超声波的焊接原理及技术
- 格式:docx
- 大小:27.46 KB
- 文档页数:10
超声波焊接超声波焊接是一种应用超声波技术进行焊接的方法,它具有高效、可靠、环保等特点,广泛应用于工业生产中。
本文将从超声波焊接的原理、设备、应用领域以及优势等方面进行介绍。
超声波焊接是利用超声波振动产生的能量实现焊接材料的熔接。
超声波是一种频率超过人耳能听到的声音的机械波,其频率一般在20kHz到70kHz之间。
超声波焊接的原理主要是利用超声波振动使材料分子的间距变小,从而产生高温高压的效果,促使材料发生熔接现象。
在焊接过程中,超声波振动会穿透至焊材表面,使接触部分的温度升高,然后通过适当的加压使材料熔化并熔接在一起,最终形成焊接接头。
超声波焊接设备主要由超声波振动系统、机械系统和电气系统组成。
超声波振动系统是超声波焊接的核心部分,它由发声器和承载器组成。
发声器是将电能转化为机械振动的装置,承载器则是将振动传递给焊接件的装置。
机械系统主要包括焊接头、压力机构等部分,用于在焊接过程中施加适当的压力。
电气系统则提供了超声波发生器、控制电路、传感器等设备,用于控制焊接过程的各个参数。
超声波焊接在工业生产中有着广泛的应用。
它可以焊接各种金属材料,如铝、铜、钢等,也可以焊接塑料和纺织品等非金属材料。
超声波焊接常被运用在汽车制造、电子设备生产、包装行业等领域。
例如,在汽车制造中,超声波焊接被应用于制造车灯、排气管和电池等零部件;在电子设备生产中,它被用于焊接电子元件和连接导线等;在包装行业中,超声波焊接可用于封口、划线和熔接等工作。
超声波焊接具有许多优势。
首先,它的焊接速度快,能够在短时间内完成焊接工作,提高生产效率。
其次,超声波焊接的焊接接头牢固可靠,具有较高的拉伸强度和密封性能。
再次,它适用于焊接的材料种类广泛,包括金属、塑料和纺织品等。
此外,超声波焊接过程不需要使用焊接剂和填料,所以它是一种环保、无污染的焊接方法。
总结起来,超声波焊接是一种高效、可靠、环保的焊接方法,广泛应用于多个行业中。
随着技术的不断进步,超声波焊接设备的性能和效果也在不断提高,为我们的生产和生活带来了许多便利和效益。
超声焊接原理超声焊接是一种利用超声波在工件表面产生局部高温,通过材料的塑性变形和扩散结合来实现焊接的方法。
它是利用超声振动的作用,使焊接界面产生相对运动,利用材料的塑性变形和扩散结合来实现焊接的一种焊接方法。
超声焊接主要用于金属和塑料等材料的焊接,广泛应用于汽车、电子、航空航天等行业。
超声焊接的原理主要包括超声振动、摩擦加热和塑性变形三个方面。
首先,超声振动是指通过超声波发生器产生的高频振动,传递给焊接头,焊接头再将振动传递给工件表面,使工件表面颗粒产生微小的振动,从而产生摩擦热。
其次,摩擦加热是指工件表面颗粒由于超声振动产生的摩擦力,使工件表面颗粒之间产生热量,达到局部高温的目的。
最后,塑性变形是指在局部高温的作用下,材料发生塑性变形,形成金属流,填充焊接接头间的空隙,最终实现焊接。
超声焊接的优点主要包括焊接速度快、能耗低、焊接接头强度高、焊接过程无需添加外部焊剂等。
首先,焊接速度快是由于超声振动的作用,使得焊接过程中局部高温快速达到,从而大大缩短了焊接时间。
其次,能耗低是指超声焊接过程中,焊接头只在焊接接头处产生热量,减少了能量的浪费。
再者,焊接接头强度高是由于超声焊接过程中,焊接接头处产生的塑性变形,使得焊接接头的强度大大提高。
最后,焊接过程无需添加外部焊剂是指超声焊接过程中,不需要额外的焊接材料,减少了对环境的污染。
然而,超声焊接也存在一些局限性,如焊接材料的选择范围较窄、焊接头设计和加工难度较大等。
首先,焊接材料的选择范围较窄是由于超声焊接对材料的要求较高,只有一些特定的金属和塑料材料才能进行超声焊接。
其次,焊接头设计和加工难度较大是指超声焊接头的设计和加工需要考虑到焊接过程中的超声振动传递和焊接接头的形成,这对焊接头的设计和加工提出了较高的要求。
总的来说,超声焊接作为一种高效、环保的焊接方法,具有广阔的应用前景。
随着科技的不断进步,超声焊接技术也将不断完善和发展,为各行各业的发展提供更加可靠的焊接解决方案。
焊缝超声波探伤原理
焊缝超声波探伤是利用超声波的传播和相互作用原理来检测和评估焊缝中的缺陷和杂质。
超声波是一种高频机械波,具有传播距离远、穿透性好和对被测材料无损伤的特点。
在焊缝超声波探伤过程中,超声波传播到焊缝区域时,其中的能量会发生转换,一部分能量被反射回传感器,另一部分能量经过焊缝进入焊接材料内部继续传播。
当超声波遇到焊缝中的缺陷或垂直于超声波传播方向的杂质时,会发生反射或散射,这些反射或散射波会被传感器接收并转换成电信号。
根据接收到的电信号,可以分析焊缝中的缺陷类型、大小和位置,以及评估焊缝的质量和可靠性。
常用的超声波探伤方法有脉冲回波法和全景扫查法。
在脉冲回波法中,通过发射短脉冲超声波来激励焊缝区域,接收并记录回波信号。
根据回波信号的时间延迟和振幅变化,可以确定焊缝中的缺陷位置和大小。
全景扫查法是一种全面检测焊缝的方法,可以将焊缝区域划分为多个小区域,逐个扫描并记录每个小区域中的回波信号。
通过综合分析所有小区域的回波信号,可以获得焊缝的完整图像,并对缺陷进行全面评估。
总的来说,焊缝超声波探伤利用超声波在焊缝中传播、反射和散射的特性,通过接收和分析回波信号来检测和评估焊缝的质
量。
这种方法是一种无损检测技术,可以提高焊接质量并确保焊缝的可靠性。
超声波焊接机原理是什么
超声波焊接是一种利用超声波振动引起的材料分子间的摩擦产生热量来实现焊接的方法。
其基本原理是通过将电能转化为超声波能,然后将超声波能转化为机械振动能,再通过焊接头传递给被焊接的材料。
具体来说,超声波焊接机中通常包含一个压头和一个换能器。
换能器将电能转化为超声波能,在超声波振动的作用下,焊接头不断地压在需要焊接的材料上。
由于焊接头的振动频率非常高(通常在20kHz以上),使焊接头在短时间内产生大量的微小振动,这种振动将会产生摩擦。
焊接头的振动能量被转移到焊接材料上,使材料表面分子不断地发生碰撞和摩擦,导致材料温度升高。
当材料温度升高到足够高时,材料变软,分子间的结合力变弱,焊接头的压力使材料表面分子之间发生扩散和交联,从而实现焊接。
总的来说,超声波焊接机利用超声波的振动引起的材料分子间的摩擦产生的热量,使材料表面温度升高,从而实现焊接。
这种焊接方法具有速度快、操作简单、能耗低等优点,在工业生产中得到广泛应用。
超声波焊接机的工作原理超声波焊接机是一种常见的焊接设备,它利用超声波的能量来实现材料的焊接。
下面将详细介绍超声波焊接机的工作原理。
1. 超声波发生器:超声波焊接机的核心部件是超声波发生器。
超声波发生器通过电能转换为高频机械振动,产生超声波能量。
2. 换能器:超声波发生器通过换能器将电能转换为机械振动能量。
换能器通常由压电陶瓷材料制成,当电流通过陶瓷时,它会振动并产生超声波。
3. 振动系统:振动系统由换能器、振动焊头和振动块组成。
换能器的振动能量通过振动焊头传递给要焊接的材料。
4. 焊接部件:超声波焊接机通常有两个焊接部件,分别是焊头和焊座。
焊头是固定在振动系统上的,它将超声波能量传递给焊接材料。
焊座是用于支撑和固定被焊接材料的部件。
5. 焊接过程:当超声波能量传递到焊接材料时,它会产生摩擦和热量。
焊接材料因为受到振动的作用而变软,形成塑性状态。
在振动的同时,焊接材料的分子间结合力也会发生改变,使得两个焊接部件在高温和高压的作用下形成牢固的焊接接头。
6. 控制系统:超声波焊接机还配备了控制系统,用于控制焊接过程的参数,如振动频率、振幅、焊接时间等。
控制系统可以根据不同的焊接要求进行调整,以确保焊接质量和效率。
超声波焊接机的工作原理可以简单总结为:通过超声波发生器产生高频机械振动能量,换能器将电能转换为机械振动能量,振动系统将能量传递给焊接部件,焊接部件产生摩擦和热量,使得焊接材料形成牢固的焊接接头。
超声波焊接机具有焊接速度快、焊接质量高、不产生污染等优点,广泛应用于塑料、金属、纺织品等行业。
它被广泛应用于汽车制造、电子设备制造、医疗器械制造等领域,为各行各业的生产提供了高效、可靠的焊接解决方案。
超声波焊接的原理及应用1. 简介超声波焊接是一种利用超声波振动能量来实现材料的焊接技术。
它通过将高频振动传导到两个被焊接的材料之间,使它们在接触面产生摩擦热而达到熔接的目的。
超声波焊接广泛应用于汽车、电子、医疗等领域,具有焊接速度快、焊接强度高、无需额外添加焊接材料等优点。
2. 原理超声波焊接的原理是利用超声波在材料接触面上产生摩擦振动,使材料表面产生高温和高压,并迅速熔接起来。
其具体原理如下:•超声波产生:超声波是频率高于20kHz的机械振动波。
通过超声波发生器产生的高频电信号,经过换能器的转换作用,变成机械振动,形成超声波。
•振动传导:超声波振动通过提示头传导到焊接材料上,使其产生微小的摩擦振动。
•接触面摩擦:被焊接材料表面相互接触产生摩擦,使温度急剧升高,因为摩擦产生的热量引起焊接界面的塑性变形。
•熔接:热量累积到一定程度时,焊接界面的材料开始熔化,并形成熔池。
•固化:当超声波停止传导时,熔池冷却凝固,并且形成牢固的焊接接头。
3. 应用领域超声波焊接在多个领域有着广泛的应用,以下是其中几个主要领域:3.1 汽车制造•车灯组件焊接:超声波焊接可用于汽车前大灯、尾灯等组件的焊接。
它可以确保灯具的水密性,提高焊接强度,同时避免因高温焊接导致的变形。
•内饰部件焊接:超声波焊接可用于汽车内饰件的焊接,如仪表板、门板等。
它能够快速焊接,并且焊接点牢固,不会对外观造成任何损伤。
3.2 电子制造•电子元件焊接:超声波焊接可用于电子元件的焊接,如电池片、电路板等。
它可以实现高效快速的焊接,同时保持焊接点的精确度和稳定性。
•电缆连接:超声波焊接可用于电缆的连接,如线缆、USB接口等。
它能够实现高强度的焊接,并且焊接时间短,无需使用额外的焊接材料。
3.3 医疗器械•塑料容器焊接:超声波焊接可用于医疗器械中的塑料容器的焊接。
它可以确保无菌环境,同时提高容器的密封性和耐压性。
•医用器械组件焊接:超声波焊接可用于医用器械的组件焊接,如手术器械、医用注射器等。
超声波焊接机工作原理及工艺参数一.超声波应用原理我们知道正确的波的物理定义是:振动在物体中的传递形成波。
这样波的形成必须有两个条件:一是振动源,二是传播介质。
波的分类一般有如下几种:一是根据振动方向和传播方向来分类。
当振动方向与传播方向垂直时,称为横波。
当振动方向与传播方向一致时,称为纵波。
二是根据频率分类,我们知道人耳敏感的听觉范围是20HZ-20000HZ,所以在这个范围之内的波叫做声波。
低于这个范围的波叫做次声波,超过这个范围的波叫超声波。
波在物体里传播,主要有以下的参数:一是速度V,二是频率F,三是波长λ。
三者之间的关系如下:V=F.λ。
波在同一种物质中传播的速度是一定的,所以频率不同,波长也就不同。
另外,还需要考虑的一点就是波在物体里传播始终都存在着衰减,传播的距离越远,能量衰减也就越厉害,这在超声波加工中也属于考虑范围。
1、超声波在塑料加工中的应用原理:塑料加工中所用的超声波,现有的几种工作频率有15KHZ,18KHZ,20KHZ,40KHZ。
其原理是利用纵波的波峰位传递振幅到塑料件的缝隙,在加压的情况下,使两个塑料件或其它件与塑料件接触部位的分子相互撞击产生融化,使接触位塑料熔合,达到加工目的。
2、超声波焊机的组成部分超声波焊接机主要由如下几个部分组成:发生器、气动部分、程序控制部分,换能器部分。
发生器主要作用是将工频50HZ的电源利用电子线路转化成高频(例如20KHZ)的高压电波。
气动部分主要作用是在加工过程中完成加压、保压等压力工作需要。
程序控制部分控制整部机器的工作流程,做到一致的加工效果。
换能器部分是将发生器产生的高压电波转换成机械振动,经过传递、放大、达到加工表面。
3.换能器部分由三部分组成:换能器(TRANSDUCER);增幅器(又称二级杆、变幅杆,BOOSTER);焊头(又称焊模,HORN或SONTRODE)。
①换能器(TRANSDUCER):换能器的作用是将电信号转换成机械振动信号。
必能信超声波焊接机工作原理
超声波焊接机是一种常用的无损连接技术,其主要工作原理是利用高频超声波振动引起的热量和压力,在连接两个或更多物体时产生强大的摩擦热来融合它们。
超声波焊接机的工作原理如下:
1. 超声波振动:超声波焊接机通过发生器将电能转换为高频机械振动,将频率提高到20 kHz以上,一般为20-40 kHz。
2. 运动传递:超声波振动通过波导传递到焊接头,使其在垂直方向上产生振动。
3. 摩擦热:当两个焊接部位受到振动作用时,它们之间的接触面产生大量的摩擦热,摩擦热可以使材料表面融化并形成熔池。
4. 压力作用:超声波焊接机的压头施加一定的垂直压力,使两个焊接部位之间的熔池流动并形成结合。
焊接头的几何形状和压力的大小对焊接质量有影响。
5. 冷却:当焊接头的振动停止时,熔池会迅速冷却,形成一条新的连接线。
超声波焊接机通常用于连接塑料、金属和复合材料等物体。
它具有不需要熔剂、不锈钢等特殊情况下很好的焊接效果,而且焊接速度快,能耗低,不会污染环境等优点。
- 1 -。
超声波焊接原理
超声波焊接是利用超声波的机械振动能量将两个物体通过牢固的结合形成一体的焊接技术。
其原理基于以下几个步骤:
1. 超声波的产生:通过超声波发生器产生高频电信号,再通过换能器将电能转换为机械振动能量。
2. 超声波的传导:超声波能量通过变幅器和共振体传导到焊接头部。
变幅器增幅电信号,使其振幅达到数十微米,共振体能够将信号传导到焊接头。
3. 介质的作用:焊接头部和物体表面之间加入一层介质,常用的有液体或者薄膜。
介质的作用是传递超声波能量并提供均匀的压力。
4. 界面振动:超声波通过介质传导到物体表面后,产生机械振动。
由于介质和物体表面的分子间力的相互作用,界面处的分子开始随着超声波振动。
5. 界面松动:随着界面分子的振动,分子之间的键开始松动,使得两个物体表面之间的间隙变大。
6. 摩擦发热:由于振动引起的分子间摩擦,界面处的温度迅速上升,松动的分子逐渐进一步松动。
7. 塑性变形:随着温度上升,物体表面的塑性材料开始软化,界面的表面变得粘性。
这使得两个物体表面更容易接触并形成
定位。
8. 冷却固化:当超声波停止传递时,焊接头部冷却并逐渐固化,使得两个物体牢固地连接在一起。
超声波焊接利用超声波的振动能量和摩擦发热将物体表面加热、软化并连接在一起。
其具有焊接速度快、能量消耗低、连接牢固可靠等优点,广泛应用于汽车、电子、医疗器械等行业。
超声波焊接机的工作原理
超声波焊接机是一种利用超声波振动引起的摩擦热来实现材料焊接的装置。
其工作原理可以概括为以下几个步骤:
1. 超声发生器产生高频电能,将电能转化为相应频率的机械能。
2. 机械能通过压电陶瓷转换器转化为超声波振动,其频率通常为20 kHz。
3. 超声波振动通过焊接喇叭(增幅器)将振幅放大。
4. 焊接喇叭将振动传递到焊接头(焊接模具)上,使其产生高频的机械振动。
5. 工件经过一个接触角或者接触面直接接触焊接头,由于工件的表面肌理不一致或者上有凸起,所以先接触在一点或者几点上。
6. 高频机械振动使工件的接触点处形成高频机械摩擦,同工件内部分子间的内摩擦相比较。
7. 高频机械摩擦引起搅拌热,并将它传导给工件内部。
8. 由于搅拌热的作用,工件表面的温度升高,如果是热塑性材料,软化。
9. 在摩擦热和加压的作用下,随着时间的延长,工件内部分子间距逐渐减小、相互融合,从而达到焊接的目的。
10. 停止超声波振动,焊接头放下,工件冷却,焊点固化,完成焊接。
总而言之,超声波焊接机利用超声波振动引起材料的高频机械摩擦和搅拌热来实现焊接,具有高效、快速和无污染等特点。
超声波焊接机的工作原理超声波焊接机是一种常用的焊接设备,它利用超声波振动将两个或者多个工件连接在一起。
超声波焊接技术在汽车、电子、塑料等行业中得到广泛应用,具有焊接速度快、焊接强度高、无需额外添加材料等优点。
超声波焊接机的工作原理主要包括超声波发生器、换能器、焊接头和焊接工件。
1. 超声波发生器:超声波发生器是超声波焊接机的核心部件,它将电能转换为机械振动能。
发生器产生高频电信号,并将其传输到换能器。
2. 换能器:换能器是将电能转换为机械振动能的装置。
它由压电陶瓷材料制成,具有压电效应。
当发生器传输的电信号通过换能器时,压电陶瓷会发生振动,将电能转化为超声波振动。
3. 焊接头:焊接头是将超声波能量传递到焊接工件上的部件。
它由换能器和焊接夹具组成。
当换能器振动时,焊接头将超声波能量传递到焊接工件的接触面上。
4. 焊接工件:焊接工件是需要被连接在一起的物体。
在超声波焊接过程中,焊接工件的接触面会受到超声波振动的作用,产生磨擦热,使工件表面温度升高。
超声波焊接机的工作过程如下:1. 准备工作:首先,需要将待焊接的工件放置在焊接夹具上,并将焊接头对准工件的接触面。
2. 发送超声波信号:超声波发生器会产生高频电信号,并将其传输到换能器。
换能器将电能转化为机械振动能,产生超声波振动。
3. 超声波传递:换能器产生的超声波振动通过焊接头传递到焊接工件的接触面上。
超声波振动使工件表面产生磨擦热,导致工件温度升高。
4. 塑性变形:随着工件表面温度的升高,工件材料开始变软,发生塑性变形。
在超声波振动的作用下,工件表面的弱小凸起和凹陷开始相互交织,形成焊接接触区。
5. 压力施加:超声波焊接机会施加一定的压力,使焊接工件的接触面密切接触。
这样,焊接接触区的材料能够更好地相互结合。
6. 冷却固化:当焊接接触区的温度下降时,焊接材料开始冷却固化。
焊接接触区的材料重新变硬,形成坚固的焊接接头。
超声波焊接机的工作原理可以简单总结为:利用超声波振动产生的磨擦热和压力,使工件表面材料发生塑性变形,并在冷却固化后形成坚固的焊接接头。
超声波焊接工作原理
超声波焊接是一种利用超声波在材料界面产生剧烈摩擦热而实现焊接的方法。
其工作原理如下:
1. 超声波发生器产生超声波:超声波是指频率高于20kHz的
机械波,通常使用频率在20kHz-60kHz之间的超声波。
2. 超声波通过换能器传递:超声波发生器会将电能转化为机械振动能,通过换能器将振动能传递到工作头部。
3. 工作头部振动:工作头部内部有一个振子,接受到换能器传递的振动能后开始振动,并将振动能传递到焊接接触面。
4. 材料剧烈摩擦热产生:当工作头部与焊接接触面接触时,因为接触面之间有些微的间隙,工作头部的振动会引起接触面的高频摩擦运动,从而产生摩擦热。
5. 材料局部软化:由于摩擦热的作用,接触面的局部区域会被加热到临界温度以上,使得材料表面局部软化,形成塑性流动层。
6. 塑性流动层的形成:当达到一定程度的软化温度时,材料表面就会形成塑性流动层,这层材料具有一定程度的流动性。
7. 熔汇与结合:在两接触面产生摩擦热的作用下,塑性流动层流向工件内部,使得两材料的表面粘接在一起,形成焊接接头。
总结来说,超声波焊接是通过超声波产生高频振动,通过振动产生的摩擦热使材料局部软化形成塑性流动层,最终实现两材料的粘接。
这种焊接方法具有快速、高效、无污染等优点,在各种行业中得到广泛应用。
超声波焊接机工作原理
超声波焊接机工作原理是利用超声波的振动和热能生成,实现材料的粘结。
其具体工作原理如下:
1. 高频振荡器产生电能,将电能转换成机械振动。
2. 通过声波传导装置将机械振动传导到焊接部位。
焊接部位通常由两个需要焊接的材料构成。
3. 当振动传导到焊接区域时,材料表面的摩擦引起材料内部的分子振动,产生热能。
4. 材料的表面温度随着热量的积累而升高。
当温度达到材料的熔化点时,材料开始融化。
5. 融化的材料进一步渗透到焊接材料的结构中,形成焊缝。
随着材料冷却,焊缝固化,实现了焊接。
6. 最后,振荡器停止振动,焊接过程结束。
焊接部位冷却后,形成了坚固的焊接连接。
超声波焊接机工作原理的主要特点是焊接过程速度快、能量消耗少、无需使用焊接剂或填充材料等。
它被广泛应用于塑料焊接、金属焊接、电子组件的封装等领域。
超声波焊接技术的原理与应用在现代工业生产中,焊接技术是一项至关重要的工艺。
而超声波焊接技术作为一种先进的焊接方法,凭借其独特的优势,在众多领域得到了广泛的应用。
超声波焊接技术的原理其实并不复杂。
简单来说,它是通过高频振动产生的能量来实现材料的连接。
这个过程就好像我们快速地用手搓动两个物体,摩擦会产生热量,从而使它们结合在一起。
但超声波焊接的振动频率极高,通常在 20kHz 以上,这种高频振动能够在极短的时间内产生大量的热能,并集中在焊接区域。
在超声波焊接设备中,有一个关键的部件叫做换能器。
它的作用就像是一个能量转换器,将输入的电能转化为机械振动能。
而变幅杆则负责将换能器产生的振动进行放大,并传递到焊接模具上。
焊接模具直接与被焊接的材料接触,将高频振动传递给它们。
当材料受到高频振动时,它们之间的分子会相互摩擦、碰撞,从而产生热量。
这些热量会使材料的接触面迅速熔化,形成一个焊接区域。
同时,在压力的作用下,熔化的材料会相互融合,并在冷却后形成牢固的焊接接头。
超声波焊接技术具有许多显著的优点。
首先,它的焊接速度非常快,通常只需要几秒钟就能完成一个焊接点,大大提高了生产效率。
其次,由于焊接过程中产生的热量相对较少,所以对周围材料的热影响很小,能够有效避免材料的变形和性能下降。
此外,超声波焊接不需要使用额外的焊接材料,如焊条、焊丝等,降低了成本,也减少了材料的浪费。
在汽车制造领域,超声波焊接技术被广泛应用于汽车零部件的生产。
例如,汽车内饰中的塑料件,如仪表盘、门板、座椅等,很多都是通过超声波焊接连接在一起的。
这种焊接方式不仅能够保证连接的强度和稳定性,还能使内饰件的外观更加美观。
在电子行业,超声波焊接也发挥着重要的作用。
像手机、电脑等电子产品中的电池、线路板、连接器等部件,都可以采用超声波焊接进行组装。
由于其焊接精度高,能够满足电子设备对微型化和高性能的要求。
医疗行业同样离不开超声波焊接技术。
一次性医疗器械,如注射器、输液管等,通常采用超声波焊接来保证其密封性和安全性。
超声波塑料焊接工艺超声波塑料焊接工艺是一种高效并且环保的塑料连接工艺,它能够将两个或多个塑料件快速地、牢固地连接在一起。
本文将详细介绍超声波塑料焊接工艺的原理、应用、优点以及局限性。
一、超声波塑料焊接工艺的原理超声波塑料焊接工艺是利用超声波产生的高频振动来摩擦、加热和融化塑料,在外力的作用下将塑料件连接在一起的技术。
具体来说,超声波发生器会将电能转化成机械能,通过换能器将超声波传递到塑料件焊点。
当超声波遇到塑料面时,会产生剪切力和热量,使塑料面快速摩擦、热化并融化,再由外力压合,使塑料接头得以牢固地连接起来。
二、超声波塑料焊接工艺的应用超声波塑料焊接工艺可以应用于各种塑料产品的制造,如汽车、电子、医疗设备等。
特别是在电子行业中,超声波塑料焊接工艺被广泛应用于连接小型电子元件,因为它可以快速而精准地进行塑料连接,连接质量高且不损坏电子元件。
此外,超声波塑料焊接工艺也可应用于食品包装行业,如酸奶杯、密封袋等。
三、超声波塑料焊接工艺的优点1.快速精准:超声波塑料焊接工艺能够在短时间内完成连接工作,且连接质量高,不产生塑料渣和其他杂质。
2.无毒环保:超声波塑料焊接工艺没有采用粘合剂或其他有害化学物质,不会对环境造成污染。
3.节能省电:超声波塑料焊接工艺没有热损失,不需要额外的加热设备或大量的电能,具有节能省电的优点。
4.设计自由度高:由于超声波可以穿透一个物体,因此可以实现复杂的连接形状和各种不同的体积大小。
四、超声波塑料焊接工艺的局限性1.对焊接材料要求高:超声波塑料焊接工艺对焊接材料有一定的要求,只有符合材料特性才能保障连接质量。
2.焊接深度受限:由于超声波的穿透能力有限,因此对于较厚的材料,超声波可能会造成局部无法接触的情况。
3.受限于材料性质:超声波的焊接效果受材料性质的影响,如硬度、粘度等,在处理不同种类的塑料时可能收到一定程度的限制。
综上所述,超声波塑料焊接工艺是一种高效、快速、精准、环保的连接工艺,被广泛应用于各种塑料产品的制造。
超声波焊接机的工作原理超声波焊接机是一种常用的焊接设备,广泛应用于塑料、金属等材料的焊接过程中。
它利用超声波的振动能量,将两个工件通过高频振动粘合在一起。
下面将详细介绍超声波焊接机的工作原理。
1. 超声波发生器超声波发生器是超声波焊接机的核心部件,它能够将电能转换为超声波振动能量。
发生器内部包含一个高频振荡电路,通过电磁振荡将电能转化为高频振动能量。
发生器的频率通常在20kHz到70kHz之间。
2. 换能器换能器是将发生器产生的电能转化为超声波振动能量的装置。
它由压电陶瓷材料制成,当施加电场时,压电陶瓷会发生机械振动。
换能器内部的压电陶瓷片会随着电场的变化而振动,从而产生超声波振动能量。
3. 振动焊头振动焊头是将超声波能量传递到工件上的部件。
它通常由钛合金制成,具有良好的机械性能和导热性能。
振动焊头的底部与换能器连接,当换能器产生振动时,振动焊头会将振动能量传递到工件上。
4. 工件夹持装置工件夹持装置是用于夹持待焊接的工件,保证焊接过程中工件的位置和姿态的稳定。
它通常由夹具和压力调节装置组成,夹具能够将工件密切夹持,压力调节装置可以调整焊接过程中施加的压力。
5. 超声波焊接过程超声波焊接的过程主要包括以下几个步骤:(1) 准备工作:将待焊接的工件放置在工件夹持装置中,并调整夹具和压力调节装置,确保工件的位置和姿态的稳定。
(2) 开始焊接:启动超声波发生器,发生器将电能转化为超声波振动能量。
振动焊头将超声波能量传递到工件上,使工件表面产生振动。
(3) 熔融界面形成:工件表面的振动能量使工件材料局部加热,当温度达到材料的熔点时,工件表面形成熔融界面。
(4) 压力施加:在熔融界面形成后,继续施加一定的压力,使熔融界面处的材料充分接触并冷却固化。
压力的施加可以确保焊接接头的强度和密封性。
(5) 结束焊接:当焊接时间达到设定值后,住手超声波发生器的工作,焊接过程结束。
工件夹持装置松开,取出焊接好的工件。
通过上述工作原理,超声波焊接机能够实现高效、稳定的焊接过程。
一.超声波应用原理我们知道正确的波的物理定义是:振动在物体中的传递形成波。
这样波的形成必须有两个条件:一是振动源,二是传播介质。
波的分类一般有如下几种:一是根据振动方向和传播方向来分类。
当振动方向与传播方向垂直时,称为横波。
当振动方向与传播方向一致时,称为纵波。
二是根据频率分类,我们知道人耳敏感的听觉范围是20HZ-20000HZ,所以在这个范围之内的波叫做声波。
低于这个范围的波叫做次声波,超过这个范围的波叫超声波。
波在物体里传播,主要有以下的参数:一是速度V,二是频率F,三是波长λ。
三者之间的关系如下:V=F.λ。
波在同一种物质中传播的速度是一定的,所以频率不同,波长也就不同。
另外,还需要考虑的一点就是波在物体里传播始终都存在着衰减,传播的距离越远,能量衰减也就越厉害,这在超声波加工中也属于考虑范围。
1、超声波在塑料加工中的应用原理:塑料加工中所用的超声波,现有的几种工作频率有15KHZ,18KHZ,20KHZ,40KHZ。
其原理是利用纵波的波峰位传递振幅到塑料件的缝隙,在加压的情况下,使两个塑料件或其它件与塑料件接触部位的分子相互撞击产生融化,使接触位塑料熔合,达到加工目的。
2、超声波焊机的组成部分超声波焊接机主要由如下几个部分组成:发生器、气动部分、程序控制部分,换能器部分。
发生器主要作用是将工频50HZ的电源利用电子线路转化成高频(例如20KHZ)的高压电波。
气动部分主要作用是在加工过程中完成加压、保压等压力工作需要。
程序控制部分控制整部机器的工作流程,做到一致的加工效果。
换能器部分是将发生器产生的高压电波转换成机械振动,经过传递、放大、达到加工表面。
3.换能器部分由三部分组成:换能器(TRANSDUCER);增幅器(又称二级杆、变幅杆,BOOSTER);焊头(又称焊模,HORN或SONTRODE)。
①换能器(TRANSDUCER):换能器的作用是将电信号转换成机械振动信号。
将电信号转换成机械振动信号有两种物理效应可以应用。
A:磁致伸缩效应。
B:压电效应的反效应。
磁致伸缩效应在早期的超声波应用中较常使用,其优点是可做的功率容量大;缺点是转化效率低,制作难度大,难于大批量工业生产。
自从朗之万压电陶瓷换能器的发明,使压电效应反效应的应用得以广泛采纳。
压电陶瓷换能器具有转换效率高,大批量生产等优点,缺点是制作的功率容量偏小。
现有的超声波机器一般都采用压电陶瓷换能器。
压电陶瓷换能器是用两个金属的前后负载块将压电陶瓷夹在中间,通过螺杆紧密连接而制成的。
通常的换能器输出的振幅为10μm左右。
②焊头(HORN):焊头的作用是对于特定的塑料件制作,符合塑料件的形状、加工范围等要求。
换能器、变幅杆、焊头均设计为所工作的超声频率的半波长,所以它们的尺寸和形状均要经过特别的设计;任何的改动均可能引致频率、加工效果的改变,它们需专业制作。
耐用根据所采用的材料不同,尺寸也会有所不同。
适合做超声波的换能器、变幅杆和焊头的材料有:钛合金、铝合金、合金钢等。
由于超声波是不停地以20KHZ左右高频振动的,所以材料的要求非常高,并不是普通的材料所能承受的。
二:超声波工作原理:热可塑性塑料的超声波加工,是利用工作接面间高频率的摩擦而使分子间急速产生热量,当此热量足够熔化工作时,停止超声波发振,此时工件接面由熔融而固化,完成加工程序。
通常用于塑料加工的频率有20KHZ和15KHZ,其中20KHZ仍在人类听觉之外,故称为超声波,但15KHZ仍在人类听觉范围只内。
三:超声波机构原理:将220V,50HZ转变为15KHZ(或20KHZ)之高压电能,利用震动子转换成机械能。
如此的机械振动,经由传动子,焊头传至加工物,并利用空气压力,产生工作接面之摩擦效果。
振动子和传动子装置在振筒内,外接焊头,利用空压系统和控制回路,在事先设定之条件下升降,以完成操作程序。
四:组件功用说明:1.延迟时间设定:调整开始发振时间,在限制开关动作后0~9.99秒开始发振。
2.熔接时间设定:调整熔接时间长短,在延迟时间终了发振0~9.99秒之范围。
3.硬化时间设定:调整发振终了工作物熔接处冷却定型时间在0~9.99秒之范围。
4.计数器:工作循环次数记录用,附有归零压扣。
5.调整及压力表:工作压力之指示及调整压力用。
6.声波调整:调整振动子系与发振回路之共振匹配,使转换效率达到理想。
7.振幅表:显示声波空载或负载工作之振幅强弱。
8.电源开关及灯:电源开关之控制,及指示开路之信号9.选择开关(自动/手动/声波检查):自动或手动之选择,及作声波空载检视之按纽。
10.声波出力调整纽:声波出力段数之设定用,1~2段为一般使用,3~4段为强力输出用。
11.声波过载灯:显示声波过载之不正常,需做声波调整,至过载灯不会显示为止。
(若仍无法解除,请来电洽询)12.频率指示:调试机器时做机器频率显示13焊头:传动振动能量于工作物之上,使之熔接。
14上升/下降缓冲调整:调整孔位于机台侧面可适当调整,使升降惯性适中。
15下降速度调整:调整合理适当之下降工作速度用。
16熔接位置视窗:检视正常熔接时焊头压附工作物之状况。
17.最低点微调螺丝:在熔接熔化块,或外形尺寸需精确时使用可限制汽缸之下降。
18水平微调螺丝:调整此四支螺丝,可使焊头平均压附在工作物上。
19输出电缆及插座:联接机体振动子系统与发振箱线路用。
20控制电缆及插座:联接机体控制单元与发振箱自动控制回路用。
21接地螺母:电子回路之接地线连接用,漏电时之安全保障。
22保险丝座:电子线路之过载保护。
五:机器安装法:1.将发振箱放置于机体附近操作员易于观察及调整之处。
2.接地:将地线一端接地,另一端接于发振箱后面之接地旋钮。
3.发振箱与机体联接:将机体之输出电缆插头及控制电缆插头接于发振箱插座及机体插座上4.接空压源:将高压气压管引清净干燥之空压源与熔接机体上空气滤清器入口接头以管束结合锁紧。
5.接电源:发振箱后面之电源线及插头,请接上AC220V,∮60/50HZ电源。
六:各部调整及熔接前准备工作:1.装焊头:(1)先将换能器(CONE)及焊头(HORN)以及焊头螺丝,以酒精或汽油擦洗干净,再将焊头螺丝及换能器,焊头结合面抹上一层薄薄的黄油脂再将焊头螺丝锁于焊头上。
注意:换能器,焊头之结合面若有损伤时,振动之传达效率会递减,应谨保养。
(2)再紧固4支焊头水平调整螺丝,将换能器固定在其旋转范围之中间位置处。
(3)把焊头用手旋入换能器到不能回转为止。
(4)以焊头锁紧扳手焊头旋紧(约300Kg/cm之扭力),此时特别注意不让换能器旋转,以防止转梢扭断。
(若发现旋转则4支焊头水平调整螺丝要再紧固些)。
2.焊头调整:(1)调整准备:①打开气压源,并调整压力至2kg/C㎡。
②打开发振箱上之总电源开关,此时电源指示灯亮。
(2)焊头方向调整:①放松4支水平调整螺丝,将焊头之方位与工作物对正,再按机体升降开关使焊头压附工作物。
(3)焊头水平调整:轻拍焊头四周,使焊头与工作物吻合状况后,平均固定4支水平调整螺丝。
(4)焊头高低位置调整:①若工作物之熔接对于高低需准备时,调整最低点微调螺丝顶于升降筒在熔接后最适当位置。
(5)熔接准备:①依工作物之状况,设定出力段数于适当位置。
(应从低段数试起以维寿命)再按声波检查开关,并转声波调整螺丝,使振幅表之指示在最低刻度为止。
注意:按声波检查开关,应按下三秒停止一秒间歇方式,以维护振动子寿命。
七:熔接操作:熔接延迟时间及硬化时间设定方法一。
面板按键说明:71 2 3 4 5 61.手动/自动:手动自动转换。
2.声波检测:测试声波是否正常。
3. 1.00S:时间增加1秒。
4.0.10S:时间增加0.1秒。
5。
0.01S:时间增加0.01秒。
6. 设定:设定延迟时间/熔接时间和硬化时间7.时间显示:显示全部时间时为自动待机状态,数字全部显示为“0”时机器处于手动状态,数字为单组时间显示另两组不显示时为设定状态。
(每三个数字(8.88)为一组时间,共三组时间)二。
时间设定方法:1.按“设定”钮,延迟时间与熔接时间变暗不显示,硬化时间处于设定状态。
此时可通过时间设定键增加相应的时间(例:按1.00S键及增加1秒,依次类推按0.10S及增加0.1秒,按0.01S增加0.01秒)。
时间为循环式设定,及相应的时间到“9”以后在增加时间及又从“0”开始。
(例:时间显示为9.99时,按1.00S键后时间即变为0.99。
)2.延迟时间和硬化时间与熔接时间调整方法相同。
按设定键一次为硬化时间设定,再按一次为熔接时间设定,再按一次为延迟时间设定。
再按一次及回到工作状态。
(三组时间中单一显示的一组时间及为正在设定的时间。
)3.完成上述之各部调整及熔接前准备后,按手动/自动按钮,使机器处与自动状态。
(三组时间均显示为正常的预设时间)4.熔接按钮试熔接,熔接机即可自动熔接工作一次。
5.视察熔接工作状况及熔接后工作物形态,再调整焊头,并重新设定工作条件,再试熔,重复调整至工作物理想熔接条件。
(延迟时间、硬化时间之设定,从较长时间递减设定至理想条件,声波出力及熔接时间之设定,则需由小而大渐增方式设定,以维护振动子之寿命。
)4.设定至理想熔接条件后。
即可从事作业生产,生产前,首先将计数器归零,及做声波检查,并清除工作机上不必要之物品,再行作业。
八:熔接动作说明:1.焊头下降:在发振箱导入电源及气压源接通后,按下熔接按钮(WELD),焊头即下降。
2.延迟时间:焊头下降至限制开关动作之同时,延迟时间计时器即开始计时。
3.熔接时间:延迟时间计时终了之同时,熔接时间计时器即开始计时,振动子同时发振熔接。
4.硬化时间:熔接时间计时终了之同时,硬化时间计时器即开始计时。
5.焊头上升:硬化时间计时终了,焊头随之上升,计数器即累计一次,完成一次循环动作。
九:注意事项:1.本机请勿置于潮湿或多尘及过热之场所,机器上方勿放置流体物,平时注意整洁,随时擦拭,但不可使用液体清洗。
2.人体请勿重压于发振之焊头,以免灼伤,自动操作中遇危险请按紧急按钮(EMERGENCY STOP)。
3.非本公司设计之焊头请勿使用在本机台上。
4.声波检查在无负荷时,振幅表勿超过1A,超过1A时请调整声波调整螺丝,若经调整仍不能降至1A以下,则可能焊头或机台有异常,请联络本公司处理。
5.按声波检查开关以间歇方式按下,勿连续按超过三秒以维护振动子寿命。
6.在操作时(有负荷状态),振动表勿超过红色区(在标准型熔接机时)若指示超过时,以降低压力,减少出力段数,及调整声波调整之,若经过调整,仍不能降下时,请联络本公司处理。
7.本机之振动子及发振机内有高压线路,除了外部作业之调整外,使用客户请勿做机内之修护。
8.焊头本身是依熔接物来决定,且必须配合振动系统之共振,所以焊头应使用本公司设计制造之产品,以免损害振动系统。