据时的最佳选择。
最短路问题的求解方法最短路问题是图论中的一个经典问题,它在现实生活中有着广泛的应用。
在很多实际情况下,我们需要找到两个节点之间的最短路径,以便在最短时间内到达目的地或者以最小的成本进行运输。
因此,求解最短路问题具有重要的意义。
在图论中,最短路问题可以分为单源最短路和多源最短路两种情况。
单源最短路指的是从图中的一个固定节点出发,到达其他所有节点的最短路径;而多源最短路则是求解图中任意两个节点之间的最短路径。
针对这两种情况,我们可以采用不同的算法来求解最短路问题。
其中,最著名的算法包括Dijkstra算法和Floyd-Warshall算法。
Dijkstra算法适用于单源最短路问题,它采用贪心策略,逐步确定从源节点到其他节点的最短路径。
而Floyd-Warshall算法则适用于多源最短路问题,它通过动态规划的方式,计算图中任意两个节点之间的最短路径。
除了这两种经典算法外,还有一些其他方法可以用来求解最短路问题,比如Bellman-Ford算法和SPFA算法。
这些算法各有特点,适用于不同的场景,可以根据具体情况选择合适的算法来解决最短路问题。
在实际应用中,最短路问题常常涉及到大规模的图和复杂的网络结构,因此算法的效率和性能也是非常重要的考量因素。
为了提高算法的求解速度,可以采用一些优化手段,比如使用堆优化的Dijkstra算法、矩阵快速幂优化的Floyd-Warshall算法等。
总之,最短路问题是图论中的一个重要问题,它在实际生活中有着广泛的应用。
通过合理选择算法和优化方法,我们可以高效地求解最短路问题,为实际应用提供有力的支持。
希望本文能够为读者对最短路问题的求解方法有所启发,也希望在未来的实际应用中能够发挥一定的作用。
运筹学最短路问题----------关于旅游路线最短及程序摘要:随着社会的发展,人民的生活水平的提高,旅游逐渐成为一种时尚,越来越多的人喜欢旅游。
而如何才能最经济的旅游也成为人民考虑的一项重要环节,是选择旅游时间最短,旅游花费最少还是旅游路线最短等问题随之出现,如何决策成为一道难题。
然而,如果运用运筹学方法来解决这一系列的问题,那么这些问题就能迎刃而解。
本文以旅游路线最短问题为列,给出问题的解法,确定最短路线,实现优化问题。
关键词:最短路 0-1规划约束条件提出问题:从重庆乘飞机到北京、杭州、桂林、哈尔滨、昆明五个城市做旅游,每个城市去且仅去一次,再回到重庆,问如何安排旅游线路,使总旅程最短。
各城市之间的航线距离如下表:重庆北京杭州桂林哈尔滨昆明重庆0 1640 1500 662 2650 649北京1640 0 1200 1887 1010 2266杭州1500 1200 0 1230 2091 2089桂林662 1887 1230 0 2822 859哈尔滨2650 1010 2091 2822 0 3494昆明649 2266 2089 859 3494 0问题分析:1.这是一个求路线最短的问题,题目给出了两两城市之间的距离,而在最短路线中,这些城市有的两个城市是直接相连接的(即紧接着先后到达的关系),有些城市之间就可能没有这种关系,所以给出的两两城市距离中有些在最后的最短路线距离计算中使用到了,有些则没有用。
这是一个0-1规划的问题,也是一个线性规划的问题。
2.由于每个城市去且仅去一次,最终肯定是形成一个圈的结构,这就导致了这六个城市其中有的两个城市是直接相连的,另外也有两个城市是不连接的。
这就可以考虑设0-1变量,如果两个城市紧接着去旅游的则为1,否则为0。
就如同下图3. 因为每个城市只去一次,所以其中任何一个城市的必有且仅有一条进入路线和一条出去的路线。
解法:为了方便解题,给上面六个城市进行编号,如下表(因为重庆是起点,将其标为1)重庆北京杭州桂林哈尔滨昆明123456假设:设变量x11。
最短路径问题的求解最短路径问题是信息学竞赛中常见的一类中等难题,这是一个非常能联系实际的问题,甚至有时一些看似跟最短路径问题无关的问题也可以归结为最短路径问题。
本文就简要分析一下此类问题的算法,以使大家一起探讨一下该类问题,也使没参加信息学竞赛的同学对信息学竞赛有个简单了解。
下面我们以具体例题来看看这类问题的解法:例1、假设A、B、C、D、E各个城市之间旅费如下图所示。
某人想从城市A 出发游览各城市一遍,而所用费用最少。
试编程序输出结果。
解这类题时同学们往往不得要领,不少同学采用穷举法把所有可能的情况全部列出,再找出其中最短的那条路径;或是采用递归或深度搜索,找出所有路径,再找出最短的那条。
这两种方法可见都是费时非常多的解法,如果城市数目多的话则很可能要超时了。
实际上我们知道,递归、深度搜索等算法一般用于求所有解问题(例如求A 出发每个城市走一遍一共有哪几种走法),而这几种算法对于求最短路径这类最优解问题显然是不合适的,以下介绍的几种算法就要优越很多。
首先,对于这类图我们都应该先建立一个邻接矩阵来存放任意两点间的距离数据,以便在程序中方便调用,如下:const dis:array[1..5,1..5] of integer =( ( 0, 7, 3,10,15),( 7, 0, 5,13,12),( 3, 5, 0, 5,10),(10,13, 5, 0,11),(15,12,10,11, 0));以下是几种解法:一、宽度优先搜索宽度优先搜索并不是一种很优秀的算法,只里只是简单介绍一下它的算法。
具体方法是:1、从A点开始依次展开得到AB、AC、AD、AE四个新结点(第二层结点),当然每个新结点要记录下其距离;2、再次以AB展开得到ABC、ABD、ABE三个新结点(第三层结点),而由AC结点可展开得到ACB、ACD、ACE三个新结点,自然AD可以展开得到ADB、ADC、ADE,AE可以展开得到AEB、AEC、AED等新结点,对于每个结点也须记录下其距离;3、再把第三层结点全部展开,得到所有的第四层结点:ABCD、ABCE、ABDC、ABDE、ABEC、ABED……AEDB、AEDC,每个结点也需记录下其距离;4、再把第四层结点全部展开,得到所有的第五层结点:ABCDE、ABCED、……、AEDBC、AEDCB,每个结点也需记录下其距离;5、到此,所有可能的结点均已展开,而第五层结点中最小的那个就是题目的解了。